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Novel Approximate Distribution of the Sum of
Lognormal-Rician Turbulence Channels With

Pointing Errors and Applications in
MIMO FSO Links
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Abstract—In this paper, an approximate closed-form probabil-
ity density function expression for the sum of lognormal-Rician
turbulence channels with Rayleigh pointing errors is developed.
The results of Kolmogorov-Smirnov goodness-of-fit statistical tests
show that the proposed approximation is highly accurate across
a wide range of channel conditions. Also, the analysis of ap-
proximation error is presented in detail, and it indicates that a
more efficient approximation can be achieved for larger coherence
parameter r and smaller variance σ2

z . To reveal the importance
of proposed approximation, the closed-form expressions for the
ergodic capacity, outage probability, and bit-error rate are derived
in terms of Meijer’s G-function. The performance of multiple-input
multiple-output (MIMO) free-space optical (FSO) systems with
equal gain combining (EGC) diversity technique are analyzed in
detail under different scenarios, including the number of trans-
mit and receive apertures, turbulence channels, and presence of
pointing errors. It is observed that MIMO technology can offer a
significant improvement in FSO performance when compared with
the single-input single-output (SISO) systems. The ergodic capacity
and BER performance at high signal-to-noise ratio are also ob-
tained to provide further insights. Numerical results demonstrate
the accuracy of the proposed approach.

Index Terms—Lognormal-Rician turbulence channels, Rayleigh
pointing errors, Kolmogorov-Smirnov statistical tests, MIMO FSO
communication systems, equal gain combining (EGC) diversity.

I. INTRODUCTION

FREE-space optical (FSO) communication, also known as
outdoor optical wireless communication, has attracted con-

siderable attention in recent years owing to its attractive band-
width enhancement with unregulated spectrum. Furthermore,
it can be anticipated that the FSO systems are likely to be
noteworthy in the development of fifth-generation (5 G) and even
perhaps 6 G as they efficiently overcome the important challenge
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caused by the radio frequency (RF) spectrum shortage [1], [2].
Despite these benefits of FSO technology, its widespread use
has been hampered by its disappointing performance for long
range links due to atmospheric turbulence-induced fading and
pointing errors [3].

Plenty of statistical models have been proposed to character-
ize the turbulence-induced scintillation in FSO systems. The
lognormal distribution is generally accepted for weak turbu-
lence conditions [4], [5]. The Gamma-Gamma distribution is a
double-stochastic scintillation model, and is shown to provide an
excellent agreement with the experimental data in the moderate-
to-strong turbulence regime [6]. However, it is noted that this
model only performs well for receivers with small aperture [7].
Another important distribution is the lognormal-Rician distribu-
tion (also known as Beckmann), which comprises the lognormal,
lognormal-Exponential and exponential distribution as its spe-
cial cases [8]. The lognormal-Rician distribution not only agrees
well with experimental data under weak-to-strong turbulence
regime, but also is more accurate than the Gamma-Gamma distri-
bution under a spherical wave assumption in particular [6], [9]. In
recent years, a new universal turbulence model, named Málaga
distribution has been widely advocated as it generalizes several
turbulence-induced fading models (including Gamma-Gamma,
lognormal) [10]. To apply these turbulence models to the analy-
ses of practical FSO systems, we are often required to estimate
the corresponding unknown parameters [11]. However, the PDF
of Málaga distribution is expressed with a finite summation and
includes plenty of parameters, and this makes it more difficult
to estimate parameter when compared to Gamma-Gamma and
lognormal-Rician channels. Also, it should be emphasized that
the lognormal distribution is not an exact relation to the Málaga
distribution, thus implying that lognormal-Rician is an approx-
imate case of the Málaga distribution [12].

Apart from the turbulence-induced fading, the performance of
FSO systems can be also severely deteriorated by the pointing
errors due to building sway [13]. Various types of statistical mod-
els have been developed to describe the properties of pointing
errors. The pioneer study of the pointing errors model in FSO
systems can be found in [14], which considered the effects of
beam width, detector size and independent identical Gaussian
distributions for the elevation and the horizontal displacement.
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Note that Rayleigh pointing errors model has been popularly
used in a great deal of research articles in terms of its simplic-
ity from a mathematical point of view as well as its realistic
approach [15]–[17].

Multiple-input multiple-output (MIMO) technology has
emerged as a promising technology to mitigate the effects
of scintillation and pointing errors. Over the last couple of
decades, a great amount of work has been conducted to study
the performance of MIMO FSO links over different turbulence
channels with pointing errors. For instance, the authors in [16]–
[18] explored the ergodic capacity, bit-error rate (BER) and
outage probability performance over Gamma-Gamma fading
with pointing errors. The work in [19], [20] analyzed the BER,
secrecy outage probability, and secrecy capacity performance
of MIMO FSO links employing the maximal ratio combining
(MRC) technique over the Málaga fading with pointing errors.
With respect to the lognormal-Rician model, the results available
so far for single-input single-output (SISO) and MIMO FSO sys-
tems in the literature are greatly limited since it does not have the
closed-form PDF expression compared to the Gamma-Gamma
and Málaga distribution. In [21], the authors investigated the
BER performance of coherent FSO systems in lognormal-Rician
turbulence employing the MRC and select combining (SC)
via the Padé approximation method. Also, the authors in [22]
employed the Gram-Charlier Series to study the BER perfor-
mance of MIMO FSO systems with MRC. However, it must be
noted that these two kinds of numerical methods provide limited
information for performance analysis. Moreover, based on the
moment-based method introduced in [23], asymptotic ergodic
capacity at high signal-to-noise ratio (SNR) regime as well as
at low SNR regime for SISO FSO links with Rayleigh pointing
errors were developed in [24]. Nevertheless, this method can
not be used to derive the ergodic capacity at medium SNRs.
Recently, the authors in [25] derived the highly accurate expres-
sions for the ergodic capacity and outage performance by using
a series representation. However, they only considered the SISO
cases and the BER performance was not evaluated.

Based on the aforementioned discussion, we investigate the
performance of MIMO FSO systems over lognormal-Rician
turbulence channels with pointing errors. The main contributions
of this work are given as follows:

1) For the first time in the literature, the approximate analytic
formula for the distribution of sum of Lognormal-Rician
turbulence channels with pointing errors is developed
by using a series representation. Then, the validity of
the proposed approximation is investigated by employ-
ing the statistical tools, i.e., Kolmogorov-Smirnov (KS)
goodness-of-fit tests. Also, the effects of channel model
parameters on the approximation error are discussed in
detail.

2) Based on the proposed approximation, we derive the er-
godic capacity, outage probability, and BER performance
for MIMO FSO systems using Equal gain combining
(EGC) diversity technique over lognormal-Rician turbu-
lence channels with pointing errors in closed-form. The
ergodic capacity in the high SNR regime is obtained in
terms of simple elementary functions and this enables us

to analyze the effects of channel parameters and formulate
the beam width optimization at the transmitter side. Also,
the coding gain and diversity order are obtained from the
asymptotic behavior of the derived BER performance via
an asymptotic expansion of the Meijer’s G-function. To
the best of our knowledge, these results are new in the
open literature.

The remainder of the paper is organized as follows. Sec-
tion II presents the considered system and channel models. The
closed-form expressions that approximate the PDF of the sum
of lognormal-Rician turbulence channels with pointing errors
variates are provided in Section III. Subsequently, the important
performance metrics, namely, the ergodic capacity, the outage
performance, and the BER performance for the MIMO FSO
systems are obtained in Section IV. Finally, Section V presents
some numerical simulation results to validate these analytical
results, and the concluding remarks are given in Section VI.

II. SYSTEM AND CHANNEL MODEL

A. System Model

Let us consider an intensity modulation and direct detection
(IMDD)-based MIMO FSO systems with Mt transmitters and
Nr receivers, where an OOK symbol x ∈ {0, 1} is transmitted
by all transmit apertures for each transmission time interval.
Note that the IMDD systems are commonly used in the terrestrial
FSO links due to their simplicity and low cost of implementation.
Additionally, the transmitters or receivers are spatially separated
by a sufficient distance that is lager than the coherence length ρ0
in order to consider statistically independent and uncorrelated
fading [26], [27]. Typically, they are placed with a few centime-
ters apart since ρ0 is of the order of centimeters, as shown in [28],
[29]. Moreover, a large amount of background radiation is col-
lected by each receiver that offers a large field of view, and this
justifies the use of the Gaussian noise model as a good approx-
imation of the Poisson photon counting detection model [26].
Hence, the received signal at the jth, j = 1, 2, . . . , Nr receive
aperture is given as

rj = η

Mt∑
i=1

Ii,jx+ vj , (1)

where η is the optical-to-electrical conversion coefficient, vj
is additive white Gaussian noise (AWGN) with zero mean and
variance of σ2 = N0/2, i.e., vj ∼ N (0, N0

2 ). Ii,j denotes the
fading channel coefficient between the ith transmit aperture and
jth receive aperture, and is subjected to the combined effects of
turbulence-induced irradiance fluctuation and pointing errors.
In [30], the authors indicated that the EGC diversity technique,
when employed at the receiver, will provide a performance close
to that of the optimal combining (OC) while having the advan-
tage of implementation simplicity1. The signal at the output of

1The performance of OC is equivalent to that of MRC when there are no
interfering signals at the receiver, as shown in [31].
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the EGC receiver is expressed as

y = η

Mt∑
i=1

Nr∑
j=1

Ii,jx+

Nr∑
j=1

vj . (2)

From (2), the electrical SNR of the combined signal is given by

γEGC =
η2E

[
|x|2
] (∑Mt

i=1

∑Nr

j=1 Ii,j

)2
Nrσ2

=
γ0I

2
T

Nr
, (3)

where γ0 = η2E[|x|2]/σ2 denotes the average SNR and IT =∑Mt

i=1

∑Nr

j=1 Ii,j . It can be seen from (3) that solving the distribu-
tion of IT is the key to evaluate three important performance met-
rics (i.e., ergodic capacity, BER, and the outage performance) of
MIMO FSO systems employing the EGC diversity technique.

B. Channel Model

The irradiance Ii,j is considered to be the product of atmo-
spheric turbulence-induced scintillation Iai,j and pointing errors
Ipi,j , i.e., Ii,j = Iai,jI

p
i,j . As in [13], these two fading factors are

approximately independent for smaller jitter values. In addition
to this, it has been shown in [14] that the correlation time of
the pointing errors induced by building sway, is on the order
of a few seconds, which is bigger than that of the atmospheric
turbulence (10–100 ms). Hence, both atmospheric turbulence
and pointing errors can be considered to be independent. To
characterize the fading Iai,j over a wide range of turbulence
conditions, the lognormal-Rician distribution model is adopted
here as it provides an excellent fit with both simulation and
experimental data in weak-to-strong turbulence regimes. The
probability density function (PDF) of Iai,j is given by [8]

fIa
i,j

(ha) =
(1 + r) exp (−r)√

2πσz

∫ ∞

0

1

z2
I0

(
2

√
har(1 + r)

z

)

× exp

[
−1 + r

z
− 1

2σ2
z

(
ln(z) +

1

2
σ2
z

)2
]
dz,

(4)

where r ≥ 0 is the coherence parameter that represents the ratio
of total power in the dominant or line-of-sight components to
that of scattered components, σ2

z is the variance of the logarithm
of the irradiance modulation factor z, and I0 is the zero-order
modified Bessel function of the first kind [32]. Note that (4)
evolves from the product of a Rician amplitude and a lognor-
mal modulation factor, i.e., Ipi,j = zy. The PDFs of them are
respectively expressed as

fZ(z) =
1√

2πσzz
exp

[
−1

2

(
ln(z) + 1

2σ
2
z

σz

)2
]

fY (y) = (1 + r) exp (−r − (1 + r)y) I0

(
2
√

r(1 + r)y
)
.

(5)

From (5), it is easy to see the lognormal-Rician distribution
comprises some well-known models as its special cases ac-
cording to the different combinations of shape parameters. For

example, the lognormal-Rician distribution reduces to the log-
normal distribution as r approaches infinity. Also, it specialized
to the lognormally modulated exponential distribution when r
approaches 0.

Another performance limiting factor in FSO links is the
pointing errors, which arise due to misalignment between the
transmitter and receiver. It is noted that such effects are likely
to occur in urban areas, where the FSO equipment is placed on
high-rise structures [33], [34]. According to [14], the attenuation
due to geometric spread and pointing errors can be approximated
as

u (ρ) = Ipi,j (ρ) ≈ A0 exp

(
−2

ρ2

w2
zeq

)
, ρ ≥ 0, (6)

where A0 = [erf(v)]2 is the fraction of the collected power
at ρ = 0, v =

√
πRa/

√
2wz , Ra is the receiver’s aperture ra-

dius, and wz is the beam waist that can be approximated
by wz = θz with θ denoting the transmit divergence angle.
wzeq =

√
w2

z

√
πerf(v)/2v exp(−v2) represents the equivalent

beam waist. It must be mentioned that the approximation in
(5) provides a good agreement with the exact value when the
normalized beam width wz/Ra > 6. For convenience, the inde-
pendent identical Gaussian distributions for the elevation and the
horizontal displacement (sway) are assumed, being σ2

s the jitter
variance at the receiver. Thus, the PDF of radial displacement ρ
follows a Rayleigh distribution, which is defined as [14]

f(ρ) =
ρ

σ2
s

exp

(
− ρ2

2σ2
s

)
. (7)

Combining (6) and (7), the probability distribution of Ipi,j
becomes

f
(
Ipi,j
)
=

ξ2

Aγ2

0

(
Ipi,j
)ξ2−1

, 0 ≤ Ipi,j ≤ A0, (8)

where ξ = wzeq/2σs.

III. AN EFFICIENT APPROXIMATION TO THE

DISTRIBUTION OF IT

A. Approximate Distribution for the Sum of L
Random Variates

Based on the discussion of the previous section, we firstly
deal with the challenges of the distribution of the sum of
lognormal-Rician random variables (RVs) with pointing errors.
For convenience, these channels are assumed to be statistically
independent and identically distributed (i.i.d). The proposed
methodology shown in the following has been partly introduced
in [17], [35], where the distribution of the sum of independent
Gamma-Gamma variates with and without pointing errors are
investigated.

Let {Il}Ll=1 be a set of L i.i.d RVs that follows a lognormal-
Rician with pointing errors distribution. Their sum is defined as

S =

L∑
l=1

Il =

L∑
l=1

Wlu(rl) =

L∑
l=1

zlylu(rl), (9)
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whereWl = zlyl, and zl, yl, u(rl), and rl are lognormal, Rician,
Rayleigh pointing errors, and Rayleigh RVs respectively. Note
that (9) can be rewritten as

S =

∑L
l=1 zl

∑L
l=1 yl

∑L
l=1 u(rl)

L2
+

1

L2

L−1∑
i=1

L∑
j=i+1

(zi − zj)

× (yi − yj)

L∑
l=1

u(rl)+
1

L

L−1∑
i=1

L∑
j=i+1

(ziyi − zjyj)

× (u(ri)− u(rj)) . (10)

Hence, according to (10), the unknown distribution S can be
approximated by the distribution of the RV S̃, which is defined
as the first term in (10), namely

S ≈ S̃ =

∑L
l=1 zl

∑L
l=1 yl

∑L
l=1 u(rl)

L2
. (11)

The summation of second and third terms in (10) represent
the approximation error ε, which is given by

ε = ε1 + ε2

=
1

L2

L−1∑
i=1

L∑
j=i+1

(zi − zj) (yi − yj)

L∑
l=1

u(rl)

+
1

L

L−1∑
i=1

L∑
j=i+1

(ziyi − zjyj) (u(ri)− u(rj)). (12)

It can be easily seen from (12) that the ε goes to 0 for L = 1.
Next, we are now solving the distribution for RV S̃. Note that

the sum of i.i.d lognormal variates can be efficiently approxi-
mated by an another lognormal distribution, as in [36]. Thus,
the PDF of RV G =

∑L
l=1 zl is approximated as

fG(g) ≈ 1√
2πσ2

Lg
exp

[
− (ln(g)− μL)

2

2σ2
L

]
, (13)

where the parameters μL, σ
2
L are respectively given by [36]

σ2
L = ln

[(
exp
(
σ2
z

)− 1
)

L
+ 1

]

μL = ln(L)− σ2
L

2
. (14)

Specifically, according to [37, TableIV], the right-hand-side
of (13) can be expressed in terms of the Hermit polynomial
representation. In this case, (13) can be rewritten as

fG(g) ≈ 1√
π

K∑
k=1

wk

uk
H0,0

0,0

[
g

uk

∣∣∣∣
−

−

]
, (15)

where Hm,n
p,q

[
λ

∣∣∣(aj ,Aj)j=1:p

(bj ,Bj)j=1:q

]
is the Fox’s H function [38]2, uk

= exp(
√
2σLωk + μL), wk and ωk are the weight factor and

zeros (abscissas) of the K-order Hermite polynomial [41]. In

2The implementation of the univariate Fox’s H function is reported in [39],
[40] at Matlab or Mathematica.

addition, the moment generating function (MGF) of fG(g)
becomes [37], [42]3

MG(s) =
1√
π

K∑
k=1

wk exp (−uks) . (16)

The effect of parameters K on the truncation errors of Gauss-
Hermit quadrature rule integration is shown in [43]. Specifically,
K = 15 is sufficient to achieve numerical accuracy, as shown
in [42], where the performances of wireless communication
systems are investigated in lognormal fading conditions [42],
[44], [45].

Moreover, it is shown in [46] that the squared Rician dis-
tribution is actually a special case of κ− μ distribution with
κ = r, μ = 1,Ω = 1. Hence, invoked by the [47], which demon-
strates that the sum of L i.i.d κ− μ RVs with parameters
κ = r, μ,Ω is also a κ− μ RV with parameters κ = r, Lμ, LΩ.
Then, the PDF of RV V =

∑L
l=1 yl can be approximated as

fV (v) ≈ L(1 + r)
L+1
2 v

L−1
2

exp(Lr)r
L−1
2 L

L+1
2

exp (− (1 + r) v)

× IL−1

(
2
√

r (1 + r) vL
)
. (17)

The above formula can be rewritten as

fV (v) ≈
Q∑

q=0

(rL)q

q!Γ (L+ q) v
((1 + r) v)L+q

× exp (−rL− (1 + r) v) +RQ(v)

≈
Q∑

q=0

exp (−rL) (rL)q

l!Γ (L+ q)
(1 + r)L+qvL+q−1

×H1,0
0,1

⎡
⎣(1 + r) v

∣∣∣∣∣
−

0,1

⎤
⎦

≈
Q∑

q=0

exp (−rL) (rL)q

q!Γ (L+ q)
(1 + r)

×H1,0
0,1

⎡
⎣(1 + r) v

∣∣∣∣∣
−

L+q−1,1

⎤
⎦ , (18)

where in (18), we have applied the series expansion result onto
the IL−1 [32, eqn. (8.445)], and expressed the exp(·) in terms
of the Fox’s H function [48, eqn. (2.5)]. The last equality in (18)
holds due to [48, eqn. (2.4)]. The symbol RQ(v) in (18) denotes
the truncation error, and is expressed as

RQ(v) =

∞∑
q=Q+1

(rL)q

q!Γ (L+ q) v
((1 + r) v)L+q

× exp (−rL− (1 + r) v) . (19)

3For a continuous positive random variable X , its MGF is defined as
MX(s) =

∫ ∞
0

exp(−sx)fX(x)dx, where fX(x) is the PDF of X .
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Fig. 1. The least truncated number Q that achieves the maximum error
ε = 10−5.

Theorem 1: When the truncated number Q is large enough,
the truncation error RN (v) is upped bounded by

RQ(v) <
(1 + r)

2πQ

(
rL exp(1)

Q+ 1

)Q+1

. (20)

Proof: See Appendix A.
Fig. 1 presents the least values of truncated number Q for a

given maximum error ε = 10−5 under different scenarios. The
exact and upperQ are derived according toRN (v) and the right-
hand-side of (20). From this figure, we find that both of them
nearly increase linearly with the value r, and they are close
to each other for small r. Also, it can be found that Q = 50 is
sufficient to guarantee the accuracy over a wide range of channel
conditions.

Combining (15) and (18), the probability distribution for the
RV T1 = 1

LV G is obtained as

fT1
(t1) ≈ 1√

π

Q∑
q=0

K∑
k=1

wk

uk

L exp (−rL) (rL)q

q!Γ (L+ q)
(1 + r)

×H1,0
0,1

[
(1 + r) t1 L

uk

∣∣∣∣
−

(L+q−1,1)

]
, (21)

where we have used the [48, Theorem. (4.1)] in the above
formula. Moreover, (21) can be further reduced to

fT1
(t1) ≈ 1√

π

Q∑
q=0

K∑
k=1

wk
exp (−rL) (rL)q

q!Γ (L+ q)

(
(1 + r)L

uk

)L+q

× tL+q−1
1 exp

(
−
(
1 + r

uk

)
t1 L

)
, (22)

after using the following relation [49, eqn. (1.125)]

H1,0
0,1

[
z
∣∣∣−
(b,B)

]
= B−1z

b
B exp

(
−z

1
B

)
. (23)

Note that T2 = 1
L

∑L
l=1 u(rl) ≈ Fu( 1

L

∑L
l=1 r

2
l ), and its

PDF can be efficiently approximated by [17, eqn. (23)]

fT2
(t2) ≈ (−1)L−1 LLgL

t22LΓ(L)
lnL−1

(
t2

FA0

)(
t2

FA0

)Lg
2

,

0 ≤ t2 ≤ FA0, (24)

where g = w2
zeq/2σ

2
s = 2ξ2, F = (2+gL)L

LLgL−1(2+g)
that satisfies

limg→∞ F = 1 and limL→∞ F = exp(2/g)g/(g + 2).
Consequently, the distribution of S̃ = T1T2 is finally approx-

imated by that of Ŝ, which is found to be

fS̃(s) ≈ fŜ(s)

≈ 1√
π

Q∑
q=0

K∑
k=1

wk
exp (−rL) (rL)q

q!Γ (L+ q)

(
(1 + r)

ukA0F
L

)Lg
2

× LLgL

2L
s

Lg
2 −1GL+1,0

L,L+1

⎛
⎜⎝s (1+r)

ukA0F
L

∣∣∣∣
(1)

⊗
L

L+q−Lg
2 ,(0)

⊗
L

⎞
⎟⎠,

(25)

where the notation (·)⊗L denotes the L times repetition of a
given tuple, Gm,n

p,q (·|······) denotes the Meijer’s G-function, and the
definition of it is shown in Appendix D. A full derivation of
(25) is given in Appendix B. Note that the derived approximate
analytic solution of composite channel PDF in (25) facilitates the
performance analysis of FSO systems and has not been obtained
in the literature. Based on the discussion in Section III-A and
extensive simulation studies, it is found that the truncated num-
bers Q = 50 and K = 15 are sufficient to achieve convergence
for all of the numerical examples in the paper. Furthermore, by
utilizing [50, eqn. (26)] and [32, eqn. (9.31.5)], the cumulative
density function (CDF) of the combined fading can be approxi-
mated as

FŜ(a) ≈
1√
π

Q∑
q=0

K∑
k=1

wk
exp (−rL) (rL)q

q!Γ (L+ q)

LLgL

2L

×GL+1,1
L+1,L+2

⎛
⎜⎝ a (1 + r)

ukA0F
L

∣∣∣∣
1,(1+Lg

2 )
⊗

L

L+q,(Lg
2 )
⊗

L
,0

⎞
⎟⎠ . (26)

B. Approximation Error Analysis

Based on the information described above, the main ideas of
our proposed approximate method are summarized as follows

S ≈ S̃ =

∑L
l=1 zl

∑L
l=1 yl

∑L
l=1 u(rl)

L2

≈ Ŝ =

φ
(∑L

l=1 zl

)∑L
l=1 ylFu

(√
1
L

∑L
l=1 r

2
l

)
L

, (27)

where φ(·) denotes some function. It should be noted that the
value of RV φ(

∑L
l=1 zl) in each generation extremely close to

that of (
∑L

l=1 zl), and the PDF expression of φ(
∑L

l=1 zl) is
shown in (13). According to (27), the corresponding approxi-
mation error εt is given by

εt = ε+
(
S̃ − Ŝ

)
. (28)

Next, we make great efforts to analyze the εt. The exact PDF of
the error εt is difficult to be derived, however, its first and second
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moments, which are indicative of its statistical behavior [35], can
be calculated. Hence, the mean of εt is derived as

E [εt] = E [ε] + E

(
S̃ − Ŝ

)
. (29)

It is easy to see that the mean of ε is equal to 0 provided
that the zl, yl, and u(rl) are statistically independent, and this
indicates that Ŝ can be considered as a unbiased estimation of
S̃. The means of S̃ and Ŝ are respectively obtained as

E

[
S̃
]
= L

A0ξ
2

1 + ξ2
, (30)

and

E

[
Ŝ
]
=

∫ ∞

0

fŜ(s)sds

=
1√
π

Q∑
q=0

K∑
k=1

wk
exp (−rL) (rL)q

q!
(L+ q)

ukA0F

(1 + r)L

× LLgL

(Lg + 2)L

=
1√
π

Q∑
q=0

K∑
k=1

wk
exp (−rL) (rL)q

q!
(L+ q)

ukA0

(1 + r)L

× ξ2

1 + ξ2
, (31)

where in (30) we have used the second equation in (70), and
in (31) we have used the integration formula [17, eqn. (81)].
Using the Taylor series expansion of exp(x) at x = 0 [32,
eqn. (1.211.1)], we have

Q∑
q=0

(rL)q

q!
(L+ q) ≈ exp(rL)L (r + 1) . (32)

Knowing the fact that the first derivative of MG(s) at s = 0
is −E[G] = −L. In other words, we have

− dMG(s)

ds

∣∣∣∣
s=0

= L =
1√
π

K∑
k=1

wkuk, (33)

where the second equality holds due to (16). Then, we find that
(31) reduces to (30) after substituting (32) and (33) into (31). In
this case, we have

E [εt] = 0. (34)

The variance of εt is given by

E
[
ε2t
]
= E

[
ε2
]
+ E

[(
S̃ − Ŝ

)2]
, (35)

where the variance of E[ε2] is obtained as

E
[
ε2
]
= E[ε21] + E[ε22] + 2E [ε1ε2]

= E[ε21] + E[ε22]. (36)

The second equation in (36) holds due to

E

[(
L∑

l=1

u(rl)

)
(u(ri)− u(rj))

]
= 0. (37)

The variance of ε1 and ε2 are respectively derived as

E
[
ε21
]
=

(L− 1)

L

(1 + 2r)

(1 + r)2
(
exp
(
σ2
z

)− 1
)

×
(

A2
0ξ

2

2 + ξ2
+ (L− 1)

A2
0ξ

4

(1 + ξ2)2

)
, (38)

and

E
[
ε22
]
= (L− 1)

(
2 + 4r + r2

(1 + r)2
exp
(
σ2
z

)− 1

)

×
(

A2
0ξ

2

2 + ξ2
− A2

0ξ
4

(1 + ξ2)2

)
. (39)

A full derivation of (38) and (39) is given in Appendix C.
Also, the above two equations indicate that the variance of
the approximation error increases for a certain combination of
r, σ2

z , A0 and ξ as the number of RVs of the sum in (9) increases.
Proposition 1: The variance of ε is equal to that of ε1 as ξ

approaches ∞, which is given by

E
[
ε2
]
= E

[
ε21
]
= (L− 1)

(1 + 2r)

(1 + r)2
(
exp
(
σ2
z

)− 1
)
A2

0.

(40)

Proof: Proposition 1 can be easily proved according to
limξ→∞ E[ε22] = 0.

Corollary 1: A more efficient approximation can be achieved
for a larger ξ.

Proof: Substituting A0 = [erf(
√
πRa/

√
2wz)]

2 into (40)
and using the relation derf(x)/dx = 2 exp(−x2)/

√
π [32,

eqn. (8.250.1)], then the first derivative of E[ε2] is strictly less
than zero according to (41).

dE
[
ε2
]

dwz/Ra
= − (L− 1)

2 (1 + 2r)

(1 + r)2
(
exp
(
σ2
z

)− 1
)

× erf
(√

π/2/(wz/Ra)
)

×
√
2 exp

(−π/2/(wz/Ra)
2
)

(wz/Ra)
2

< 0. (41)

The variance of E[(S̃ − Ŝ)2] is difficult to be solved since the
function φ(·) is unknown. However, it can be approximated with
high accuracy in the following way

E

[(
S̃ − Ŝ

)2]
≈
(

L∑
l=1

zl

L∑
l=1

yl

)2

E

[(
1

L2

L∑
l=1

u (rl)

−F

L
u

⎛
⎝
√√√√ 1

L

L∑
l=1

r2l

⎞
⎠
⎞
⎠

2
⎤
⎥⎦ . (42)

In Fig. 2, we investigate the tightness of the (36) and (40)
by showing the numerical results. As can be seen, the variance
of ε1 approaches the variance of ε2 as ξ increases. Specifically,
they nearly overlap with each other for wz/Ra = 14, σs/Ra =
1 (ξ = 7.02), and this verifies the argument of Proposition 1. In
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Fig. 2. The variance of ε for different pointing errors and L.

Fig. 3. Monte Carlo simulation results of approximate varianceE[(S̃ − Ŝ)2]
for different pointing errors and L.

addition, we find that the variance of ε decreases with increasing
value of wz/Ra for given σs/Ra, and this is also shown in
Fig. 3, where we presents the Monte Carlo simulation results of
E[(S̃ − Ŝ)2]. By comparing curves in Figs. 2 and 3, we conclude
that a larger variance of approximation error is obtained when
the number of apertures increase or wz/Ra decreases.

C. Numerical Examples

In this section, we investigate the accuracy of the proposed
approximate PDF expression by comparing the statistic of the
simulation data. Note that the simulated PDFs and CDFs gener-
alized from1× 106 samples by Monte Carlo method are used for
reference. Fig. 4 depicts the PDF and CDF results for different
combinations of turbulence conditions, apertures, and pointing
errors. It is clearly illustrated that the approximate results always
provide an excellent agreement with the simulation results.

To quantitatively evaluate the error behavior of the approxi-
mation method, we here employ the KS goodness-of-fit statis-
tical tests tools, which measure the maximum value of absolute
difference between the empirical cumulative distribution func-
tion (CDF) of the RV S, FS(·) and the approximate analytical
CDF expressionFŜ(·) shown in (26). Hence, the KS test statistic
is defined as

T = max
∣∣FS(a)− FŜ(a)

∣∣ . (43)

Fig. 4. PDF and CDF plots of the Monte Carlo simulation.

It is shown in [51] that an approximation is considered to
be accepted with significance level 1− α if the statistical test
value T is less than given critical value Tmax, while it is said to
be rejected with the same significance if T > Tmax. The critical

value Tmax is given by Tmax =
√

− 1
2N ln(α2 ) with α denoting

the significant level andN is the number of samples. The typical
value for them are set to be α = 5% and N = 104 respectively,
resulting in the critical value Tmax = 0.0136.

In Fig. 5, we study the KS test statistic of the approximation
for different combinations of r, σ2

z , wz/Ra, σs/Ra and L. It
must be emphasized that the present results are obtained by
averaging the results of 100 simulation runs. According to Fig. 5,
we find that the proposed approximation performs better for the
larger r or smaller σ2

z . Specifically, it is accepted with 95%
significance in all the range of the parameters examined when
L = 2, wz/Ra = 8, σs/Ra = 1. The impact of pointing errors
on the approximation accuracy can be concluded by comparing
the curves in Fig. 5(a) and Fig. 5(b), which indicate that a
more efficient approximation can be achieved for the smaller
pointing errors. As expected, the number of apertures L have a
negative effect on the approximation accuracy when comparing
the statistic test results in Fig. 5(b) and Fig. 5(c).
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Fig. 5. KS goodness-of-fit tests results for different combinations of turbu-
lence conditions, apertures, and pointing errors.

IV. PERFORMANCE ANALYSIS FOR THE MIMO FSO SYSTEMS

In this section, we study the ergodic capacity, outage prob-
ability and BER performance of MIMO FSO systems over
lognormal-Rician fading channels with pointing errors based on
the proposed approximate model. In what follows, L = MtNr.

A. Ergodic Capacity

1) Exact and asymptotic analysis: Assuming the instanta-
neous channel side information is perfectly known at the re-
ceiver, the ergodic capacity corresponding to the considered
MIMO FSO systems in bits/Hz/s is given by

Cpe = E

[
log2

(
1 +

γ0
Nr

s2
)]

=

∫ ∞

0

1

ln(2)
G1,2

2,2

(
γ0 s

2

∣∣∣∣
1,1

1,0

)
fS(s)ds

≈ Ĉpe =

∫ ∞

0

1

ln(2)
G1,2

2,2

(
γ0 s

2

∣∣∣∣
1,1

1,0

)
fŜ(s)ds, (44)

where in (44), we have expressed ln(1 + ax) in terms of Meijer’s
G-function [32, eqn. (8.4.6.5)]. Substituting (25) into (44) and
using the integration formula [52], an approximate closed-form
expression for the ergodic capacity of MIMO FSO communica-
tion systems is obtained as

Cpe ≈ 1

ln(2)π

Q∑
q=0

K∑
k=1

wk
exp (−rL) (rL)q

q!Γ (L+ q)

LLgL

2L+1−q

×G1,2L+4
2L+4,2L+2

⎛
⎜⎝ 4 γ0

Nr(
(1+r)
ukA0F

L
)2
∣∣∣∣∣∣∣
A

B

⎞
⎟⎠ , (45)

where

A =

⎧⎨
⎩1, 1,

1− L− q

2
,
2− L− q

2
,

(
2− Lg

2

2

)⊗L
⎫⎬
⎭

B =

{
1, 0,

(
−Lg

4

)⊗L
}
. (46)

It can be seen that the approximate expression in (45) involves
the Meijer’s G-function, and thus does not provide much insight
into the capacity performance. Also, we are always interested in
the ergodic capacity in the high SNR regime. Note that log2(1 +
γ0/Nrs

2) can be approximated by log2(γ0/Nrs
2) in this case.

As such, we have

Cpe,hsnr ≈
∫ ∞

0

log2
(
γ0/Nrs

2
)
fS(s)ds

≈ log2 (γ0/Nr) +

∫ ∞

0

2 log2(s)fŜ(s)ds. (47)

Substituting (25) into (47), we can obtain an asymptotic
expression of ergodic capacity at high SNRs as

Cpe,hsnr ≈ 1

ln(2)

(
1√
π

Q∑
q=0

K∑
k=1

wk
exp (−rL) (rL)q

q!

(
−4

g
+ 2ϕ (0, L+ q) + 2 ln

(
ukA0F

(1 + r)L

))

+ ln

(
γ0
Nr

))

≈ 1

ln(2)

(
2

Q∑
q=0

exp (−rL) (rL)q

q!
ϕ (0, L+ q)

− 4

g
− σ2

L + 2 ln

(
A0F

(1 + r)

)
+ ln

(
γ0
Nr

))
,

(48)
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where ϕ(·) is the digamma function [32, eqn. (8.365.4)] and
we have used the following integration formula, i.e., (49) [17,
eqn. (83)] in deriving the first equality of (48).∫ ∞

0

tq1−1 ln(t)GL+1,0
L,L+1

(
t

∣∣∣∣
1,...,1

q2,0,...,0

)
dt

= −LΓ(q1 + q2)

qL+1
1

+
Γ(q1 + q2)ϕ(0, q1 + q2)

qL1
. (49)

Note that (48) gives the required expression for the ergodic
capacity at high SNRs in terms of simple elementary function.
According to (48), the multiplexing gain4 is computed to be 1,
and a smaller variance σ2

z or larger g leads to a higher ergodic
capacity. Specifically,σ2

L ≈ σ2
z/Lwhenσ2

z is small enough, and
this indicates that the ergodic capacity at high SNRs decreases
linearly with increasing variance σ2

z . It should be emphasized
that this conclusion can not be deduced directly by using the
numerical methods, namely, Padé and Gram-Charlier Series.
Knowing the fact that the effect of pointing errors can be
neglected when A0 → 1 and g → ∞ [15], then the approxi-
mate and the asymptotic expressions for the ergodic capacity
of MIMO FSO systems in the absence of pointing errors are
respectively evaluated as

Cnpe ≈ 1

ln(2)π

Q∑
q=0

K∑
k=1

wk
exp (−rL) (rL)q

q!Γ (L+ q)

LLgL

2L+1−q

×G1,4
4,2

⎛
⎜⎜⎝ 4 γ0

Nr(
(1+r)
uk

L
)2
∣∣∣∣∣∣∣
1,1, 1−L−q

2 , 2−L−q
2

1,0

⎞
⎟⎟⎠ , (50)

and

Cnpe,hsnr ≈ 1

ln(2)

(
2

Q∑
q=0

exp (−rL) (rL)q

q!
ϕ (0, L+ q)

− σ2
L − 2 ln (1 + r) + ln

(
γ0
Nr

))
. (51)

2) Beam width optimization at high SNRs: It is known that the
beam width can be optimized to mitigate the effects of pointing
error in the high SNR regime. According to [54], an SNR
threshold, γth[dB], is defined as a critical point that intersects
with the γ0-axis. Hence, from (48) and (51), we can obtain the
expression of SNR loss caused by pointing errors as

Losspe [dB] = γth,pe[dB]− γth,npe[dB]

= − 20

ln(10)
ln (exp (−2/g)A0F ) (52)

The above formula indicates that the optimum normalized beam
wz,opt/Ra only depends on pointing errors and is obtained by
solving following optimization problems

wz,opt/Ra = max
wz/Ra∈(6,∞)

(−2/g + ln (A0F ))

4The multiplexing gain of a system is defined as limγ0→∞
C(γ0)

log2(γ0)
, where

C and γ0 represent the channel ergodic and SNR respectively [53].

= max
wz/Ra∈(6,∞)

(exp (−2/g)A0F ) (53)

Specifically, when L is large enough, (53) reduces to

wz,opt/Ra = max
wz/Ra∈(6,∞)

(
A0

g

g + 2

)
(54)

Using the formula in [55, eqn. (24)], we then find the objective
function in (54) decreases monotonically as wz/Ra increases,
and this indicates wz,opt/Ra = 6.

B. Outage Performance

Outage probability is also an important performance metric,
which is defined as the probability that the instantaneous com-
bined SNR γEGC is lower than a given threshold γth, that is

Pout,pe = Pr (γEGC < γth) ≈
∫ √

Nrγth
γ0

0

fŜ(s)ds. (55)

Substituting (25) into (55) and using (26), the outage perfor-
mance for the MIMO FSO systems with pointing errors can be
approximated as

Pout,pe ≈ 1√
π

Q∑
q=0

K∑
k=1

wk
exp (−rL) (rL)q

q!Γ (L+ q)

LLgL

2L

×GL+1,1
L+1,L+2

⎛
⎜⎜⎜⎝
√

Nrγth

γ0
(1 + r)

ukA0F
L

∣∣∣∣∣∣
1,(1+Lg

2 )
⊗

L

L+q,(Lg
2 )
⊗

L
,0

⎞
⎟⎟⎟⎠ .

(56)

Correspondingly, an approximate analytic expression for the
outage performance of MIMO FSO systems without pointing
errors can be readily carried out by

Pout,npe ≈ 1√
π

Q∑
q=0

K∑
k=1

wk
exp (−rL) (rL)q

q!Γ (L+ q)

×G1,1
1,2

⎛
⎜⎝
√

Nrγth

γ0
(1 + r)

uk
L

∣∣∣∣∣∣
1

L+q,0

⎞
⎟⎠

≈ 1√
π

Q∑
q=0

K∑
k=1

wk
exp (−rL) (rL)q

q!Γ (L+ q)

× γ

(
L+ q,

(
1 + r

uk

)
L

√
Nrγth
γ0

)
, (57)

where γ(·, ·) denotes the lower incomplete gamma function [32,
eqn. (8.35)] and the second equality in (57) holds due to [56].
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C. BER Performance

1) Exact analysis: For an FSO system using OOK modulation
scheme, the average BER performance is given by [57]

Pb,pe = E

⎡
⎣1
2

erfc

⎛
⎝
√

γ0 s2

4Nr

⎞
⎠
⎤
⎦

≈ 1

2
√
π

∫ ∞

0

f (ŝ)G2,0
1,2

(
γ0
4Nr

ŝ2
∣∣∣∣
1

0,0.5

)
dŝ, (58)

where in (58), erfc(·) denotes the complementary error func-
tion [32, eqn. (8.250.4)], and it is expressed in terms of Meijer’s
G-function [58, eqn. (8.4.14.1)]. Substituting (25) into (58) and
using the integration formula [52], an approximate closed-form
expression for the BER performance of MIMO FSO communi-
cation systems is obtained as

Pb,pe ≈ 1

π
3
2

Q∑
q=0

K∑
k=1

wk
exp (−rL) (rL)q

q!Γ (L+ q)

LLgL

2L
2q−2

×G2,L+2
L+3,L+2

⎛
⎜⎜⎜⎝ γ0

Nr

(
(1+r)
ukA0F

L
)2
∣∣∣∣∣∣∣
1−L−q

2 , 2−L−q
2 ,(1−Lg

4 )
⊗L

,1

0,0.5,(−Lg
4 )

⊗L

⎞
⎟⎟⎟⎠ .

(59)

Correspondingly, an approximate analytic expression for the
BER performance of MIMO FSO systems without pointing
errors is obtained as

Pb,npe ≈ 1

π
3
2

Q∑
q=0

K∑
k=1

wk
exp (−rL) (rL)q

q!Γ (L+ q)
2L2q−2

×G2,2
3,2

⎛
⎜⎜⎝ γ0

Nr

(
(1+r)
uk

L
)2
∣∣∣∣∣∣∣
1−L−q

2 , 2−L−q
2 ,1

0,0.5

⎞
⎟⎟⎠ . (60)

2) Diversity Order and Coding Gain: At high SNRs, the
average BER performance can be approximated as Pb ≈
(Gcγ0)

−Gd , where Gc and Gd are defined as coding gain and
diversity respectively. In a log-log scale, the diversity gain Gd

determines the slope of the BER versus SNR curves while coding
gain Gd specifies a relative horizontal shift to a benchmark BER
curve of (γ0)−Gd . Note that the relationship ξ2 > 1 always holds
in most practical FSO systems [15], [55]. Hence, by utilizing
(78) in Appendix D and after some algebraic manipulations, the
asymptotic BER performance can be obtained as

Pb,pe,asym≈
K∑

k=1

wk

π

exp (−rL)

Γ
(
L
2

) ξ2L

⎛
⎜⎝ γ0

Nr

(
(1+r)
ukA0F

L
)2
⎞
⎟⎠

−L/2

× Γ
(
1
2

)
L(ξ2 − 1)L

. (61)

TABLE I
FSO SYSTEMS CONFIGURATION PARAMETERS

From (61), the diversity order and coding gain are found to
be

Gd = L/2

Gc =

(
1

π

K∑
k=1

wku
−L
k LL−1Γ

(
1

2

)
1

Γ
(
L
2

)
)−2/L

×

⎛
⎜⎝ (A0F )2 exp(2r)

(
1− 1

ξ2

)2
Nr(1 + r)2

⎞
⎟⎠ . (62)

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we present some numerical results for the
ergodic capacity, outage probability and BER performance of
MIMO FSO systems over lognormal-Rician turbulence channels
with pointing errors. The Monte Carlo simulation results are
obtained through MATLAB, and they are also included as a
benchmark in all the figures. A detailed description of Monte
Carlo simulation is present as follows: For given channel model
parameters γ0,Mt, Nr, r, σ2

z , wz/Ra, σs/Ra, we generate N
i.i.d Lognormal-Rician RVs with pointing errors, and repeat this
Mt ×Nr times. Then, substituting these RVs into (44), (55) and
(58), we arrive at the Monte Carlo simulation results of ergodic
capacity, outage probability and BER performance respectively.

Moreover, the number of samples N is set to be 106 if not
specified yet. The system configuration parameters in all the
simulations are listed in Table I. Note that these parameters
have been used in most practical FSO systems [15], [55]. The
values of lognormal-Rician turbulence parameters (r, σ2

z) are
adopted according to [21], [24], [59]. It is shown in [15] that
ρ0 = 0.79 (C2

nκ
2dSD)−3/5 for a plane wave propagation, and

thus a spacing of 14 mm is required to achieve uncorrelated
fading when using the parameters in Table I.

Fig. 6 depicts the simulated, approximate analytical, and high
SNR ergodic capacity of MIMO FSO systems as a function
of the average electrical SNR γ0 for different apertures and
pointing errors. Note that the pointing errors are considered here
assuming values of normalized beam width and normalized jitter
of (wz/Ra = 5, σz/Ra = 1), and (wz/Ra = 10, σz/Ra = 2).
From the figure, we illustrate that the approximate analytical
expression in (45) and asymptotic expression in (47) are in excel-
lent agreement with the Monte Carlo simulation results, and thus
verify the high accuracy of the proposed approximation. Also,
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Fig. 6. The ergodic capacity of MIMO FSO systems for different combinations
of apertures and pointing errors when r = 4, σ2

z = 0.1.

TABLE II
THE ERGODIC CAPACITY OF MIMO FSO SYSTEMS WITH MT = Nr = 3,

WHERE RELATIVE ERROR δ IS DEFINED AS δ = |Cpe − Ĉpe|/Cpe

TABLE III
A COMPARISON OF ASYMPTOTIC ERGODIC CAPACITY FOR SISO FSO SYSTEMS

it must be highlighted that the obtained analytical expression of
ergodic capacity is very precise in the entire SNR regime, that is,
overlaps with the simulation results from low to high SNR. As
expected, the ergodic capacity is significantly increased as the
apertures increase. For example, when (wz/Ra = 10, σz/Ra =
2) and γ0 = 50 dB, the ergodic capacity for Mt = 1, Nr = 2 is
5.54 bits/Hz/s while it is 7.68 bits/Hz/s for Mt = 2, Nr = 2.
In other words, the impacts of pointing errors can be mitigated
greatly by utilizing the MIMO technique.

Furthermore, the results presented in Table II show that
the obtained approximate expressions are also efficient for the
MIMO FSO systems with larger apertures at both ends and the
relative error decreases as SNR increases. In Table III, we present
a comparison of asymptotic ergodic capacity between series
representation method and moment-based method for the SISO
cases. It can be easily seen from the table that the asymptotic

Fig. 7. The ergodic capacity of SIMO FSO systems for different combinations
of turbulence conditions and apertures when wz/Ra = 5, σs/Ra = 1.

Fig. 8. The effects of apertures on the optimum normalized beam width in the
high SNR regime when r = 4, σ2

z = 0.1, σs/Ra = 6.

ergodic capacity results obtained by using the moment-based
method are closer to the Monte Carlo results and this is be-
cause of the fact that moment-based method is equivalent to
solve E[log2(1 + γ0 s

2)] at high SNRs from the perspective
of methodology. More specifically, the results obtained by the
series representation method is around 3% more than those
obtained by the moment-based method.

The impacts of turbulence conditions and apertures on the
ergodic capacity of SIMO FSO systems are investigated in
Fig. 7. By comparing these curves, we find the smaller vari-
ance σ2

z results in larger ergodic capacity. For example, when
Mt = 1, Nr = 2, and γ0 = 50 dB, the ergodic capacity for
σ2
z = 0.1 is 9.41 bits/Hz/s while it is 8.78 bits/Hz/s for σ2

z = 0.8.
As expected, the ergodic capacity can be improved with the
increasing number of the apertures.

Fig. 8 presents the effects of number of apertures on the
optimum normalized beam width at high SNRs. Note that the
theoretical normalized beamwidth and loss are derived from
the Monte Carlo simulation while the approximate results are
derived from (53). From this figure, we find that the obtained
approximate results act as a upper bound when compared with
the theoretical results except for the SISO cases, where they
almost overlap with each other. Also, it can be easily seen
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Fig. 9. The outage probability of MIMO FSO systems for different combina-
tions of apertures and pointing errors when r = 4, σ2

z = 0.1.

Fig. 10. The BER performance of MIMO FSO systems for different combi-
nations of apertures and pointing errors when r = 4, σ2

z = 0.1.

that both the optimum normalized beam width and SNR loss
decrease slowly as L increases, and this indicates that L is much
greater than 8 to achieve the validity of (54) for the considered
channel model. For example, the optimum beamwidth derived
from (53) is wz,opt/Ra = 6.7 when L is 30.

The outage performance of MIMO FSO systems over
lognormal-Rician turbulence channels with pointing errors is
shown in Fig. 9. As can be seen, the analytical expression in
(56) provides an excellent match in the low-to-medium SNR
regime while it acts as a lower bound at high SNRs. However,
we note that it also can be regarded as a reasonable reference to
the actual system performance since the simulation results lie
within 0.3 dB in all cases examined. As expected, the outage
performance is significantly improved as the apertures increase.

Fig. 10 depicts the BER performance of MIMO FSO systems
for the considered channel models. It can be seen that the
obtained approximate results almost overlap with the simulation
results in the low-to-medium SNR regime while it acts as a
lower bound at high SNRs, and this is consistent with the results
shown for the outage performance. Also, the asymptotic BER
performance in Fig. 11 verifies the expressions in (61) and (62).

Overall, in all of the cases considered, we find that there
is a good match between the approximate analytical and the
simulated results, and this implies that the proposed method is

Fig. 11. Asymptotic BER performance of MIMO FSO systems for different
numbers of apertures when r = 4, σ2

z = 0.1, wz/Ra = 5, σs/Ra = 1.

highly efficient to approximate the PDF of sum of Lognormal-
Rician RVs with pointing errors over a wide range of channel
conditions. Moreover, our new method can also be applied to
evaluate the performance of MIMO wireless communication
systems over other composite lognormal-X fading channels,
such as gamma-lognormal and weibull-lognormal, which are
widely used to describe the statistical properties of wireless
communication channels in congested downtown areas and in
satellite communication systems [60], [61].

VI. CONCLUSION

In this paper, we have discussed the performance of MIMO
FSO systems employing the EGC scheme over lognormal-
Rician turbulence channels with pointing errors. A novel ap-
proximate analytical PDF expression for the considered chan-
nel model is developed. The KS test results indicate that the
proposed approximation is highly accurate over a wide range of
channel conditions. Based on the obtained statistical formulas,
the closed-form expressions for the ergodic capacity, outage
probability, and BER performance are formulated. The derived
analytical expression of ergodic capacity is shown to be in
excellent agreement with the Monte Carlo simulation results
over the whole SNR regime. The obtained asymptotic ergodic
capacity not only enables us to gain insights into the impacts of
the system parameters, but also helps us to formulate beam width
optimization at the transmitter side. Moreover, it can be observed
that the obtained approximate results for the outage probability
and BER performance are very tight in the low-to-medium SNR
regime, while they act as a lower bound in the high SNR regime.

APPENDIX A

RQ(v) <

∞∑
q=Q+1

(rL)q

q!Γ (L+ q)
(1 + r)L+q

(
L+ q − 1

1 + r

)L+q−1

× exp (−rL− (L+ q − 1))

<

∞∑
q=Q+1

(rL)q

q!Γ (L+ q)
(1 + r) (L+ q − 1)L+q−1
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× exp (−rL− (L+ q − 1))

<
∞∑

q=Q+1

(rL)q

q!
(1 + r)

exp (L+ q − 1)√
2π (L+ q − 1)

× exp (−rL− (L+ q − 1))

<
(rL)Q+1 (1 + r)

(Q+ 1)!
√
2π (L+Q)

Q+ 2

Q+ 2− rL

× exp (−rL)

<
(1 + r)√

2π (Q+ 1)
√
2π (L+Q)

(
rL exp(1)

Q+ 1

)Q+1

.

(63)

where in (63), the first equality holds according to (64),
which indicates that u = n/(1 + r) maximizes vL+q−1

exp(−(1 + r)v) regardless of r, n.

dvL+q−1 exp (− (1 + r) v)

dv
= 0 ⇒ v =

L+ q − 1

1 + r
. (64)

The Stirling asymptotic formula [32, eqn. (8.327.2)] can be
applied to derive the third and fifth inequalities provided that Q
is large enough. In addition, the fourth inequality holds due to

∞∑
q=Q+1

(rL)q

q!
=

(rL)Q+1

(Q+ 1)!

(
1 +

rL

Q+ 2
+

(rL)2

(Q+ 2) (Q+ 3)

+
(rL)3

(Q+ 2) (Q+ 3) (Q+ 4)
· · ·
)

<
(rL)Q+1

(Q+ 1)!

(
1 +

rL

Q+ 2
+

(rL)2

(Q+ 2)2

+
(rL)3

(Q+ 2)3
+ · · ·

)

<
(rL)Q+1

(Q+ 1)!

Q+ 2

Q+ 2− rL
, if Q+ 2 > rL. (65)

APPENDIX B

To derive the (25), we mainly focus on solving the following
integral:∫ ∞

s
FA0

1

y
tL+q−1
1 exp

(
−1 + r

uk
t1L

)
lnL−1

(
FA0t1

s

)

×
(

s

t1FA0

)Lg
2

dt1. (66)

Performing the change of variable FA0t1
s = h, (66) can be

rewritten as∫ ∞

1

1

FA0

(
y

FA0

)L+q−1

hL+q−Lg
2 −1

× exp

(
−1 + r

uk

s

FA0
Lh

)
lnL−1(h)dh. (67)

Note that the integral involving in (67) can be evaluated as∫ ∞

1

hL+q−Lg
2 −1 exp

(
−1 + r

uk

s

FA0
Lh

)
lnL−1(h)dh

= Γ(L)

(
1 + r

uk

s

FA0
L

)Lg
2 −(L+q)

×GL+1,0
L,L+1

(
s (1 + r)

ukA0F
L

∣∣∣∣
1,...,1

L+q−Lg
2 ,0,...,0

)
, (68)

where in (68), we have used the following integration for-
mula [17, eqn. (79)]∫ ∞

1

xv−1 exp (−tx) lnm(x)dx

= Γ (m+ 1) t−vGm+2,0
m+1,m+2

(
t

∣∣∣∣
1,...,1

v,0,...,0

)
. (69)

Hence, combining (22), (24), and (68) yields (25) after some
algebraic manipulations.

APPENDIX C

Since {zl}l=L
l=1 , {yl}l=L

l=1 , and {u(rl)}l=L
l=1 are identically dis-

tributed variates with parameters (σ2
z), (r), and (A0, ξ); their

first moments and variances are given by

E [zl] = E[yl] = 1

E [u(rl)] =
A0ξ

2

1 + ξ2

E
[
z2l
]
= exp

(
σ2
z

)
E
[
y2l
]
=

(2 + r(4 + r))

(1 + r)2

E
[
u2(rl)

]
=

A2
0ξ

2

2 + ξ2
. (70)

The variance of ε1 and ε2 are equal to their second moments
individually, which are respectively given by

E
[
ε21
]
=

1

L4
E

⎡
⎣
⎛
⎝L−1∑

i=1

L∑
j=i+1

(zi − zj) (yi − yj)

⎞
⎠

2⎤
⎦

× E

⎡
⎣( L∑

l=1

u(rl)

)2
⎤
⎦ , (71)

and

E
[
ε22
]
=

1

L2
E

[( L−1∑
i=1

L∑
j=i+1

(ziyi − zjyj)

× (u(ri)− u(rj))

)2
]
. (72)
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E [(Wi −Wj) (u(ri)− u(rj)) (Wg −Wh) (u(rg)− u(rh))]

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4
(

2+4r+r2

(1+r)2
exp
(
σ2
z

)− 1
)(

A2
0ξ

2

2+ξ2 − A2
0ξ

4

(1+ξ2)2

)
if i = g and j = h

0 if i �= g and j �= h(
(2+4r+r2)

(1+r)2
exp
(
σ2
z

)− 1

)(
A2

0ξ
2

2+ξ2 − A2
0ξ

4

(1+ξ2)2

)
if i = g and j �= h

(75)

Using the second and fifth equalities in (70), (71) is then
transformed into

E
[
ε21
]
=

1

L3
E

⎡
⎣
⎛
⎝L−1∑

i=1

L∑
j=i+1

(zi − zj) (yi − yj)

⎞
⎠

2⎤
⎦

×
(

A2
0ξ

2

2 + ξ2
+ (L− 1)

A2
0ξ

4

(1 + ξ2)2

)
. (73)

Note that the computation for (72) and (73) can be greatly
simplified by using the (74) and (75), shown at the top of the
page.

E [(zi − zj) (zg − zh) (yi − yj) (yg − yh)]

=

⎧⎪⎨
⎪⎩

(2+4r)

(1+r)2

(
2 exp

(
σ2
z

)− 2
)

if i = g and j = h

0 if i �= g and j �= h
(1+2r)

(1+r)2

(
exp
(
σ2
z

)− 1
)

if i = g and j �= h

(74)

Hence, after some algebra, (73) and (72) are simplified to (38)
and (39) respectively.

APPENDIX D

The definition of Mejer’s G-function is expressed as [32]

Gm,n
p,q

(
z

∣∣∣∣a1, . . . , an, an+1, . . . , ap
b1, . . . , bm, bm+1, . . . , bq

)

=
1

2πi

∫
Γ

∏m
k=1 Γ (s+ bk)

∏n
k=1 Γ (1− ak − s)∏p

k Γ (s+ ak)
∏q

t Γ (1− bk − s)
z−sds,

(76)

and can be computed by the residual of contour integration [62],
i.e.

Gm,n
p,q

(
z

∣∣∣∣a1, . . . , an, an+1, . . . , ap
b1, . . . , bm, bm+1, . . . , bq

)
=

n∑
k=1

∞∑
j=0

ress=1−ak+j

×
( ∏m

k=1 Γ (s+ bk)
∏n

k=1 Γ (1− ak − s)∏p
k=n+1 Γ (s+ ak)

∏q
k=m+1 Γ (1− bk − s)

z−s

)
,

(77)

where no two ak (for k = 1, 2, . . . , n) differ by an integer, and
p > q or p = q with |z| > 1. Specifically, the above formula
reduces to

lim
z→∞+

Gm,n
p,q

(
z

∣∣∣∣a1, . . . , an, an+1, . . . , ap
b1, . . . , bm, bm+1, . . . , bq

)

=
n∑

k=1

zak−1

∏n
l=1;l �=k Γ (ak − al)

∏m
l=1 Γ (1 + bl − ak)∏p

l=n+1 Γ (1 + al − ak)
∏q

l=m+1 Γ (ak − bl)

= za
∗
k−1

∏n
l=1;l �=k Γ (a∗k − al)

∏m
l=1 Γ (1 + bl − a∗k)∏p

l=n+1 Γ (1 + al − a∗k)
∏q

l=m+1 Γ (a∗k − bl)
,

(78)

where in (78),a∗k = max{ak}nk=1, the second equality holds due
to [12, eqn. (41)], and the last equality holds when ak − 1 < 0
for k = 1, 2, . . . , n.
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