
IEEE PHOTONICS JOURNAL, VOL. 14, NO. 4, AUGUST 2022 7337814

Signal Demodulation Using a Radial Basis Function
Neural Network (RBFNN) in a Silicon
Photomultiplier-Based Visible Light

Communication System
Cuiwei He , Member, IEEE, and Steve Collins , Member, IEEE

Abstract—A silicon photomultiplier (SiPM) contains an array of
microcells that can each detect individual photons. Consequently,
it can arguably result in the most sensitive receiver in visible light
communication (VLC). However, each microcell needs a period
of several nanoseconds to recover after detecting a photon. This
creates a non-linear response and introduces a unique form of
inter-symbol interference. In this paper, we first show that this
interference splits each element of the received signal constellation
into multiple clusters. This observation motivates the investigation
into the use of a Radial Basis Function Neural Network (RBFNN)
to deal with the impact of the nonlinearity. Both the training
procedures and the performance of the RBFNN are explained and
discussed in detail. The influence of the number of the RBFNN
centers, the widths of the centers, the constellation size and the
period of the transmitted signal samples on the system performance
are investigated. In addition, two different RBFNN-based data de-
modulation methods are introduced. The simulation results suggest
that the new RBFNN-aided receivers reduce the negative impacts
of the SiPM nonlinearity and can result in lower bit error rates
(BERs) for a wide range of irradiances on the SiPM.

Index Terms—SiPM, SPAD, photon-counting, nonlinearity,
machine learning, radial basis function neural network.

I. INTRODUCTION

DUE to the exponentially growing number of Internet of
things (IoT) devices, radio frequency (RF) wireless com-

munications, including WiFi, is increasingly limited by the
available bandwidth. One of the most efficient solutions to this
problem is to add wireless communication capacity by using
a different part of the electromagnetic spectrum, for example
visible light. The result is a trending technology known as
visible light communications (VLC) [1], [2]. Most VLC systems
use intensity modulation/direct detection (IM/DD) in which the
transmitted data is modulated onto the intensity of the light
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emitted by the transmitter and detected using photodetectors in
the receiver [3]. In VLC, the performance of a link then depends
on the sensitivity of the optical receiver [4]. The most sensitive
possible receiver is the one that can accurately count the number
of photons incident on the receiver within a short period of time.
One way in which a photon-counting receiver can be created is
by biasing an avalanche photodiode (APD) above its breakdown
voltage and placing it in series with a quenching device. This
type of optical sensor is known as a single-photon avalanche
diode (SPAD). Although a SPAD is very sensitive it needs a
short period to recover after a single photon has been detected.
During this period the SPAD can’t detect any other photons [5],
[6] and so this period is usually known as either the dead time
or the recovery period of the SPAD. Since a minimum number
of photons per bit are required to achieve a target bit error rate
(BER) when photons are counted [5], the SPAD recovery period
limits the data rates that can be supported [7].

Fortunately, the impact the SPAD recovery time can be re-
duced by using an array of SPADs so that when some SPADs
are inactive other active SPADs can detect photons from the
transmitter. One type of SPAD array, known as silicon photo-
multiplier (SiPM), is now commercially available from com-
panies including Hamamatsu and onsemi. In a SiPM, a single
SPAD is referred to as a microcell and all microcells share a
common output. Recently, the use of SiPMs in VLC has been
demonstrated with Gbits/s transmission data rates from several
research groups [7]–[11]. These promising results have been
obtained despite the fact that the recovery time of each microcell
means that SiPMs have a non-linear response that can create a
unique form of signal distortion when the sampling period of
the transmitted signal is close to or less than the SiPM recovery
period [9].

To compensate for the SiPM nonlinearity, a number of sig-
nal post-equalization and pre-equalization methods have been
suggested. In [7], [12], when on-off keying (OOK) or pulse
amplitude modulation (PAM) is used as the modulation method,
decision feedback equalizers were used to simultaneously mit-
igate the signal distortion caused by the SiPM nonlinearity and
any inter-symbol interference (ISI). In [13], the performance
of a SiPM based orthogonal frequency-division multiplexing
(OFDM) system was studied and the specific frequency response
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due to the SiPM recovery period was analyzed. In addition,
it was shown that, when the channel response at the receiver
is pre-estimated, a group of single-tap equalizers can be im-
plemented in the frequency domain to reduce the impact of
the non-linearity. Furthermore, in [14], a time-domain based
pre-equalization method which is specially designed to reduce
the negative impact of the SiPM nonlinearity on OFDM signals
was shown to give promising results. In a more recent study [11],
this method was adapted to create a post-equalizer.

Although the signal distortion caused by the SiPM nonlin-
earity can be mitigated using classic digital signal processing
methods, very accurate channel information and precise SiPM
parameters need to be either pre-estimated or measured. This
creates extra challenges and the complexity of the equalizers
increases at higher data rates. Alternatively, data-driven solu-
tions using machine learning algorithms can be considered. In
recent years, the use of neural network based machine learning
algorithms in digital communications has become a trending
research topic [15] and its applications have also been considered
in various types of VLC scenarios [16]–[19]. In more recent stud-
ies, artificial neural networks (ANN) or multilayer perceptrons
(MLPs) have been shown to be a promising candidate for replac-
ing the conventional demodulation techniques in SPAD-based
optical wireless systems [20]. However, the main challenge is
that the accuracy of the ANN-aided receiver depends on the
complexity of the network and a complex ANN structure with
many layers requires more training data and time. Moreover, in
most cases, the trained ANN is used as a ‘black box’ and many of
the trained parameters cannot be interpreted. Consequently, this
approach does not provide any insights into how the performance
of neural networks can be further improved or how they would
perform in unusual circumstances.

In this paper, the SiPM non-linearity is shown to create a
unique form of distortion when OFDM is used and the period
of individual transmitted signal samples is less than the SiPM’s
recovery time. In particular, the non-linearity splits each quadra-
ture amplitude modulation (QAM) constellation point into sev-
eral clusters. To emphasis this effect, the possible transmitted
constellation points will be referred to as constellation elements
in the rest of the paper. To deal with this new type of distortion,
a new demodulation method is proposed and investigated. This
new method is based upon a simple three-layer Radial Basis
Function Neural Network (RBFNN). This RBFNN is formed
from a group of Radial Basis Functions (RBFs) [21] and the
parameters of the RBFs are obtained from training data. Each
element of the QAM constellation is then associated with multi-
ple RBFs. The network is trained to estimate the probability and
each symbol has created the input to the RBFNN. This output
probability, or soft information, can then be used to demodulate
the input signal.

When a RBFNN is used in a SiPM based VLC system, its
performance depends on a range of factors including the number
of the RBFs per constellation element, the parameters of each
RBF, the constellation size, the irradiance falling on the SiPM
and the duration of individual transmitted signal samples. All
these factors are analyzed in detail in this paper. Moreover, the
performance of three different receivers are compared. These

receivers are a conventional receiver, a RBFNN receiver which
is used to take hard decisions based upon the output with the
maximum value and a RBFNN receiver that rejecting decisions
when all the output probabilities are below a decision thresh-
old. The BER results obtained using these methods show that
RBFNN can reduce the impact of the SiPM nonlinearity over a
wide range of irradiances falling on the SiPM.

The rest of the paper is structured as follows. Section II intro-
duces the statistical model considered in the simulations of the
photon counting process. The SiPM nonlinearity and its impact
on received signals are described in Sections III. This is followed
in Section IV by a description of RBFNNs and the details of
the network training process in Section V. The performance of
the trained RBFNN with different parameters is discussed in
Section VI. Section VII describes a new RBFNN aided SiPM
OFDM system and the BER results obtained with this system
discussed in Section VIII. Finally, Section IX concludes the
paper and discusses future work.

II. SIMULATION MODEL

In this section, the statistical model used to simulate the
photon counting process is explained. In an IM/DD based VLC
system, the transmitted information is carried on the instanta-
neous optical power of the light and therefore can be decoded
based on the number of photons arrived at the optical sensor dur-
ing individual signal sampling periods. The number of photons
arrived at the SiPM can be accurately modelled using a Poisson
distribution [7], [22]. When the influence of the photon detection
efficiency (PDE), αPDE, is considered, during the detection of
the kth signal sample, the distribution of the effective number of
photons arrived at a single SiPM microcell, υk, has a probability
mass function (PMF) given by

P (υk = j) =
κj
ke
−κk

j!
(1)

where κk is the average effective number of arriving photons, !
is the factorial function. If the SiPM hasNcells microcells and the
energy of a single photon isEp, κk is related to the instantaneous
optical power received by the SiPM, ropt(t), by

κk =
αPDE

NcellsEp

∫ tk+Ts

tk

ropt(t)dt (2)

where
∫ tk+Ts

tk
ropt(t)dt is the received energy by the SiPM during

the transmission of the kth sample and Ts is the transmission
period of individual signal samples.

In this paper, to accurately model the system, we simulate the
arriving time of individual photons. When the number of photons
arriving at the SiPM within a time period is a Poisson variable,
the time interval between two adjacent arriving photons follows
an exponential distribution and its probability density function
(PDF) is given by

p(t) = λe−λt (3)
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Fig. 1. The simulation trails of the photon counting process of an individual
SiPM microcell when the transmission period of a signal sample, Ts, is 15 ns
and different irradiance levels are considered (a) 1 mW/m2, (b) 10 mW/m2, (c)
100 mW/m2. In this figure, a green circle indicates the time of a detected photon
which is followed by a blue line indicating its associated recovery period. The
red crosses indicate the missed photons.

where λ is the rate parameter and it is related to κk and Ts by

λ =
κk

Ts
(4)

As explained in the introduction, due to the recovery period
of the microcell, not all arriving photons can be detected. Fig. 1
shows several simulation trails of the photon counting process
of a single SiPM microcell under different irradiance levels. The
details of the simulation method which includes the influences of
the microcell recovery period are described in [13], [14]. From
Fig. 1, we can see that the overall number of photons arriving at
a SiPM microcell increases when the irradiance level is changed
from 1 mW/m2 to 100 mW/m2. At the same time, due to the
microcell’s recovery period, the number of missed photons also
increases as the irradiance increases. Moreover, it can be seen
that, when the sampling/counting period is 15 ns, which is much
less than the microcell’s recovery period of 45 ns, the recovery
period spans multiple signal sampling periods which causes a
unique form of interference [13], [14] and the associated signal
distortion is discussed in the next section.

In this paper, we analyze the performance of the system by
considering the received optical power or irradiance level rather
than the transmitted optical power. In this case, the conclusions
obtained in the following sections are independent of the optical
channel gain as well as the properties of the optical transmitter.
In a practical transmission system, a certain received irradiance

TABLE I
SIPM PARAMETERS [23]

Fig. 2. The simulated average photon counting rate as a function of the
irradiance of 405 nm light falling on a SiPM 30035.

level is related to a combination of the power of the transmitter
and/or the distance between the transmitter and the receiver
and/or the incident angle of the light.

III. SIPM NONLINEARITY AND SIGNAL DISTORTION

As shown in Section II, due to the microcell’s recovery period,
the number of detected photons is not always proportional to the
irradiance falling on the SiPM. Moreover, when the period of
the transmitted signal samples is less than the recovery period of
the SiPM microcells, the microcell’s recovery period introduces
interference between signal samples which results in a unique
form of signal distortion. To explain the motivation for using a
RBFNN in a SiPM based VLC system, the SiPM nonlinearity
and its associated signal distortion are discussed in this section.
In this paper, a SiPM 30035 from onsemi is considered whose
key parameters are listed in Table I. Fig. 2 shows the simulated
average photon counting rate as a function of the irradiance
falling on a SiPM. In particular, Fig. 2 shows that, when the
irradiance of 405 nm light is up to 10 mW/m2, there is a
linear relationship between irradiance and the photon counting
rate. However, when the irradiance is above 10 mW/m2, the
microcells recovery time means that some photons incident
on the SiPM cannot be counted and this relationship becomes
non-linear. Finally, the count rate saturates when the irradiance
is above 100 mW/m2.

By simulating the SiPM OFDM system used in [13], Fig. 3
shows the received signal constellations when a transmitted
signal sampling period of 15 ns is considered as an example
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Fig. 3. Several examples of the received signal constellations from all OFDM
subcarriers when the counting period, Ts, is 15 ns, (a) BPSK and the received
irradiance level is 1 mW/m2, (b) BPSK and the received irradiance level is 40
mW/m2, (c) 4-QAM and the received irradiance level is 1 mW/m2, (d) 4-QAM
and the received irradiance level is 40 mW/m2, (e) 16-QAM and the received
irradiance level is 1 mW/m2, (f) 16-QAM and the received irradiance level is
10 mW/m2.

which is much less than the microcell recovery period of 45 ns.
Each of the constellation diagrams in Fig. 3 is obtained from
1000 OFDM symbols, with each OFDM symbol contains 256
subcarriers. Three different constellation sizes including BPSK,
4-QAM, 16-QAM are considered. Fig. 3(a), (c), and (e) shows
the constellations when the irradiance level is low enough for
the SiPM to be linear. It can be seen that under these conditions
noise will determine the BER. However, at a high irradiance
the SiPM is non-linear and Fig. 3(b), (d), and (f) show that the
constellations are very distorted. More importantly, these results
show that the non-linearity can split the constellations points
into multiple clusters. In most communication systems, demod-
ulation of the received signal includes a procedure to identify
the QAM constellation which corresponds to a particular input.
Using a RBFNN is an efficient way of classifying data into
different categories with each category associated with multiple
data clusters [21], they therefore seem particularly well suited to
demodulating QAM signal that have been distorted by the SiPM
non-linearity.

IV. RBFNN FOR DATA DEMODULATION

In this section, the structure of the RFBNN that is investigated
is described. As shown in Fig. 4, the RBFNN is formed from

Fig. 4. A schematic diagram of a RBFNN used to demodulate the output of a
SiPM VLC receiver.

Fig. 5. A schematic diagram of the logistic function using in the output layer
of the RBFNN.

three layers [21]. The input layer contains individual input data
values and the hidden layer contains a group of RBFs which are
referred to as RBF neurons in this paper. Finally, the output layer
contains one neuron for each element in the QAM constellation
and each of these output neurons contains a sum function fol-
lowed by a logistic function. After the RBFNN has been trained,
a received complex constellation value is first normalized and
then supplied into all RBF neurons. In the rest of the paper,
a received constellation value is denoted by Y = YR + iYI in
which YR is the real part and YI is the imaginary part. In this
paper, the RBFs are Gaussian and the output value of the kth
RBF neuron is therefore calculated using

ϕk = e−βk ||Y −μk ||2 (5)

whereμk is mean position or center of the kth Gaussian function
or neuron. βk then determines the variance of the Gaussian
function and hence determines the width of the kth RBF neuron.
Next, the output values from all RBF neurons are weighted and
then summed using

αl =

K∑
k=1

wklϕk + bl (6)

where wkl is the weighting coefficient between the kth RBF
neuron and the lth output neuron and bl is the bias value for the
lth output neuron. Each,αl is then the input to a logistic function

Pl =
1

1 + exp(−αl)
, (7)
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such as the one shown in Fig. 5. As shown in this figure the
value of Pl is constrained to be between 0 and 1 and it is trained
to estimate the probability that Y = YR + iYI belongs to the lth
output neuron and hence the lth element of the constellation [24],
[25]. The estimated probabilities from all output layer neurons
can then be used to associate an element of the constellation with
the input. The simplest way that this can be done is to make a
hard decision by selecting the output with the maximum value
using

c = argmax
l

Pl. (8)

Finally, c is converted back to binary data sequence using a look
up table (LUT) which is based on Gray coding.

In some cases, Y = YR + iYI might be a rare outlier which is
far from all the BBF centers. In this situation, a more accurate
method is to set a threshold value. Then if the maximum value
of Pl is below this threshold, the hard decision is rejected and
the associated bit is retransmitted. Although this approach can
reduce the transmission data rate, it will lead to lower BERs.
The results obtained using both of these methods are therefore
included in this paper.

V. THE TRAINING OF A RBFNN

The training process of the RBFNN is divided into two stages.
The first stage is to determine the locations of the centers of
the RBF neurons,μ = [μ1, . . ., μk, . . ., μK ] and their associated
width parameters, β = [β1, . . ., βk, . . ., βK ]. The second stage
is to obtain the optimal weighting coefficients, wkl, and the
bias coefficients, bl, between the RBF neurons and the output
neurons.

A. K-Means Clustering Algorithm to Obtain RBF Centers

In this paper, unsupervised k-means clustering [26]
was used to determine the locations of the centers
μ = [μ1, μ2, . . ., μk, . . ., μK ] and β = [β1, β2, . . ., βk, . . ., βK ]
based on a set of training input data and associated constel-
lation points, Y = [Y1, Y2, . . ., Ym, . . ., YM ]. In the k-means
clustering algorithm, when the number of RBF neurons, K,
is decided, the values of μ = [μ1, μ2, . . ., μk, . . ., μK ] are first
initialized randomly. Then for each constellation point in Y =
[Y1, Y2, . . ., Ym, . . ., YM ], its Euclidean distances to all RBF
neuron centers, μ = [μ1, μ2, . . ., μk, . . ., μK ], are calculated
and then this constellation point is assigned to the closest RBF
center. After this assignment process is implemented for all ele-
ments of Y, Y is divided into different groups.1 The next step is
for the center of each RBF neuron,μk, to be updated to be the av-
erage value of the data points which are assigned to this neuron.
The above steps are implemented iteratively to update all RBF
centers until the positions of the centers no longer change. Then,
the standard deviation of the kth data group is calculated using

σk =
∑

YD,k∈YD,k

||YD,k − μk||
|YD,k| (9)

1Note that, in the case, if no data point is assigned to a certain RBF center, this
center is removed and not considered in the following updating steps. Therefore,
the final number of RBF centers is equal to or less than K.

TABLE II
K-MEANS ALGORITHM TO FIND RBF CENTERS

where YD,k is a data vector which contains all the constellation
values assigned to the kth RBF center and |YD,k| denotes the
number of elements within YD,k. In this way, the constellation
values assigned to different RBF centers are determined after the
training and consequently the values of σk are fixed. However,
the performance of RBFNN depends upon the values of σk

which are not necessarily optimized. A parameter, γ, has there-
fore been used to make these parameters adjustable, in particular,

βk =
γ

2σ2
k

. (10)

In this paper, the width of the kth RBF neuron is defined as

σwidth,k =

√
1

2βk
. (11)

In this case, decreasing the value of γ increases the width of
the RBF neurons. Note that when γ is one, σwidth,k = σk is the
original obtained standard deviation of the kth data group. The
simplified pseudocode of the considered k-means algorithm is
summarized in Table II.
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B. Gradient Descent Algorithm to Obtain Weighting
Coefficients

As shown in Fig. 4, each RBF neuron is connected to all
neurons in the output layer. Using the training data, the weighting
coefficients, wkl, and the bias coefficients, bl, are updated based
on the gradient descent principle [27].

To obtain the optimal values of wkl and bl, an error function
is first defined and then minimized. In the RBFNN, the indices
of output neurons are associated with an element of a constella-
tion. Consequently, the desired output probability of the neuron
associated with the correct element of the constellation is 1. In
contrast, the target output probabilities of all the other output
neurons are 0 s. In this paper, an error function [25], [28] for the
lth output neuron is defined as

el =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 1

M

M∑
m=1

log(Pl,m), if cl,m = 1

− 1

M

M∑
m=1

log(1− Pl,m), if cl,m = 0

(12)

where Pl,m is obtained value of the lth output neuron based
on the mth training data point using (5)–(7). cl,m ⊂ {0, 1} is
the desired output and it is obtained based on the transmitted
binary data. Using (12), when the desired value of the lth output
neuron is one, (cl,m = 1), and the predicted probability is one,
(e.g. Pl,m = 1), the error coefficient, el, is zero. Similarly, when
the desired output value is zero, (e.g. cl,m = 0) and the predicted
probability is zero, (e.g. Pl,m = 0), the error coefficient, el, is
also zero. In contrast, when the difference betweenPl,m and cl,m
is large, the value of el becomes high. To simplify the further
analysis, (12) is rewritten as

el =
1

M

M∑
m=1

− (cl,m logPl,m + (1− cl,m) log(1− Pl,m))

=
1

M

M∑
m=1

el,m. (13)

Next, to obtain the values of wkl and bl which can minimize
el efficiently a gradient descent based coefficient updating ap-
proach is employed. The gradient of wkl and bl are determined
based on partial derivatives. The partial derivative of el with
respect to wkl is calculated using

∂el
∂wkl

=
1

M

M∑
m=1

∂el,m
∂Pl,m

∂Pl,m

∂αl,m

∂αl,m

∂wkl
, (14)

where

∂el,m
∂Pl,m

= − ∂ (cl,m logPl,m + (1− cl,m) log(1− Pl,m))

∂Pl,m

= −
(
cl,m
Pl,m

− 1− cl,m
1− Pl,m

)
, (15)

∂Pl,m

∂αl,m
= Pl,m(1− Pl,m), (16)

TABLE III
THE PSEUDO-CODE OF THE UPDATING PROCESS OF b, wI AND wR

and

∂αm

∂wkl
= ϕk,m. (17)

Substituting (15)–(17) into (14) gives

∂el
∂wkl

=
1

M

M∑
m=1

(Pl,m − cl,m)ϕk,m. (18)

Using the same approach the gradient of bl is

∂el
∂bl

=
1

M

M∑
m=1

∂el,m
∂Pl,m

∂Pl,m

∂αl,m

∂αl,m

∂bl

=
1

M

M∑
m=1

(Pl,m − cl,m). (19)

Equations (18) and (19) indicate when the values of wkl and
bl should be increased or decreased for minimizing the defined
error, el. Furthermore, the optimal coefficients of wkl and bl are
obtained using an iterative method. In each iteration, wkl and bl
are updated using

wkl←wkl−η ∂el
∂wkl

=wkl− η

M

M∑
m=1

(Pl,m − cl,m)ϕk,m, (20)

and

bl ← bl − η
∂el
∂bl

= bl − η

K

M∑
m=1

(Pl,m − cl,m). (21)

where η is the learning rate which is fixed at 0.5 in the following
analysis. The overall procedures of this gradient descent algo-
rithm are summarized in the Table III.
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Fig. 6. The normalized BPSK signal constellations from all OFDM subcarriers
used for the network training and the positions of the RBF neurons when the
irradiance level is 40 mW/m2, (a) K/L = 3 and γ = 1, (b) K/L = 10 and
γ = 1, (c) K/L = 10 and γ = 0.5, (d) K/L = 10 and γ = 0.1. The crosses
in this figure are the centers of the RBF neurons, μk . The radii of the circles are
the widths of the RBF neurons, σwidth,k .

VI. RBFNN PERFORMANCE

The performance of the RBFNN depends on a range of param-
eters including the size of the constellation, the number of RBF
neurons and the variance associated with each RBF neuron. In
this section, the influences of these parameters are investigated.
At the start of this investigation it was anticipated that larger
RBFNNs will be required to deal with larger constellations and
so the parameter, K/L, has been used where K is the number of
RBF neurons andL is the size of the constellation. The data used
for the network training is obtained from the statistical model
described in Section II.

A. RBFNN Outputs for BPSK

In this section, we first focus on the results when BPSK is used
with OFDM. Fig. 6 shows the results when the k-mean clustering
algorithm described in Section V-A is used to locate the centers
and widths of the RBF neurons. In the training process, 1000
OFDM symbols with each symbol containing 256 subcarriers
were used. Fig. 6(a) shows the case when K/L = 3 and γ = 1.
First, it can be seen that in the areas with high training data
densities the widths of the RBF neurons are relatively small
compared to the RBF neurons in the areas with low data density
levels. Also, a comparison of Fig. 6(a) and (b) shows that, when
the number of RBF neuron is increased the widths of the neurons
decreases. Fig. 6(c) and (d) then show the impact of increasing
the widths of the RBF neurons by using two smaller values of γ.

Next, the performance of the RBFNN containing the RBF
neurons shown in Fig. 6(a) is investigated in detail. Firstly,
the weighting coefficients as well as the bias coefficients were

Fig. 7. (a) the 1st output values of the trained RBFNN (side view), (b) the 2nd
output values of the trained RBFNN (side view), (c) the 1st output values of the
trained RBFNN (top view), (d) the 2nd output values of the trained RBFNN (top
view) when the irradiance level is 40 mW/m2, K/L = 3, γ = 1.

obtained using the gradient descent algorithm described in Sec-
tion V-B. After the network was trained, all possible inputs
within a normalized complex space were presented to the net-
work. The results obtained for the two output neurons for all
these possible inputs are shown in Fig. 7. Fig. 7(a) and (c) show
that the outputs of the first neuron are very high where the input
data is associated with a transmitted 0. In contrast, its output is
very low for the positions associated input data arising from a
transmitted 1. In contrast, the output of the second neuron, as
shown in Fig. 7(b) and (d), is close to one when the input data is
similar to training data arising from a transmitted 1 while they
are low when the inputs are similar to the training data arising
from a transmitted 0. Consequently, this RBFNN can be used to
distinguish between the two BPSK symbols and classify them
into two categories. In this case, most of the transmitted data
can be decoded successfully. However, the results also show
that when an input falls into a region from which training data
was absent both output values are close to 0.5. This means
that if an outlier input falls onto these locations, it can cause
a detection error. However, this can be avoided by only making
a classification decision if the maximum output value is larger
than a threshold. The consequences of adopting this approach
are described in Section IV.

Then, we analyze how the outputs are affected by changing
the widths as well as the numbers of the RBF neurons. Fig. 8
shows the output values of the first neuron when the four cases
of RBF neurons shown in Fig. 6 are considered. First, when a
larger number of RBF neurons are considered, we can see that
the distribution of the output values have a more complex pattern
in Fig. 8(b) compared to Fig. 8(a) and consequently Fig. 8(b)
can better represent the distribution of the constellations. Then,
when the widths of the RBF neurons are increased by reducing
the value of γ to 0.5 in Fig. 8(c) and 0.1 in Fig. 8(d), the area
in which the two output neurons are similar, that is the area in
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Fig. 8. The 1st output of the trained RBFNN for all possible constellation
positions when the irradiance level is 40 mW/m2 (a) K/L = 3 and γ = 1,
(b) K/L = 10 and γ = 1, (c) K/L = 10 and γ = 0.5, (d) K/L = 10 and
γ = 0.1.

Fig. 9. The 4-QAM signal constellations from all OFDM subcarriers used for
the RBFNN training when the irradiance level is 40 mW/m2, (a) K/L = 3,
γ = 1, (b) K/L = 10, γ = 1, (c) K/L = 10, γ = 0.1. The crosses in this
figure are the centers of the RBF neurons, μk . The radii of the circles are the
widths of the RBF neurons, σwidth,k .

which the outputs are indistinguishable, is reduced. In the cases
of Fig. 8(c) and (d), the associated BERs are zeros.

B. RBFNN Outputs for 4-QAM and 16-QAM

In this section, the RBFNN outputs are discussed when larger
constellation sizes, e.g. 4-QAM and 16-QAM, are used with
OFDM. Fig. 9 shows the RBF neurons obtained with different
values ofK/L andγ when the 4-QAM constellations in Fig. 3(d)
are used. The results in Fig. 9 show that using k-means clustering
means that the regions in which there is a high density of input
data are always covered by the RBF neurons. Similar to the
cases of BPSK, for a given value of γ, the width of the RBF

Fig. 10. The four outputs of the trained RBFNN for all possible input values
in a normalized complex constellation space for 4-QAM when the irradiance
level is 40 mW/m2, K/L = 3 and γ = 1.

Fig. 11. The four outputs of the trained RBFNN for all possible input values
in a normalized complex constellation space for 4-QAM when the irradiance
level is 40 mW/m2, K/L = 10 and γ = 1.

neurons reduces when the number of RBFs increases. However,
the width of the RBF neurons can be enlarged by using a smaller
value of γ.

Fig. 10 shows the four output values of the RBFNN when the
RBF neurons in Fig. 9(a) are used. The results in Fig. 10(a), (b),
(c), and (d) show that output of each neuron is high when the
input is similar to an input in the training data associated with
its corresponding QAM element. At the same time, the values
of the other three outputs are close to zero. Next, the number
of RBF neurons is increased by using K/L = 10. The resulting
RBF neurons are shown in Fig. 9(b) and the associated outputs
of the network are shown in Fig. 11. In this case, a more complex
distribution pattern of the output values is obtained. Also, similar
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Fig. 12. The four outputs of the trained RBFNN for all possible input values
in a normalized complex constellation space for 4-QAM when the irradiance
level is 40 mW/m2, K/L = 10 and γ = 0.1.

to the case of BPSK, Fig. 12 shows that the undistinguishable
area is reduced by using γ = 0.1 to increase the width of the
RBF neurons. If 16-QAM is used then the RBFNN needs 16
outputs. In this case, Fig. 13 shows the outputs when K/L = 10
and γ = 0.1. Importantly, these result show that the overall
space is divided into 16 areas and each area has a complex
non-linear boundary which can potentially lead to more accurate
results compared to the conventional approach, which relies
upon partitioning the input space using multiple lines.

C. Results for Low Irradiances

Although the RBFNN has been suggested to handle the impact
of SiPM non-linearity when the irradiance level is high, it must
also performance well when the SiPMs response is linear. In
the above section, the results show how a trained RBFNN can
divide the constellation space into multiple areas based on the
training data when the SiPM is non-linear. In this section, the
results are also studied when the SiPM is linear and noise is
the main cause of signal distortion. Figs. 14 and 15 show the
outputs of the RBFNN when the received irradiance level is
1 mW/m2 and hence the SiPM is in the linear region of Fig. 2.
The horizontal and/or vertical lines in Figs. 14 and 15 indicate
the decision boundaries when decisions/classifications are made
based upon maximum likelihood (ML). Figs. 14 and 15 show
that the trained RBFNN divides the complex constellation space
into two areas for BPSK and four areas for 4-QAM. More
importantly, the borders of these areas match the ML decision
boundaries very well. Consequently, when the SiPM’s response
is linear, a receiver that uses a RBFNN is expected to achieve a
very similar performance to one that uses ML.

VII. RBFNN AIDED SIPM OFDM SYSTEM

In this section, the RBFNN aided VLC transmission sys-
tem is introduced. As shown in Fig. 16, at the transmitter,

a signal vector, X = [X0, X1, . . ., XN−1], which contains N
bipolar complex QAM data is input into an IFFT block. In
VLC, since IM/DD is used, the transmitted signal needs to be
both real and unipolar. To generate a real time-domain signal,
x = [x0, x1, . . ., xN−1], X is constrained to have Hermitian
symmetry. Next, a cyclic prefix (CP) and a DC bias are added
and the negative part of the signal is clipped at a zero level
so that the signal, sDCO(n), becomes unipolar. The optimal
choice of the DC bias is discussed in [14] and in this paper
the DC bias is fixed at 7 dB. Next, sDCO(n) is sent into a
digital to analog converter (DAC) to obtain sDCO(t) which is
used as the input to a 405 nm transmitter, a wavelength that
was chosen because it is associated with a high SiPM photon
detection efficiency. Finally, the emitted optical signal passes
through an optical channel before arriving at the SiPM receiver.
In the simulated transmission, the period of each transmitted
signal sample is Ts and consequently the duration of one OFDM
symbol is (N +NCP)Ts and NCP is the length of the CP. In the
analysis, N is fixed at 256 and NCP is fixed at 32. The data rate
of DCO-OFDM can be calculated using

b =

(
N
2 − 1

)
log2(M)

(N +NCP)Ts
(22)

where (N2 − 1) is the number of subcarriers used for data-
carrying in DCO-OFDM.

At the receiver, the light intensity is detected using a SiPM.
The signal pulses generated from all SiPM microcells are added
together via a common output. This output signal, y(t), is input
into an analog to digital converter (ADC) which has a sampling
rate of 1/Ts. The captured discrete signal sequence at the ADC
output is then converted to the number of detected photons and
used to create a vector of the number of photons detected during
a period of NTs, y = [y0, y1, . . . , yN−1], which is sent into an
FFT block to giveY = [Y0, Y1, . . . , YN−1]. During the next step,
each of the received signals is sent into a trained RBFNN to be
classified. Finally, a look up table (LUT) converts the category
ID into the received bits.

VIII. BER RESULTS

A. Influences of Irradiance, Sampling Period and
Constellation Size

The BER results of the transmission system described in
Section VII are analyzed in this section. Figs. 17 and 18 show the
simulated BER results as a function of the irradiance falling on
the SiPM when 4-QAM and 16-QAM are used. Although BPSK
is good to be considered as an example to explain the principles
of RBFNN, its associated BERs are usually very low and out of
our interested range. Therefore, the BER results of BPSK are not
discussed in this section. In the following discussion, for each of
the three transmission sampling periods, three different methods
have been used to determine the data that has been transmitted.
First, it can be seen that, for all cases, the BER first decreases
and then increases when the irradiance level is changed from 0.1
mW/m2 to 100 mW/m2. This is because, when the irradiance
level is low, the SiPM is linear and the performance is dominated
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Fig. 13. The sixteen outputs of the trained RBFNN for all possible values in a normalized complex constellation space for 16-QAM when the irradiance level is
10 mW/m2, K/L = 10 and γ = 0.1.

Fig. 14. The two outputs of the trained RBFNN for all possible input values in
a normalized complex constellation space for BPSK when the irradiance level
is 1 mW/m2, K/L = 10 and γ = 0.1.

by Poisson noise. A low irradiance levels this creates a low
SNR and therefore a high BER. However, when the irradiance
level is too high, the SiPM becomes non-linear and the resulting
signal distortion leads to high BERs. Second, it can be seen
from both Figs. 17 and 18 that the BER performance is also
related to the sampling period of the transmitted signals and a
shorter sampling period causes higher BERs. More importantly,
as predicted in Section VI-C, in all cases the RBFNN receiver
gives the same performance as the conventional receiver at
low irradiances. More importantly, the results show that when
the irradiance level is high, the receiver that incorporates a
RBFNN can achieve much lower BERs than the conventional
receiver without a RBFNN. This demonstrates that the RBFNN
based receiver can significantly reduce the impact of the SiPM
nonlinearity. Moreover, when decision rejection is used with a
RBFNN receiver, the results show that the BERs are reduced
even further in all cases. In these results, the decision rejection

Fig. 15. The four outputs of the trained RBFNN for all possible input values
in a normalized complex constellation space for 4-QAM when the irradiance
level is 1 mW/m2, K/L = 10 and γ = 0.1.

threshold is fixed at 0.7. The influences of the choice of the
decision rejection threshold are discussed in Section VIII-D.

B. Low Error Irradiance Range (LEIR)

The results in Figs. 17 and 18 show that the BERs are only low
for a range of irradiance levels. In this paper, in line with most
of the VLC research work, the acceptable BER is considered to
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Fig. 16. The considered SiPM OFDM system with RBFNN-aided signal detection.

Fig. 17. The simulated BER plotted as a function of the irradiance level when
γ=0.1 andK/L=10 for 4-QAM with different sampling periods of 30 ns, 15 ns
and 5 ns.

be the forward error correction (FEC) limit which is typically
fixed at 3.8× 10−3 [29]. As shown in Figs. 17 and 18, the
irradiance range in which the BER is below the FEC limit is
called the low error irradiance range (LEIR) and it is considered

Fig. 18. The simulated BER plotted as a function of the irradiance level when
γ=0.1 and K/L=10 for 16-QAM with different sampling periods of 30 ns,
15 ns and 5 ns.

as a performance metric in this paper. A higher value of LEIR
means that the SiPM works for a wider range of irradiance
levels which is very desirable for the transmission system. In
Figs. 17 and 18, the irradiance is considered in a log scale and
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Fig. 19. The LEIR for different sampling periods, (a) 4-QAM, (b) 16-QAM.

between 10−4 W/m2 and 10−1 W/m2. Since the area of the
SiPM is 9.42 mm2 as listed in Table I, this irradiance range is
equivalent to the received optical power between −60.25 dBm
and−30.25 dBm. To give the values of the LEIR in a log scale,
it is expressed in dB by using the higher received optical power
level (in dBm) which is associated with a BER of 3.8× 10−3

minus the lower received optical power level (in dBm) which
is also associated with a BER of 3.8× 10−3. Fig. 19 shows
the obtained LEIRs for different sampling periods. Note that
in the case when 16-QAM and Ts is 5 ns, the obtained BERs
without RBFNN and with RBFNN are all above the FEC limit
and only the RBFNN with decision rejection can achieve a BER
below the FEC limit, its LEIR results are therefore not shown
in Fig. 19. First, by comparing Fig. 19(a) with Fig. 19(b), we
can see that the use of 4-QAM results in much lower LEIRs
than the case of 16-QAM. Second, it can be seen that, for both
4-QAM and 16-QAM, the LEIR increases when a larger value
of Ts is considered. This is because the influences of the SiPM
nonlinearity reduce when the value of Ts increases. Third, in the
case of 4-QAM, we can see that the use of RBFNN can result in a
2 dB improvement compared to the case without RBFNN. Also,
using RBFNN with decision rejection, a further improvement of
1 dB∼1.5 dB can be achieved. In the case of 16-QAM as shown
in Fig. 19(b), the use of RBFNN can result in an improvement
of 1 dB∼2 dB. Moreover, the use of decision rejection can lead
to additional gains of 2 dB∼2.5 dB and therefore the overall
performance gain is up to 4.5 dB.

C. Influence of RBF Neuron Width

The results in Section VI suggest that the performance of
the RBFNN will depend critically on the width of the RBF
neurons. This parameter can be varied using the parameter γ,
which is defined in a way that means that smaller values of γ
are associated wider RBF neurons. The changes in BER as γ is
varied for two typical scenarios are shown in Fig. 20. Since the
conventional detection method doesn’t include any RBF neurons
the BER obtained using this method is independent of γ. For

Fig. 20. The simulated BER plotted as a function of γ when Ts = 15 ns and
two irradiance levels of 20 mW/m2 and 40 mW/m2 are considered for 4-QAM.

the case of the RBFNN based receiver, the BER first decreases
and then increases when γ is changed from 0.001 to 10. This
is because when γ is small, that is the RBF neurons are large,
each RBF neuron covers areas that should be associated with
multiple outputs and therefore the BERs are high. However, as
shown in Section VI, when the widths of the RBF neurons are too
small, a large area of the constellation space will generate similar
outputs and the correct category can’t be reliably determined
for many different inputs. However, as shown in Fig. 20, this
problem can be solved by using the enhanced RBFNN receiver
with decision rejection. Moreover, if the widths of the RBF
neurons are small, the distribution pattern of the constellations
can be well reflected into the RBFNN outputs and this results in
much lower BERs. Moreover, for a given irradiance level, since
smaller RBF widths would cause more decisions to be rejected,
the number of rejected decisions can be used to determine if the
widths of the RBFs are too narrow.

D. Influences of Decision Rejection Threshold

In the above sections, the results suggest that the BER per-
formance of the receiver can be improved by using decision
rejection. Since the performance of this approach also depends
on the choice of the decision rejection threshold, its influences
are investigated in this section. Fig. 21 shows the simulated
BER and the decision rejection ratio (e.g. a ratio between the
number of transmitted bits which are rejected and the overall
number of transmitted bits) plotted as a function of the deci-
sion rejection threshold. It can be seen that, when the decision
rejection threshold is changed from 0 to 1, the BER decreases
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Fig. 21. The BER and the decision rejection ratio plotted as a function of the
decision rejection threshold when Ts = 15 ns and the irradiance levels is 35
mW/m2 for 4-QAM.

Fig. 22. The 16-QAM constellation when Ts = 15 ns and the irradiance is 20
mW/m2, (a) without channel equalization (b) with channel equalization.

and the rejection ratio increases. This is because a higher de-
cision rejection threshold would result in more rejections and
consequently a lower BER. It also shows that, when the decision
rejection threshold is lower than 0.3, no decisions are rejected
and consequently the BER is not affected. When the decision
rejection threshold is greater than 0.7, the simulated BER is
zero. In this case, further increasing the rejection threshold
would no longer reduce the BER but only significantly affects
the transmission data rate. In this paper, the decision rejection
threshold is considered to be 0.7 so that the BER can be reduced
and the transmission data rate is not crucially affected.

E. The Combination of Signal Pre-Equalization With RBFNN

Using a RBFNN can result in lower BERs, however, its
performance will be degraded whenever there is a strong overlap
between inputs that are associated with different elements of
the constellation, especially when the constellation size be-
comes large (e.g. 16-QAM). Fig. 22(a) shows an example of
the received 16-QAM constellations when the irradiance is
20 mW/m2. It can be seen that the overlapping between different
constellation elements is strong. In this case, even the complex
non-linear classification boundaries achieved using a group of
RBFs cannot correctly classify some inputs. In [14], we showed
that this overlapping effect can be reduced by pre-equalizing
the transmitted signal. Fig. 22(b) shows the received signal con-
stellations after implementing the signal equalization technique
proposed in [14] when the irradiance is 20 mW/m2. We can
see that the overlapping effect between different constellation
elements is much reduced. However, in order to more correctly

Fig. 23. The BER performance of the system when an additional signal pre-
equalization step is used together with the proposed RBFNN receiver (γ=0.1,
K/L=10, 16-QAM).

classify these constellation values into their right categories,
non-linear classification boundaries are still required which
means the RBFNN can be used together with signal equalization
to further enhance the system performance.

Fig. 23 shows the simulated BER as a function of the ir-
radiance level for four different signal demodulation meth-
ods. The first approach is to directly demodulate the received
signal without signal equalization or a RBFNN. The second
approach is to demodulate the signal after implementing sig-
nal pre-equalization [14]. The third approach is to combine
signal pre-equalization with the proposed RBFNN. The fourth
approach is to combine signal pre-equalization with the RBFNN
and decision rejection. It shows that the BER can be reduced
by pre-equalizing the transmitted signal. Then, by applying the
proposed RBFNN onto the equalized signal, the BERs can be
further reduced. In this case, the reduction in the BER is rela-
tively minor. However, by combining the pre-equalization with
the RBFNN with decision rejection, the BER is significantly
reduced compared to other three cases.

IX. CONCLUSION

In this paper, a new RBFNN-based signal detection method
has been introduced to deal with the impact of the nonlinear re-
sponse of SiPMs. The motivation for using the new approach has
been explained by showing the impact of the SiPM non-linearity
on the received signal constellations. In particular, results were
presented which showed that the SiPM non-linearity causes a
unique form of distortion to the elements of a constellation. In
particular each element of the constellation becoming associated
with multiple clusters of input data and the clusters associated
with each element of the constellation form an irregular region
on the input space. A RBFNN is a particularly suitable way of
dealing with these multiple clusters and irregular regions.

In this study, k-means algorithm was implemented to deter-
mine both the locations of the centers of the RBF neurons and
the initial widths of these neurons. Results have been presented
which showed that this method places the RBF neurons in
regions of the input space associated with a high density of
training data. Then, a gradient descent algorithm was applied
to train the weighting coefficients between the RBF layer and



7337814 IEEE PHOTONICS JOURNAL, VOL. 14, NO. 4, AUGUST 2022

the output layer of the RBFNN. The result is a RBFNN that can
divide the input space into areas associated with each element
of the constellation. Furthermore, the borders of each area can
have a complex, non-linear shape which can lead to a more accu-
rate determination of the constellation element associated with
each input. Consequently, a RBFNN was shown to significantly
reduce the BER results obtained when a VLC channel that uses
OFDM and a SiPM receiver is simulated. In addition, unlike
other methods a RBFNN can detect when an input is so atypical
that the outputs are unreliable and shouldn’t therefore be used.
In this paper, we defined a performance metric named LEIR to
quantify the irradiance range in which the transmission error
rate is below the FEC limit, 3.8× 10−3. We show that the use
of the RBFNN can result in a 2 dB gain for 4-QAM and a gain
of 1 dB∼2 dB for 16-QAM. The use of decision rejection with
RBFNN can lead to further gains of 1 dB for 4-QAM and 2.5 dB
for 16-QAM. In this paper, we also investigate the choice of
the decision rejection threshold used in the enhanced RBFNN.
We show that increasing the decision rejection threshold can
lead to a lower BER at the cost of reducing the transmission
data rate. Our simulation results show that a good choice of the
decision rejection threshold is around 0.7 so that the BER can
be reduced significantly and the transmission data rate is not
crucially affected. Furthermore, we also look into the combi-
nation of the conventional signal equalization techniques with
the proposed RBFNN. We show that, although the use of signal
equalization can reduce the influence of the SiPM nonlinearity,
its performance can be further enhanced by using the proposed
RBFNN demodulation methods.
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