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Data-Driven Method for Nonlinear Optical Fiber
Channel Modeling Based on Deep Neural Network
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Abstract—Recently, data-driven fiber channel modeling meth-
ods based on deep learning have been proposed in optical com-
munication system simulations. We investigate a new data-driven
method based on the deep neural network (DNN) to model the
nonlinear fiber channel with the characteristics of attenuation,
chromatic dispersion, amplified spontaneous emission noise, self-
phase modulation (SPM), and cross-phase modulation (XPM).
Demonstration in multiple dimensions, including constellations,
optical waveforms, spectra, and the normalized mean square error,
shows that DNN can approach the transfer function of the fiber
channel accurately. Additionally, the DNN shows good general-
ization for modulation formats and wavelength schemes. Besides,
the time complexity of DNN-based method for modeling nonlinear
fiber channel is reduced significantly (96.5%) compared to the
conventional model-driven method, which is based on the split-step
Fourier method. This work demonstrates that the DNN can model
accurately the nonlinear fiber channel that takes account of both
SPM and XPM. Therefore, it can contribute to the application
of data-driven methods in modern optical communication system
simulations and designs.

Index Terms—Data-driven, deep learning, deep neural network,
fiber channel modeling, fiber optics systems, and split-step fourier
method.

I. INTRODUCTION

S IMULATIONS are vital in optical communication sys-
tem designs [1], [2]. Conventional optical communication

system simulations are based on a series of blocks that are
characterized by rigorous numerical models, including a laser,
modulator, fiber channel, optical amplifier, filter, detector, and
analyzer. [3] Therefore, for the model-driven method, it is a
systematic engineering task that requires expert knowledge to
construct a comprehensive and complete optical communication
system simulation. This is why business optical communication
simulation software are usually non-open and expensive. Fur-
thermore, the computation complexity of conventional simula-
tions can be very high due to the nested-function structure and
the repeated iterative operations, especially the split-step Fourier
method (SSFM) which is performed to model the fiber channel
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by solving the nonlinear Schrödinger equation (NLSE) [1], [4],
[5]. Therefore, a method for optical fiber channel modeling with
relatively low computation complexity is quite valuable.

Deep learning (DL) is a powerful tool that has dramatically
improved the state-of-the-art in many domains, such as speech
recognition, visual object recognition, object detection, and drug
discovery [6]. DL has also been widely applied in the field of
optical communication [7], including optical performance mon-
itoring [8], [9], nonlinearity compensation [10], [11], equalizer
[12]– [14], predistortion [15], [16], software-defined networking
[17], [18], and photonic device design [19], [20]. Recently, some
methods that are based on DL have been proposed for optical
fiber channel modeling. These methods can be divided into
two categories. One is the principle-driven method [21]– [23],
and the other is the data-driven method [1], [2]. The principle-
driven method views the fiber modeling problem as a partial
differential equation solving problem and fully considers the
prior knowledge including the essential mathematical equations,
physical theories, and the corresponding constraint conditions
of the target problems, meaning that it requires much human
expertise. In addition, it is usually applied in the pulse evolution
task rather than the signal transmission task which is the focus
of this work [23]. Thus, the data-driven method that is designed
for the signal transmission task is taken into our consideration
in the following content. The data-driven method which regards
the fiber modeling problem as a data regression task is proposed
based on the fact that the deep neural network (DNN) can be
considered as a universal approximator for both linear and non-
linear functions [24]. DNN can approximate the channel transfer
functions after being trained on the data set which is composed
of the channel input and output signals. The data-driven method
does not require complex mathematical theories along with
expert knowledge and has a distinct advantage in computation
complexity for the fact that no complicated operation, such as
fast Fourier transform (FFT), is involved.

The data-driven fiber channel modeling method based on DL
is first introduced by Danshi Wang [1]. In their work, bidirec-
tional long short-term memory (BiLSTM) neural networks are
built to model optical fiber channels for on-off keying (OOK)
and pulse amplitude modulation 4 (PAM4) signals. The BiL-
STM has learned the approximate transfer function of the fiber
channel, and the computation time of fiber channel modeling
by their data-driven method is reduced by 80% compared with
the model-driven method. However, the modulation format is
limited to OOK and PAM4, meaning that no advanced modu-
lation format is studied. In [2], Hang Yang builds a generative
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Fig. 1. Optical communication system setup.

adversarial network (GAN) to learn the distribution of the fiber
channel transfer function. In their investigation, many channel
effects have been taken into consideration, including attenuation,
chromatic dispersion (CD), self-phase modulation (SPM), and
amplified spontaneous emission (ASE) noise which is induced
by erbium-doped fiber amplifier (EDFA). GAN has success-
fully learned the accurate transfer function of the fiber channel
and reduces the complexity of the fiber channel modeling re-
markably. However, with only SPM involved, other nonlinear
effects, such as cross-phase modulation (XPM) which is a quite
important impairment during transmission in the modern optical
communication system, have not been studied. Apart from this,
GAN can be difficult to train and it is often observed in practice
that gradient descent based GAN optimization does not lead to
convergence [25].

In this research, we choose the DNN built with fully connected
neural networks, which can be trained much easier than GAN, to
model the nonlinear optical fiber channel with the characteristics
of attenuation, CD, ASE caused by EDFA, SPM, and XPM. The
capability of DNN to approach the transfer function of fiber
channel is demonstrated in multiple dimensions, including con-
stellations, optical waveforms, spectra, and the normalized mean
square error (MSE). Results show that the DNN can model the
nonlinear fiber channel accurately. Besides, after being trained
on the training data set that contains only 16 quadrature ampli-
tude modulation (QAM) symbols, the DNN-based fiber model
made a precise prediction of the fiber channel output signals with
other modulation formats, such as quadrature phase-shift keying
(QPSK), indicating that the DNN has a good generalization
ability for modulation formats. The analysis also shows that

the DNN generalizes well for wavelength schemes. In addition,
the time complexity of the DNN-based method is analyzed as
well, indicating that the computing time is relatively reduced by
96.5% compared with the SSFM-based method. Therefore, this
method can be an auxiliary tool for future optical communication
system simulations.

II. OPTICAL FIBER COMMUNICATION SYSTEM STRUCTURE

Throughout this work, we focus on several impairments in
the optical fiber channel. Two effects of Kerr nonlinearity, SPM
and XPM effects, are among our consideration. SPM is an intra-
channel nonlinear effect, while the inter-channel XPM effect
involves two-channel interactions [5]. Considering that the non-
linear interference contributions of multiple wavelength division
multiplexing (WDM) channels can be added up independently,
the analysis is performed with only two channels [26]. [27]. A
WDM system, whose setup is shown in Fig. 1, is simulated to
demonstrate the capability of DNN to model the nonlinear fiber
channel. The system consists of transmitters, (de)multiplexers,
an optical fiber channel, and receivers. The optical fiber channel
is affected by the attenuation, CD, ASE noise, SPM, and XPM.
The transmitter is assumed to use 16QAM, so all the symbols and
samples in this system are complex-valued. In the transmitter,
following the modulation is five times up-sampling and root
raised cosine (RRC) filter which is to shape the signal. Then
power normalization is used to control the power of the optical
signal, and for simplicity, the power values of the two channels
are set to be the same. The laser phase noise, which is modeled
by a wiener process [28], is loaded before the two optical carriers
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TABLE I
DETAILED PARAMETERS OF SSFM-BASED FIBER CHANNEL

being multiplexed into the optical fiber channel that is composed
of standard single-mode fiber (SSMF) and EDFA. The main fiber
channel parameters are shown in Table I.

When two optical fields propagate simultaneously inside the
fiber, they interact with each other through XPM. On condition
that the wavelengths of the two optical beams are so close to
each other that the group-velocity mismatch is negligible (i.e.,
vg1≈vg2), such as in DWDM systems, the propagation of two
optical fields through a single-mode fiber can be governed by
the following set of two coupled NLSE [5]:⎧⎨

⎩
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where A1 and A2 are the complex envelope of the slowly varying
optical fields and z is the propagation distance. Parameter α,
β21,β22, andγ represent the propagation attenuation, dispersion
of the two wavelengths, and nonlinear coefficient, respectively.
SSFM is the most common numerical approach to solving the
NLSE [1], [2], [5]. It can be expressed by:
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where D̂i and N̂i denote the linear operator and nonlinear
operator of ith (i = 1, 2) optical field, respectively; h denotes the
step size.

After each span, an EDFA is applied to compensate for the
attenuation, which would introduce ASE noise simultaneously.

In the receiver, after demultiplexing, the laser phase noise is
loaded, following which a matched RRC filter is used, and then
multichannel digital backward propagation (DBP) algorithm is
performed to compensate for the CD, SPM, and XPM. Then
down-sampling is performed and carrier phase recovery (CPR)
is used to compensate for the laser phase noise, which is followed
by demodulation.

Fig. 2. (a) The input vector structure of DNN. (b) the architecture of the DNN.
Linear layer is a fully connected layer. BatchNorm is Batch Normalization.
LeakReLU is an activation function.

Note that, the channel transfer function has no analytical ex-
pression, therefore the differences between the nonlinear chan-
nel modeled by SSFM and DNN cannot be compared directly.
As a result, similar to the work of Hang Yang et al. [2], the DBP
compensation is utilized in this work as an auxiliary verification
method. Let’s denote the transfer functions of the nonlinear
fiber channel modeled by SSFM and DNN as f(�) and g(�)
respectively. DBP compensation can be regarded as the inverse
function of the channel transfer function f−1(�). If the DBP
compensated output by DNN is similar to the channel input, g(�)
and f−1(�) can be regarded as a pair of inverse functions, meaning
that g(�) and f(�) can be regarded as equivalent, which proves that
the DNN has learned the linear and nonlinear characteristics of
the fiber channel and can estimate the distribution of the channel
transfer function.

III. DEEP NEURAL NETWORK ARCHITECTURE

A DNN is defined and trained to model the nonlinear fiber
channel. As is shown in Fig. 2, the input vector of DNN is
defined to improve modeling accuracy and flexibility, which is
similar to the definition of the condition vector in [2]. First of
all, two channels are simulated in the optical communication
system, therefore both of them must be taken into considera-
tion. Secondly, as for each channel, considering inter-symbol
interference (ISI) caused by CD, the input vector must include
not only the current transmitted symbol but also the preceding
symbols and subsequent symbols. The number of the preceding
symbols and subsequent symbols, which is denoted by n in
Fig. 2, is set to eight for each span in this paper, after taking
account of the ISI and transmission rate of the signal. Thirdly,
considering that the up-sampling rate is 5 in simulation, each
symbol in the input vector of DNN includes five samples. The
real part and imaginary part of the samples, i.e., the in-phase (I)
and quadrature (Q) parts of the fiber channel input signals are
concatenated so that the input vector of DNN can be real-valued,
as is shown in Fig. 2. Finally, the optical launch power is also
considered and its value is appended at the rear of the input



8537608 IEEE PHOTONICS JOURNAL, VOL. 14, NO. 4, AUGUST 2022

vector of DNN. The length of the output vector of DNN is 20,
meaning that one symbol per channel is generated by DNN.

The architecture of the DNN is shown in Fig. 2 as well. The
input vector must be normalized before being fed to the neural
network to avoid slowing down the convergence of the model
and control the average value of the input around 1 [2]. Adam
optimizer is used and the learning rate is set to 0.001. The loss
function is MSE Loss. He normalization is applied to initialize
the weights of the linear layers, which would help with the
convergence of deep models with ReLu-like activation functions
[29]. All the biases are initialized to 0. The batch size is set to
500.

IV. DEMONSTRATION AND RESULTS

In the simulation, dispersion and nonlinearity coefficient
are kept constant, while transmission distance and power are
changed to control the dispersion and nonlinear intensity. To
prove the validity of the simulation by DNN, a comparison
between the optical signals generated by SSFM- and DNN-based
method is made in multiple dimensions, including constella-
tions, optical waveforms, spectra, and the normalized MSE. The
constellations after DBP compensation are plotted to present
the characteristics of dispersion and nonlinearity, which can
verify the accuracy of the channel transfer function modeled
by DNN [2]. Optical waveforms and spectra are to demon-
strate the accuracy of the simulation by DNN in the time- and
frequency- domain. The normalized MSE is to evaluate the
similarities between the two simulation methods quantitatively.
MSE denotes the average of squares of the amplitude errors,
i.e., the average squared deviation between the amplitude values
of SSFM-generated and DNN-generated waveforms or spectra.
Considering that optical communication systems were simulated
with different optical launch powers and that the absolute MSE
may increase with the power values, the normalized MSE rather
than the absolute one is adopted [1]. The normalized MSE is
defined as below:

MSE_nor =

∑m
i (ȳ − y)2∑m

i ȳ2
(3)

where m is the sample size, ȳ is the output label signal, and ȳ
is the output signal generated by DNN. As is mentioned in [1],
[2], the acceptable upper limit of MSE_nor is set to 0.02.

To model the optical fiber channel by DNN, the data set is built
by collecting the channel input and output when simulating via
SSFM. The input vector. i.e., the training sample for DNN, is
generated from the data of fiber input. Then it is fed to DNN,
aiming to get an output that approximates the corresponding
optical signals of fiber output. The training data set size is 1 ×
106.

A. The Nonlinear Fiber Channel Modeling Capability of DNN

We first studied the capability of DNN to model the nonlinear
fiber channel. As a demonstration, WDM systems whose setup
is shown in Fig. 1 were simulated. Then we trained DNNs with
the corresponding data sets. For comparison purposes, BiLSTM,
the DL algorithm which has been employed in single-channel

Fig. 3. The training loss of DNN and BiLSTM.

modeling [1], is also implemented by PyTorch. The input size
of BiLSTM is 20 (5 × 2 × 2), which means a symbol of channel
1 is concatenated by another symbol of channel 2. Then every
17 adjacent symbols constitute a group. These groups are sent
into BiLSTM in chronological order. The hidden size is 100.
Finally, the output of BiLSTM is mapped by a fully connected
layer with 20 neurons into 2 symbols, one of which for channel
1 and the other for channel 2.

The losses of DNN and BiLSTM during training are shown
in Fig. 3. As is implied in Fig. 3, the losses of DNN and
BiLSTM both decrease rapidly. However, the DNN achieves
a faster convergence rate. This result is quite different from
that of Wang’s work, in which the BiLSTM achieves a faster
convergence rate [1]. This may attribute to the unsatisfying
capability of BiLSTM to learn the XPM effect of fiber channel.

After DNN and BiLSTM are trained, the constellations
after DBP compensation of SSFM-generated signals and
DNN/BiLSTM-generated signals are plotted for comparison, as
is shown in Fig. 4. Note that, the system transmission distance
is 80 km. The optical launch power of the two channels is 4
dBm. The format for both channels is 16QAM. The constel-
lations of DNN-generated signals are very similar to that of
SSFM-generated signals for both channels, meaning that DNN
can mimic the effect of CD, SPM, XPM, and EDFA ASE noise
to approach the transfer function of the nonlinear fiber channel.
However, the constellations of BiLSTM-generated signals are
not very similar to that of SSFM-generated signals. Thus it can be
concluded that BiLSTM can not approach the transfer function
of the nonlinear fiber channel which takes account of both SPM
and XPM as well as DNN.

To demonstrate more diversely and accurately, Fig. 5 shows
amplitudes of the optical waveforms and spectra of SSFM-
generated signals and DNN-generated signals. Note that, the
system transmission is 240 km. The optical launch power is
0 dBm. The format for both channels is 16QAM as well.
Considering that the two channels have the same transmission
distance, optical launch power, and modulation format, we just
present the results of one channel, as is shown in Fig. 5. It
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Fig. 4. Constellations after DBP compensation of SSFM-generated signals
and DNN/BiLSTM-generated signals. Note that, the transmission distance is
80km and the optical launch power of the two channels is 4dBm. (a): Channel 1,
(b): Channel 2 of the SSFM-based fiber channel. (c): Channel 1, (d): Channel 2
of the DDN-based fiber channel. (e): Channel 1, (f): Channel 2 of the BiLSTM-
based fiber channel.

can be observed that the two waveforms are virtually identical
from an overall perspective. Even after zooming in, they are still
substantially identical. The MSE_nor can measure the distance
between the two waveforms or spectra, therefore, we calcu-
lated the MSE_nors for quantitative analysis. As for channel
1, MSE_nor in the time-domain is 0.0032, which is the same
as that of channel 2. The two MSE_nors are much less than the
upper limit of 0.02. The situation is very similar for the optical
spectra. Fig. 5 also shows the spectra of SSFM-generated signals
and DNN-generated signals within 30GHz which is the same as
the transmission baud rate. The two spectra are nearly the same
in both overall view and enlarged view. And the MSE_nor in
the frequency-domain of channel 1(2) is 0.0004(0.0005), which
is quite less than 0.02 as well. The waveforms (or spectra)
of SSFM-generated signals and DNN-generated signals over-
lap highly, meaning that the DNN has learned the time- and
frequency-domain characteristics of signals. That is to say, the
fiber channel has been modeled accurately by the DNN.

B. Generalization of DNN

In this section, the generalization of the trained DNN is also
studied. The ability of DNN to generalize means how good the
trained neural network is when applying the learnt information
from training data sets to make accurate predictions on new,
previously unseen data. This is quite important for the practical

applications of fiber channel modeling. We analyzed the gener-
alization of our model for the input with different modulation
formats and wavelength schemes.

The training data set contains only 16QAM symbols. There-
fore, other modulation formats, including QPSK, 8PSK, and
8QAM, are taken into account in our test data set. Fig. 6 shows
the constellations after DBP compensation of SSFM-generated
signals and DNN-generated signals with different modulation
formats. In Fig. 6, the left ones are quite similar to the right ones,
indicating visually that the DNN model has good generalization
for modulation formats.

We also calculate the MSE_nors between the SSFM-
generated signals and DNN-generated signals in both time- and
frequency- domain, as is shown in Table II. In addition, different
wavelength schemes are also considered in the test data set and
the corresponding MSE_nors are shown in Table II as well. Note
that, when testing the generalization for different modulation
formats, we used the DNN model that is trained on the data
set which is built under the case (transmission distance = 80
km, optical launch power = 4 dBm, format = ‘16QAM’, λ1
is 1549.32 nm and λ2 is 1550.12 nm). To demonstrate that the
DNN model which is trained under a different case has good
generalization ability as well, we apply the DNN model that
is trained on the data set which is built under another case
(transmission distance= 160 km, optical launch power= 4dBm,
format = ‘16QAM’, λ1 is 1549.32 nm and λ2 is 1550.12 nm)
to test the generalization for different wavelength schemes. As
is illustrated in Table II. the MSE_nors are all much less than
the upper limit of 0.02. Although the MSE_nors increase when
the wavelengths become farther from 1549.32(1550.12) nm,
they are still far less than 0.02. Therefore, we believe that the
DNN model has a good generalization ability for the input with
different modulation formats and wavelength schemes.

C. Time Complexity

Lastly, the time complexity of the DNN-based method is
analyzed. In the SSFM-based method, the running time of
simulation can be very long because the FFT operation, which
is the principal calculation amount of SSFM [2], is performed
repeatedly. In the DNN-based method, however, no FFT oper-
ation is performed, and only multiplication between neurons is
involved. Therefore, the major advantage of DNN-based method
compared with SSFM-based method is its low time complexity.

We measured the computing time of SSFM-based fiber model
and DNN-based fiber model. Note that, the computing time
is only the time consumed by simulating the nonlinear fiber
channel, excluding the time consumption of transmitter, re-
ceiver, etc. In fairness, we running the codes of SSFM-based
method and DNN-based method on the same device (intel@ core
i5-10210U). The absolute computing time is strongly depen-
dent upon the hardware performance and computing resources.
Therefore, it is reasonable to compare the relative computing
times of the two methods. The computing time of DNN-based
method with 216 symbols at 80 km is selected as the basic
reference, meaning that all computing time data are normalized
by this time value. It is acknowledged that the advantage of
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Fig. 5. Amplitudes of waveforms of channel 1 of (a) SSFM-based fiber channel and (b) DNN-based fiber channel. (c) an enlarged view of the sections in black
rectangles in (a) and (b). Optical spectra of channel 1 of (d) SSFM-based fiber channel and (e) DNN-based fiber channel. (f) an enlarged view of the sections in
black rectangles in (d) and (e).

TABLE II
NORMALIZED MSE BETWEEN THE SSFM-GENERATED SIGNALS AND DNN-GENERATED SIGNALS IN TIME- AND FREQUENCY- DOMAIN WITH DIFFERENT

MODULATION FORMATS AND WAVELENGTH SCHEMES

Notes:
a). WSi denotes ith wavelength scheme.
WS1: λ1 = 1542.94 nm, λ2 = 1543.73 nm. WS2: λ1 = 1546.12 nm, λ2 = 1546.92 nm.
WS3: λ1 = 1547.72 nm, λ2 = 1548.51 nm. WS4: λ1 = 1550.92nm, λ2 = 1551.72 nm.
WS5: λ1 = 1552.52 nm, λ2 = 1553.33 nm. WS6: λ1 = 1555.75 nm, λ2 = 1556.55 nm.
b). MSE_nor_t(f)_1(2) represents MSE_nor value in time(frequency) domain of channel 1(2).

DNN-based method can be enlarged if the codes are run on the
graphics processing unit. However, it is deemed sufficient to
illustrate the advantage in the time complexity of DNN-based
method with the relative computing time on the same device,
though that device is a central processing unit.

As is shown in Fig. 7, with the transmission distance and
symbol length increasing, the computing time of SSFM-based
method grows rapidly. Nevertheless, the computing time of
DNN-based method rises slowly with the symbol length and
even keeps almost stable when the transmission distance
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Fig. 6. Constellations after DBP compensation of SSFM-generated signals
and DNN-generated signals with different modulation formats that are not
included in the training data set.

Fig. 7. Comparison of the time complexity of SSFM-based and DNN-based
method at different symbol lengths and transmission distances.

increases. It is worth mentioning that, as for the best case
(distance = 240 km, symbol length = 218) shown in Fig. 7,
the computing time is relatively reduced by 96.5% with the
DNN-based method.

V. CONCLUSION

This work demonstrates the capability of DNN to model the
nonlinear fiber channel. Based on the comprehensive analysis of
the constellations after DBP compensation, optical waveforms,
spectra, and the normalized MSE, it is concluded that the DNN
can learn well the linear and nonlinear effects in the fiber
channel, such as CD, attenuation, ASE noise, SPM, and XPM.
Additionally, it is also found that DNN has a good generalization
ability for modulation formats and wavelength schemes, which
provides flexibilities and versatility for fiber channel modeling.

Besides, the simulation with DNN-based method can reduce the
time complexity significantly (96.5%) compared to SSFM-based
method. Therefore, the DNN is a good candidate to model the op-
tical fiber channel in optical communication system simulations.
This work is an initial exploration of the DNN-based method
applied in the WDM system simulations. Considering that there
is no limitation on the input signals of DNN proposed in this
work, this DNN-based method is capable of modeling a more
complicated communication system with more channels. How-
ever, a new input vector structure and parameters of DNN may
be required for the reason that the inter-channel interferences
become more complex. Moreover, since DNN can be viewed as
a universal approximator for both linear and nonlinear functions
[24], it has the latent capacity theoretically to approximate the
channel transfer function with a longer transmission distance
after being trained on the corresponding data set which is
composed of the channel input and output signals. Thus, this
DNN-based method has the potential to be extended to model
a more complicated optical communication system that takes
account of polarization effect or more wavelengths or has a
longer transmission distance.
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