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High-Speed Multi-Layer Convolutional Neural
Network Based on Free-Space Optics

Hoda Sadeghzadeh and Somayyeh Koohi

Abstract—Convolutional neural networks (CNNs) are at the
heart of several machine learning applications, while they suffer
from computational complexity due to their large number of pa-
rameters and operations. Recently, all-optical implementation of
the CNNs has achieved many attentions, however, the recently
proposed optical architectures for CNNs cannot fully utilize the
tremendous capabilities of optical processing, due to the required
electro-optical conversions in-between successive layers. To imple-
ment an all-optical multi-layer CNN, it is essential to optically
implement all required operations, namely convolution, summa-
tion of channels’ output for each convolutional kernel feeding the
nonlinear unit, nonlinear activation function, and finally, pooling
operations. Considering the lack of multi-layer photonic CNN
implementation, in this paper, we explore a fully-optical design for
implementing successive convolutional layers in an optical CNN.
As a proof of concept, and without loss of generality, we considered
two successive optical layers in the proposed network, named as
2L-OPCNN, for comparative studies against electrical counterpart
and single optical layer CNN. Our simulation results confirm nearly
the same accuracies for classifying images of Kaggle Cats and
Dogs challenge, CIFAR-10, and MNIST datasets, compared to the
electrical counterpart, as well as improved accuracies compared to
single optical layer CNN.

Index Terms—All-optical neural network, deep convolutional
neural network, high performance neural network, image
classification, optical correlator.

I. INTRODUCTION

INCREASING capability of machine learning technologies
and artificial neural network, specifically deep neural net-

works, has garnered great progress in a variety of applications,
including medicine [1], signal processing [2], and many more.
In particular, convolutional neural networks (CNNs) enhance
performance of computer vision applications, namely image
classification [3] and pattern recognition [4].

Indeed, CNNs are at the heart of several machine learning
applications [5], but they suffer from computational complexity
due to their large number of parameters and operations [6], [7].
As a result, memory usage, power and energy consumption, and
computational delay increase in CNNs [6], [7]. Therefore, there
is a need of parallelism in software implementation of these
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networks for processing huge datasets [7]. Although graphical
processing units (GPUs) provide parallelism for implement-
ing computational tasks [8], real-time inference is not easily
achievable due to their computation time and energy-hungry
problems [7]. To date, photonic platform and optical neural
networks (ONNs) are an appropriate solution to overcome var-
ious drawbacks of electrical implementation [9], [10]. Ultra-
broad bandwidth, high interconnection and inherent parallelism
capability are the key advantages of optical processing tech-
nology [11]–[14] which offers task execution at the speed of
light [15]. Recently, some new interests have been activated
in developing ONN, and new ONNs have been proposed for
implementing photonic multilayer perceptrons (MLPs) [10],
[16]–[18] as well as photonic CNNs [6], [7], [19]–[21]. It
should be noted that some implementation is based on inte-
grated setup [22], [23], while the others are based on free-space
one [19], [20], [24], [25]. Although the integrated structures
offer lower power consumption and lower area in comparison
with the free-space structures, they suffer from reconfigurability
and scalability problems, as well as fabrication challenges.
In this manner, free-space optical design is addresses in this
paper.

To implement an all-optical multi-layer CNN, it is essential
to optically implement all required operations, namely convo-
lution, summation of channels’ output for each convolutional
kernel feeding the nonlinear unit, nonlinear activation function,
and finally, pooling operation. 4f optical correlator is a common
architecture in free-space optics, and is utilized by recent studies,
such as [5]–[7], [20], [26], as the optical correlator to perform
convolution operation in a negligible time [27]. Authors in
[6] utilized diffractive optical elements to implement optical
correlator for hybrid optical-electronic convolutional neural net-
works, but they introduced neither optical nonlinear activation
function nor optical pooling layer. Moreover, using grayscale
input images and one layer of optical convolution, they avoided
summation of channels’ output for each convolutional kernel.
As another usage of 4f system, Colburn et al. [7] proposed an
optical frontend for AlexNet [3] utilizing metasurface optics to
implement array of 4f optical correlator to perform all convolu-
tion operations of the first layer. Moreover, they included square
nonlinearity at the end of first layer representing photodetector
nonlinearity, while other operations were implemented electron-
ically rather than optically.

Authors in [28] proposed a six-successive–layer design of
ONN with no nonlinear activation function in-between. Also,
they included neither electrical nor optical pooling layer in their
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ONN architecture. However, they used Sotftmax activation at
the end of each 4f system with no optical design proposal to
achieve Softmax activation.

Author in [20] proposed an optronic convolutional
neural network utilizing a lenslet array of 4f system to perform
convolution operations. They proposed an optical summation of
channels’ output for each convolutional kernel by modulating
additional phase shift on each kernel. Moreover, they adopted
strided convolution, as the replacement of pooling layer, taking
advantages of a 4f optical correlator and a demagnification lens
system. Finally, the back-end sCMOS camera is assumed to
simulate the electrical nonlinear activation function. It should be
noted that the demagnified pooling suffers from two drawbacks:
a) the pooling operation actually happens in camera, where the
output of the optical system gets demagnified before getting
into the camera. Therefore, such a design introduces challenges
for implementing two or more successive optical layers and
there is always a need of electro-optical conversion between
successive layers (due to the usage of camera in-between),
and b) even assuming design changes to implement successive
all-optical layers, using the demagnifier element as a pooling
layer reduces the image sizes exponentially at each layer. And
hence, it becomes more and more difficult to perform operations
using spatial light modulators (SLMs) or capture the final image
using CCD.

In [19], array of 4f optical correlators as the optical con-
volution layer, saturable absorption as the optical nonlinearity
unit, and convolution with pinhole masks as the optical pooling
layer have been designed for the first convolutional layer of
AlexNet. However, to facilitate optical implementation of CNNs
in more than one layer, optical summation of channels’ output for
each convolutional kernel should be provided to feed the optical
nonlinearity units. Moreover, although blurring the transmitted
image by passing through a low pass filter (i.e., a pinhole mask)
simulates the average pooling operation, an efficient AlexNet ar-
chitecture utilizes a max pooling layer. Therefore, either optical
implementation of max pooling operation or an optical function
with similar behavior as a max pooling unit should be provided
to optimize the network classification accuracy.

In sum, considering all the aforementioned ingredients, there
is a lack of optical multi-layer CNNs capable of optically imple-
menting all successive operations, namely convolution, summa-
tion of channels’ output for each convolutional kernel feeding the
nonlinear unit, nonlinear activation function, and finally, pooling
layer. It is worth noting that multi-layer photonic CNNs, with
no electro-optical conversion between successive layers, can
reduce power consumption of electrical CNNs. Moreover, as
discussed in [7], in conventional CNNs (such as AlexNet [3]),
the most time-consuming layers are the first and the second ones.
Therefore, optical implementation of all required operations
facilitates optical implementation of successive layers. In this
manner, an optical multi-layer CNN allows considerable speed
up over traditional counterparts

In this paper, we introduce a fully-optical design for imple-
menting successive convolutional layers in an optical CNN.
Without loss of generality, as a case study, we simulated two
optical layers, as a proof of concept for concatenating optical

layers. The proposed architecture, named as 2L-OPCNN (i.e.,
Two Layer Optical CNN), would be implemented in free-space
optics, taking advantages of 1) array of 4f optical correlators
(to implement optical convolution), 2) phase shifting of kernels
(to implement summation of channels’ output), 3) saturable
absorption nonlinearities (as optical nonlinearities), and 4) ar-
ray of 4f optical correlators (to implement optical depth-wise
convolution as a replacement of max pooling). It is worth noting
that replacement of max pooling by a convolution layer was
previously introduced in [29] for electrical CNNs. However,
adoption of 4f optical correlator to achieve as high accuracy as
the max pooling layer is investigated in this paper. In other words,
the significant novelties of this work are designing a generalized
optical pooling solution, to be implemented by a trainable opti-
cal convolution layer, rather than the max pooling layer, and
concatenation of all operational optical blocks to implement
an all-optical CNN with no electro-optical conversion between
successive layers. In addition, thanks to the great properties of
optical implementation, the proposed solution provides speedup,
as well as negligible power consumption in implementing any
optical CNN which are inevitable cornerstone in electrical CNN.
It is worth noted that optical implementation of CNN can be used
in real-life applications, such as processing of large biological
data sequences. As explained in [30], while designing sequence
alignment tool for biological sequences (i.e., DNAs, RNAs, or
proteins) is a debatable issue, adopting optical correlators can
speed up the computation time by 81% against the electrical
counterparts.

Based on the information elaborated upon, in this paper, we
design a fully-optical multi-layer CNN. The rest of the paper
is organized as follows. Section II presents the 2L-OPCNN
structure in details, and explores the optical implementation of
each operation. Section III presents the simulation environment
and the accuracy evaluation of the proposed photonic CNN.
In Section IV, we discuss the speedup achieved by the 2L-
OPCNN architecture against its electrical counterpart. Section V
addresses the scalability analysis in term of the area consumption
and alignment noises. Section VI represents the power analysis
of 2L-OPCNN, and finally, Section VII concludes the paper and
presents the future work.

II. 2L-OPCNN

A generic CNN comprises of convolutional layers, nonlinear
activation layers, pooling layers, fully connected layers and an
output layer [31]. Without loss of generality, this paper utilizes
AlexNet [3] as a famous CNN architecture with several succes-
sive convolutional layers and FC layers. Specifically, it consists
of five convolutional layers and three fully connected layers.
The first and the second layers provide successive operations
of convolution, Rectified linear unit (ReLU) activation function,
local response normalization (LRN), and max pooling operation.
The third and the fourth layers include convolution and ReLU,
and finally the fifth layer comprises of convolution, ReLU, and
max pooling layers. It should be noted that the initial layers
of the CNN consume the most total run time compared to the
successive layers [7]. Specifically, the first and the second layer
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of the AlexNet network consume more than half of the total run
time, while the second layer has the highest computational cost
by consuming 37.6% of the total run time [7]. In this manner,
optical implementation of the time-consuming initial layers has
motivated various researches to propose optical networks.

In this section, the details of the proposed optical network,
namely 2L-OPCNN, are provided by presenting optical imple-
mentation of the first and the second layers of AlexNet [3].
It is worth mentioning that although 2L-OPCNN takes advan-
tages of two optical layers, the proposed optical convolutional
layer can be utilized in any other convolutional neural network.
Fig. 1 shows the building blocks of 2L-OPCNN architecture.
It is worth noting that although the first and the second lay-
ers of 2L-OPCNN are implemented optically, providing opti-
cal implementation of two successive layers proves feasibility
of all-optical multi-layer CNN architecture. Moreover, due to
various design considerations in free-space optics, following
assumptions are made for the first and the second layers, as
shown in Fig. 1:

I) Convolution operations are implemented by utilizing 4f
optical correlators with Fourier lenses and stride value of
1, rather than 4, due to the continuous Fourier transform
properties,

II) Bias terms are omitted to simplify the optical implemen-
tation,

III) Saturable absorber (SA) optical nonlinearity [32] is
adopted instead of ReLU,

IV) As a result of input normalization for increasing the
performance of SA functionality, there is no requirement
of LRNs, and so, the LRNs do not affect the classification
accuracy [19].Therefore, we omitted them in both layers,
and finally,

V) As a key advantage of 2L-OPCNN, we replace the
max pooling operation by a depthwise convolution layer.
Moreover, since there is no way to apply overlapping in
free-space optics, we optically implement pooling units
by 4f optical correlators with specific filter size for each
dataset, stride value of 1 (considering continuous Fourier
transform), and a downsampling layer, following the pho-
todector’s square nonlinearity response, at the end of the
second layer.

A. Optical Implementation of Fourier Convolution

Cross-correlation measures the similarity between two sig-
nals/sequences [19]. On the other hand, convolution measures
the effect of one signal on the other one. It is worth noting that
the mathematical calculations of correlation and convolution are
similar in the time domain, except that the signal is not reversed,
before the multiplication process, in the case of correlation. In
other words, for symmetric filters, the outputs of two operations
would be similar. It is worth noting that while performing
convolution operation, convolution of image and kernel, and
convolution of image and the reversed kernel lead to the similar
outputs. Concluding aforementioned discussion, we can state
that convolution and correlation operations achieve similar out-
puts for CNN architectures. Furthermore, we can calculate the

Fig. 1. Schematic of 2L-OPCNN architecture. For each layer, the correspond-
ing operations, filter size, stride value, and the number of kernels is specified.

cross-correlation operation in the frequency domain, as in (1),
whereF is the Fourier transform, G(u,v) is the Fourier transform
of g(u,v), S∗(u,v) is the complex conjugate function of s(u,v),
and finally, c(x,y) shows the 2D correlation of the two functions
[27].

c (x, y) = F {G (u, v)S∗ (u, v)} (1)
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Fig. 2. Schematic of a typical 4f optical correlator.

Fig. 3. An array-based convolutional layer with adding phase shifts on kernels.

The above functionality can be realized by a 4f system in free-
space optics. 4f system is a common architecture to implement
optical correlation in free-space optics which is based on the
Vanderlugt setup [33] and comprises of two Fourier lenses each
with focal length of f. Fig. 2 shows the schematic of a typical 4f
system.

As shown in Fig. 2 an input image is formed by modulating
amplitude, phase, or polarization of light beams by a SLM.
Afterwards, light transmission through the first lens (Lens 1)
results in Fourier transform of the input image. While, the second
image is Fourier transformed in the offline manner, and the cor-
responding mask is located on the Fourier plane. Multiplication
of two transformed images is occurred in the Fourier plane as
well. By light propagation through the second lens (Lens 2), the
proposed setup performs Fourier transform once again to achieve
the correlation of two images. The resultant correlation output
either propagates to the next optical layers for more optical
processing (as discussed in this section) or is captured by a
camera [6], [7] and converted to electrical signals for further
electrical processing.

B. Optical Summation of Channels’ Outputs for Each
Convolutional Kernel

For parallel implementation of all convolution operations, we
use array of 4f optical correlators for the first and the second
convolution layers of 2L-OPCNN. It is worth mentioning that
each kernel extracts its related feature map by performing the
convolution operation [20]. Moreover, for optical CNNs with
more than one convolutional layer, the RGB input images require
three channels for each kernel of the first convolutional layer, and
so, optical summation of channels’ output for each convolutional
kernel is required before feeding data to the optical nonlinearity
units in every convolutional layer. However, in the case of
grayscale input images, each kernel of the first convolutional

layer has one channel, and so, summation of channels’ out-
put for each convolutional kernel is not required in the first
convolutional layer, while it is required for the 2nd to the last
convolutional layers. We would like to emphasize that assuming
the grayscale input images in this paper (as details are explored
in Section III.A), only one channel exists for each kernel in the
first layer, and so, no summation operation is required in the first
layer. However, the second layer consists of 96 channels for each
kernel, and hence, optical summation of channels’ output for
each convolutional kernel should be performed before feeding
data to the optical nonlinearity units.

Optical implementation of summation can be realized by the
means of additional modulating of phase shift on each kernel
based on shift theorem in Fourier Optics [20]. By tiling the input
images Iin(xk, yk) and kernels Kernel(xk/λf, yk/λf) on SLMs,
where λ is the wavelength of the free-space light, f is the focal
length of the lens, and xk and yk represent the pixel coordinates
of the kth input image, and taking advantages of an array of 4f
systems, convolution of each kernel with its corresponding input
can be realized separately. To sum the 96 convolutions’ outputs
corresponding to 96 channels of each kernel, in the second opti-
cal layer, we modulate each kernel value by an additional phase
shift ofφ(Δxk,Δyk), where,ΔxkandΔykare defined according
to the required pixels shift of the corresponding kernel image
to locate it in its target position. The required mathematical
computations are presented as follows [20]:

Kernelin

(
xk

λf
,
yk
λf

)
= Kernel

(
xk

λf
,
yk
λf

)
.ejϕ(Δxk,Δyk)

(2)
where, xk and yk represent the pixel coordinates of the kth input
image fed to the summation unit, (.) represents 2D element-wise
product, and finally, ϕ is a phase gradient profile applied to
the kth kernel. By substituting the modulated kernel of (2) in
following (3) (which represents the mathematical operation of
the 4f system), and going through mathematical operations, the
result can be formulated as (7) [20].

Iout(xk, yk) = F−1

{
F [Iin(xk, yk)].Kernel

(
xk

λf
,
yk
λf

)}
k = 1, 2, . . . , N (3)

I ′out(xk, yk) = F−1

{
F [Iin(xk, yk)].Kernelin

(
xk

λf
,
yk
λf

)}
(4)

= F−1

{
F [Iin(xk, yk)].Kernel

(
xk

λf
,
yk
λf

)
.

ejϕ(Δxk,Δyk)
}

(5)

= F−1{F [Iout(xk, yk)].e
jϕ(Δxk,Δyk)} (6)

= Iout(xk −Δxk, yk −Δyk)k = 1, 2, . . . , N
(7)

Based on the shift theorem, adding these phase shifts on each
kernel causes the whole output feature maps to be superimposed
in a specific position, as shown in Fig. 3. In general, when a phase
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gradient is applied to the phase profile of the SLM, the reflected
light field is deflected accordingly, and hence, each output field
Iout(xk,yk) deflects to the target position as well. Therefore,
summation of channels’ output for each convolutional kernel
can be performed optically, according to (8).

I ′out(x, y) =
N∑

k=1

I ′out(xk, yk) (8)

To determine the new phase profile of each kernel, we can
combine (6) and (7) as (9).

F−1{F [Iout(xk, yk)].e
jϕ(Δxk,Δyk)}

= Iout(xk −Δxk, yk −Δyk) k = 1, 2, . . . , N (9)

Or by performing a Fourier transform we can rewrite it as
follows:

F [Iout(xk, yk)].e
jϕ(Δxk,Δyk) =F [Iout(xk−Δxk, yk−Δyk)]

(10)

ejϕ(Δxk,Δyk) =
F [Iout(xk −Δxk, yk −Δyk)]

F [Iout(xk, yk)]
(11)

Measuring Iout for the kth kernel, by assuming pre-specified
Δxk andΔyk according to the desired pixels shift of each image,
we can extract exact value of phase shift ϕ for each kernel.

C. Optical Saturable Absorption Nonlinearity

One of the most challenging part of implementing the ONNs
is realizing physical optical nonlinearity [25]. Saturable ab-
sorption nonlinearity is an all-optical nonlinearity which can
be performed in free-space optics by passing light through an
atomic vapor. An atomic vapor cell is a glass cell containing
a specific gas, which represents specific absorption spectrum,
and it provides nonlinear relation between its input and output
propagated lights [25]. (12) and (13) represent the mathematical
model of saturable absorber (SA) [32] and its derivative, pre-
suming a real-valued E-field (otherwise the square term should
be the square of the absolute value, i.e., |E|2):

EP,out = g (EP,in) = exp

(
− α0/2

1 + E2
P,in

)
EP,in (12)

g′ (EP,in) =

⎡
⎢⎣1 + α0E

2
P,in(

1 + E2
P,in

)2
⎤
⎥⎦ exp

(
− α0/2

1 + E2
P,in

)

(13)

where, EP,in is the input signal of SA, α0 is the resonant optical
depth, g(EP,in) represents the nonlinear output, and g’(EP,in)
is the derivative output. Fig. 4(a) and 4(b) represent the input-
output transmission function of SA and its derivate assuming
optical depth of 20, and 30, respectively. It is worth mentioning
that SA has two processing regions: (i) nonlinear and (ii) linear
regions, and so, based on the input intensity, it can behave
diversely. Also, by increasing the resonant optical depth of SA,
it operates in wider nonlinear region. It should be noted that

Fig. 4. Input-output functionality of SA (green color) and its derivative (orange
color) assuming resonant optical depth of (a) 20 and (b) 30.

to evaluate the temporal behavior of SA, the atomic model
of SA can be formulated by a system of coupled differential
equations, so-called as rate equations [34], the details of which
are discussed in [19].

D. Optical Max Pooling

Pooling layers, contributing in most CNNs, progressively
reduce the spatial size of the input representation, as well as
reduce the numbers of parameters in each layer to speed up
the network computation. Providing spatial invariance property,
pooling layers reduce overfitting in the neural networks, among
which, the average pooling and the max pooling layers are the
most popular ones [35]. However, although a few recent studies
propose an optical demagnification system as the pooling layer
[20], or adoption of pinhole as an optical average pooling layer
[19], there is a lack of proper implementation of the max pooling
layer within a free-space optical setup [32].

Recently, a few studies [29], [35] proposed utilization of
the convolution layers instead of the max pooling layers to
enhance the accuracy of electrical CNN. These study prove
that the max pooling operation is mathematically equivalent to
the convolution operation followed by an appropriate nonlinear
activation function, such as ReLU [29], [35]. While all these
architectures are proposed for the electrical CNN, in this paper,
we present an optical solution for this approach. As shown in
Fig. 5 , we can deduce that a trainable convolutional layer with
the appropriate kernels can resemble the max pooling operation.
Therefore, we propose to substitute the max pooling layer with a
convolutional layer with stride value more than 1. Based on the
above explanation, the max pooling operation is mathematically
equivalent to the convolution operation followed by a nonlinear
activation function. However, to reduce the complexity of the
optical setup, we proposed to remove the nonlinear activation
function while implementing the convolution operation to re-
semble the max pooling operation. Therefore, due to the omis-
sion of the nonlinear activation function, we cannot claim that
the implemented convolution is mathematically equivalent to the
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Fig. 5. (a) Max pooling operation and (b) A trainable convolutional layer with
appropriate kernels can achieve the same classification accuracy as the max
pooling operation. Parameters a, b, c, and d are kernel’s pixels value which are
determined though training procedure.

max pooling. However, as a key advantage of the trainable con-
volution operation and the learning process, we could achieve
similar accuracies by the convolution operation as the pooling
layer, compared to the max pooling layer. For more clarity, as
an example, a max pooling layer with filter size of 2 and stride
value of 2 can be substituted with a convolutional layer with
the same filter size and stride value. In this case, the numbers of
output and input channels are not altered, and hence, a depthwise
convolution operation can be adopted.

Based on above discussion, in this paper, convolution-based
pooling layers as the substitution of max pooling layers are
adopted in the optical domain. Specifically, we take advantage of
optical convolution operations instead of max pooling operation
in the first and the second layers of 2L-OPCNN structure.
As discussed in Section II.A, we perform optical convolution
using common 4f optical correlators, and since there is no way
of implementing stride values larger than one in the optical
convolution, we consider downsampling operation within the
CCD camera, which captures output of the second layer.

E. Optical Layers Structure of 2L-OPCNN

Figs. 6 and 7 show all-optical design of the first and the
second convolutional layers of 2L-OPCNN with arrays of 4f
optical correlators for both convolution and pooling layers, as
well as arrays of SAs performing nonlinear blocks. As shown in
these figures, although similar, the first and the second optical
layers differ in two aspects: I) assuming grayscale input images
for 2L-OPCNN, all kernels in the first convolution operations
within the first layer requires one channel. Therefore, no optical
summation is required at the end of the first layer, and II) utilizing
CCD camera, performing opto-electrical conversion, at the end
of the second layer is inevitable to facilitate further electrical
processing.

It is obvious that all training kernels in both layers are de-
termined through an electrical training procedure. Regarding
the proposed optical design, for an optical implementation of
the test procedure, each positive or negative kernel’s value is
implemented utilizing a checkerboard pattern of subpixels [7],
whose details are discussed in [19] and [36]. Also, we utilize flat
lenses based on the metasurfaces, whose phase shift ϕL at each
point of (x,y) on the flat lens is calculated as follows [37]:

ϕL =
2π

λ

(√
x2 + y2 + f2 − f

)
(14)

TABLE I
NUMBER OF IMAGES FOR NETWORK TRAINING, VALIDATION AND TEST

where, λ is the wavelength in free-space, and f is the focal length
of the lens. In this case study, for implementing 2L-OPCNN, we
assumed λ of 532 nm, f of 3 mm, and lens diameter of 0.57 mm.
In this manner, as the 2L-OPCNN architecture utilizes 96 kernels
in the first layer, the lens array performing the optical convolu-
tion operations within the first convolutional layer constitutes
an area of 0.31 cm2. Moreover, since each optical convolution
operation is followed by an SA component, 96 SA components
are required to accomplish the nonlinearity operation. At the
last stage of the first optical layer, we adopt 96 4f optical
correlators aligned with SAs’ outputs to implement the required
optical pooling operations in a parallel manner. Therefore, the
optical pooling layer constitutes an area of 0.31 cm2 in the first
convolutional layer. In the second convolutional layer, we apply
256 kernels in an array-based structure, and so, area of 79.85 cm2

is required for the lens arrays implementing both the convolution
and the pooling operations in a parallel manner, while 256 SA
components are utilized in between. Finally, it should be noted
that since the cells diameter of SA array is 19 mm or 25.4 mm,
as accessible in [38], it consumes less area compared to the
lenslet array, and would not limit the scalability of the optical
setup.

III. SIMULATION AND RESULTS

In this section, to evaluate the accuracy of 2L-OPCNN, we
present different simulation scenarios involving various input
datasets. Moreover, the details of training procedure and the
resultant classification accuracy for each dataset are described
in the following subsections.

A. Datasets

Three classification datasets, namely Kaggle Cats and Dogs
[39], CIFAR-10 [40], and MNIST [41] were chosen for per-
formance analysis of 2L-OPCNN. The Kaggle Cats and Dogs
includes two classes of RGB images, while the CIFAR-10
includes 10 classes of 32 × 32 RGB images, and finally, the
famous MNIST consists of 10 classes of 28 × 28 grayscale
images. Table I shows total number of images in each dataset
and the corresponding numbers of training, validation, and test
images considered in our simulations. It is worth mentioning that
based on the 2L-OPCNN input architecture, all input images
were resized to 227 × 227 pixels, and the RGB input images
were converted to the grayscale ones.
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Fig. 6. All-optical implementation of the first convolutional layer with array-based structure.

Fig. 7. All-optical implementation of the second convolutional layer with array-based structure.

B. Comparative Simulation Studies

In this study, three simulation scenarios are considered,
namely as AlexNet, 2L-OPCNN (Ground Truth), and 2L-
OPCNN (wave-optics); where, AlexNet represents the conven-
tional AlexNet structure [3], 2L-OPCNN (Ground Truth) is
simulated to measure the accuracy of 2L-OPCNN considering
behavioral simulation and analytical models of optical com-
ponents, and finally, 2L-OPCNN (wave-optics) represents the
corresponding wave-optics simulation by extending the wave
optics-based code evolved in [7].

In 2L-OPCNN (Ground Truth), we applied the following main
modifications on AlexNet [3]: I) the corresponding convolution

operation is performed in the optical domain by a Fourier domain
multiplication. Considering the continuous Fourier transform,
we utilized a stride of 1, instead of 4 in AlexNet [3], II) the SA
nonlinearity, instead of ReLU, is applied for the first and the
second layers of 2L-OPCNN, and finally III) we replaced the
max pooling operation of both the first and the second layers by
the trainable convolution operations. 2L-OPCNN (wave-optics)
considers wave optics simulations of optical component in the
Fourier domain. For this purpose, we included the fast Fourier
transform (FFT) algorithm, angular spectrum propagator, and
complex-valued masks in Tensorflow-Python framework. For a
fair comparison, all scenarios were evaluated by grayscale input
images.
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TABLE II
STRUCTURAL DETAILS OF FIRST AND SECOND LAYERS STRUCTURE OF ALEXNET AND 2L-OPCNN

TABLE III
SIMULATION RESULTS COMPARISON OF 2L-OPCNN AND ALEXNET

To choose the best filter sizes for the convolution-based max
pooling layers, numerous simulation scenarios were performed,
as the details are provided in Section I of supplementary mate-
rial. In this regard, in the case of Kaggle Cats and Dogs and
MNIST datasets, filter size of (3 × 3) and stride of 3 were
selected for convolution-based pooling operations of both first
and second layers, while for CIFAR-10 dataset filter size of
(4 × 4) and stride of 4, and filter size of (3 × 3) and stride
of 3 are chosen for the first and the second pooling layers,
respectively. Moreover, as discussed in Section II, we drop bias
terms and LRN unit of all convolution operations within the
first and the second layers of 2L-OPCNN. Finally, it is worth
noting that square nonlinearity (Sqnl) representing the nonlinear
response of the photodetecror is adopted at final stage of the
second layer of 2L-OPCNN structure. Summarizing the above
discussion, Table II represents the details of various simulation
scenarios.

To achieve the best classification accuracy, we considered
weights initialization with a Gaussian distribution assuming std
value of 1/

√
fanin, where fanin is computed as m2c for the

convolutional layer with kernel size of m × m and c input
channels. Also, we set the resonant optical depth (α0) of 20
for SA nonlinearity, and finally, we executed all the aforemen-
tioned simulation scenarios on GPU (NVIDIA GeForce GTX).
Moreover, to obtain the best parameter values, several training
procedures were performed on validation datasets, and finally,
the learning rate of 0.001 and batch size of 4 were considered for
2L-OPCNN (wave-optics). The learning rate and batch size of
2L-OPCNN (ground-truth) are provided in the supplementary
material. Also, it should be considered that the training proce-
dure is stopped once the rate of change of training accuracies
and cross entropies reduces to <10−3.

Table III lists the resultant classification accuracies. It is worth
mentioning that the final goal of almost all researches [6], [7],
[20] proposing OPCNN is to reach a classification accuracy
close to that of the electrical counterpart. In this manner, we
compared the 2L-OPCNN with its electrical counterpart in terms

TABLE IV
SIMULATION RESULTS COMPARISON OF 2L-OPCNN AND OP-ALEXNET [19]

of classification accuracy. As shown in Table III, for Kaggle
Cats and Dogs and MNIST datasets, classification accuracy
of the 2L-OPCNN (wave-optics) is nearly similar to that of
the AlexNet, while its accuracy is slightly reduced for the
CIFAR-10 dataset. In this manner, we can conclude that optical
convolution-based pooling layer, by achieving nearly the same
classification accuracy as the max pooling layer, can facilitate
all-optical implementation of the convolution layers. Fig. 8
represents all 96 output images of the first convolutional layer,
and also, all 256 output images of the second convolutional layer
by feeding a sample input image from Kaggle Cats and Dogs
dataset.

C. Two Layers vs. One Layer Optical Convolution

To evaluate the accuracy of optical summation in-between
subsequent optical layers, in this section, the classification accu-
racy of 2L-OPCNN is compared against that of OP-AlexNet [19]
which consists of one optical convolutional layer and subsequent
electrical ones.

As shown in Table IV, the number of optical layers surpris-
ingly impacts the classification accuracy. Specifically, while OP-
AlexNet’s accuracy is 4.76% and 5.68% less than that of AlexNet
(shown in Table III) for Kaggle Cats and Dogs and CIFAR-10
datasets, respectively, accuracy of 2L-OPCNN (wave-optics)
is improved by 3.64% and 1.33%, respectively, compared to
that of OP-AlexNet for Kaggle Cats and Dogs and CIFAR-10
datasets.

As discussed in [19], including a square nonlinearity oper-
ation, representing the photodetector responsivity, at the back
end of the first optical convolutional layer considerably reduces
classification accuracy of OP-AlexNet. However, as reported
in Table III, 2L-OPCNN can achieve nearly the same accuracy
as AlexNet. Actually, two main reasons should be noted for
the classification accuracy enhancement of 2L-OPCNN over
OP-AlexNet: I) utilizing optical trainable convolution layer
instead of max pooling, which also involves the pooling layer
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Fig. 8. The output images of each block of first and second layer of 2L-OPCNN.

Fig. 9. Comparing the inference time of the optical and electrical implemen-
tations of the first two layers of AlexNet in terms of input mage size.

Fig. 10. The side view of a 4f system.

through the training process, compared to the non-trainable
max pooling layer, and II) implementing two successive optical
layers by applying optical summation. Concatenation of optical
layers weakens the negative impact of square nonlinearity on the
classification accuracy. In all, utilizing optical summation along
with all other optical blocks results in an all-optical design which

is a general optical implementation and can be used in any CNN
architecture.

IV. SPEED COMPARISON

One of the most fascinating capabilities of optical computing
is its high speedup, against the electrical implementation. For
a detailed speed comparison, the latency of 2L-OPCNN (wave-
optics) can be estimated as follow:

2L− Latency = Tsource + T4f_conv + TSA + T4f_pool︸ ︷︷ ︸
Toperation1

+T4f_conv + TSA + T4f_pool︸ ︷︷ ︸
Toperation2

+Tcamera + Ttransfer_data

(15)
where, 2L-Latency represents latency of the two optical layers.
Tsource represents modulation delay of the input images; and
so, considering SLMs with 1 kHz switching frequency [7],
Tsource equals 1ms. T4f˙conv and T4f˙pool represent the optical
propagation delays through the convolution and pooling layers.
Considering 4f optical correlators for the aforementioned two
layers, T4f˙conv and T4f˙pool approximately equal 10 ps [7], [19],
which is almost negligible. TSA, as the delay of SA nonlinearity
unit, equals 25 ps [19], which is also negligible. Tcamera repre-
sents the latency of photodetectors to capture and convert output
images to the electrical data. Utilizing high-speed commercial
cameras [42], at the speed of 2500 frames per second, the latency
of the camera can be estimated as 0.4 ms. Finally, Ttransfer˙data

is the delay of the communication interface to transmit camera’s
output to a computer. By considering USB 3.1 Gen2 with a frame
rate of 10 Gbit/s and assuming 100 kB image, Ttransfer˙data

equals 0.08 ms.
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TABLE V
COMPARING FORWARD COMPUTATION TIME (MS) OF CONVOLUTIONAL LAYERS

OF ALEXNET, 2L-OPCNN AND FIVE OPTICAL LAYERS FOR AN INPUT IMAGE

WITH SIZE OF 227×227

By considering the information elaborated upon above, it is
worth mentioning that because of parallel optical processing,
both Toperation1 and Toperation2 nearly equal 45 ps. By con-
sidering Tsource, Tcamera, and Ttransfer˙data, the 2L-Latency is
estimated as 1.48 ms. Summarizing above discussion, consider-
ing CPU processor frequency of 3.8 GHz (Intel Core i7 8 core,
Skylake-X microarchitecture), we calculated the computation
delays of each convolutional layer for AlexNet and 2L-OPCNN
assuming a grayscale input image with 227×227 pixels, as
reported in Table V, whose details are provided in Section II
of the supplementary material. It is worth mentioning that for
instructions with various clock latencies [43], we considered the
minimum number of clock to achieve the best execution time for
the electrical design. In this manner, the achievable speedup by
the optical network, compared to the electrical counterpart, can
be higher in practice As an advantage of the optical processing,
Table V concludes that the optical implementation of the first and
the second convolutional layer results in speedup of 1.85 against
AlexNet, by utilizing optical summation of channels’ output for
each convolutional kernel in the second layer structure, and so,
concatenating two successive optical layers in 2L-OPCNN. On
the other hand, as shown in Fig. 9, although the execution time
of the electrical network increases by increasing the input image
size, the processing time of the optical implementation does not
depend on the input image size up to 3840 × 2160 pixels, which
is the size of 4K UHD SLMs [44].

It is worth mentioning that although, as a case study, we
investigated 2L-OPCNN with two successive optical layers, we
can implement all five successive layers of AlexNet in the optical
domain, considering optical units proposed in this paper. In
this manner, we can achieve negligible latency of 1.48 ms, and
speedup of 194.15 against the electrical AlexNet. However, it
should be noted that optical implementation of five successive
layers may face some challenges, like area consumption and
alignment noises, which limit its feasibility as discussed in the
next section.

It should be noted that in this work, the optical design is
considered for the test procedure, while all training procedures
are implemented electrically. To emphasize the importance of
optical implementation of the forward inference in CNNs, opti-
cal processing of the large biological data sequences is explored
as follows. As discussed in [45], classification of virus sequences
(e.g., Coronaviruses, Dengue, HIV, Hepatitis B and C, and
Influenza A), metagenomics data, and metabarcoding data can
be performed by CNNs taking advantages of an appropriate
image-based encoding method. It should be noted that single
training procedure is carried out for each biological dataset
while many test procedures are required to classify the input

TABLE VI
AREA CONSUMPTION OF OPTICAL IMPLEMENTATION OF EACH

CONVOLUTIONAL LAYERS OF ALEXNET

sequences. In this manner, optical implementation of the forward
inference of the classifying CNNs would be greatly beneficial for
biological datasets. For example, according to the influenza virus
resource [46], 591280 sequences are collected till now which
should be classified by a pretrained CNN. Moreover, classifi-
cation of any new sequence, as NCBI database is continuously
updated, do not require network retraining, while a pretrained
CNN for the corresponding database can accomplish the clas-
sification task. Considering the proposed optical architecture, it
is worth mentioning that the biological datasets can be encoded
by the large images utilizing UHD SLMs of size 4K [44]. In
this manner, for example, for classifying an input image with
size of 2160×2160 pixels, the inference time of the first two
layers of electrical AlexNet would be 13100 ms, while thanks
to the optical implementation, the inference time of the first two
layers of 2L-OPCNN is as small as 1.48 ms.

V. SCALABILITY ANALYSIS

In term of experimental feasibility, implementing several
optical layers is technically possible, but two physical concerns
should be considered: I) the area consumption, and II) the
alignment noises.

Area consumption depends on the number of kernels and the
number of channels in each layer, since each kernel within a
convolutional layer is optically implemented by a 4f system.
Based on the total number of 4f systems and its cross sectional
area, we can estimate the total area assuming all 4f systems
in each layer are located adjacent to one another. Therefore, the
total area of each convolutional layer can be estimated as follow:

Total area required= (number of kernels)∗(number of

channels) ∗ (area of a single 4f system) (16)

To numerically calculate the total area, it is worth noting that
we assumed the diameter of the lenses as 0.57 mm. Fig. 10 shows
the side view of a 4f system whose dimension, as shown in green,
is 0.57 mm. In this manner, each 4f system occupies an area of
(0.57 mm)2, and so, the total area can be estimated based on the
number of kernels and the number of channels of each layer,
according to (16). Table VI reports the area consumption of an
optical layer implementing the convolution operations within
each layer of AlexNet. Correspondingly, Fig. 11 shows the area
of each layer as the percentage of total area.

As shown in Fig. 11, area consumption by the first and the
second layer is considerably less than those of the third, fourth,
and fifth layers. It should be noted that the layers with the
smaller number of masks are easier to implement, while arrays of
metasurface lenses may be costly to fabricate for the layers with
large number of kernels, although not practically impossible.
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Fig. 11. Area percentage of each convolutional layer of total area.

To address the second physical concern, i.e., the alignment
noises, we would like to emphasize that this issue is still a hot
topic, while few researches [19], [47] have discussed it recently.
Authors in [20] proposed an optronic CNN, however, due to
the misalignment error in the optical setup, they enhanced the
optronic network, as proposed in [47], and replaced the strided
convolution layer by a spectral pooling layer. Also, they replaced
the fully connected layer by a global average pooling (GAP) op-
eration to increase the system’s robustness to position variation
of the input images. As another solution to this problem, we can
improve the translation invariance property of the optical CNN,
as briefly discussed in our previous work [19]. Currently, we
are deeply exploring the idea that usage of a convolution-based
pooling layer with appropriate trainable masks can considerably
improve the translation invariance property of optical CNN, and
so, the misalignment problem would be resolved. The detailed
discussion of the corresponding simulation results would be
published in near future. Finally, it is crystal clear that fabricating
the filter masks and lenses in a monolithic manner (e.g., by
semiconductor fab where the gaps between lenses and the lateral
positioning is extremely precise) can considerably reduce the
alignment noises.

VI. POWER ANALYSIS

As discussed in [19], the energy consumption for performing
the optical convolution, nonlinearity, and pooling operations is
negligible. Therefore, the main source of energy-consumption is
the signal transduction which can be computed as follows [19],
assuming ∼1 μW power of capturing each pixel at the detector
side:

Poptical =
n2 × nkernel

η × tp
μW, (17)

where, n2 is the total number of pixels per 4f correlator, p defines
the number of optical elements through the path, nkernel is the
number of different kernels utilized in the convolutional layer,
t is a fraction of incident power each optical element transmits,
and finally, η is the source efficiency.

The total energy consumption of the electrical implementation
is estimated as [19]:

Pelectronic = β × n2 × k2 × nkernel × Pswitching, (18)

where the constant coefficient β is determined by the executed
architecture, k2 is the kernels’ size and Pswitching is the specific
amount of energy consumed by each operation.

It should be noted that the energy consumption of both optical
and electrical implementations scale, in a similar manner, with
the number of pixels and the number of kernels. However, while
the power consumption of the electronics parts depends on the
kernel size, the power consumption of the optical implementa-
tion is independent form the kernel size. In view of these infor-
mation elaborated upon, it is obvious that for the large kernel
size, an optical implementation of the convolutional layers can
significantly reduce the power consumption, compared to the
electrical one.

VII. CONCLUSION

Recently, optical design has been proposed to improve per-
formance of the deep neural networks. Although all-optical
implementation of the CNNs has achieved many attentions, the
recently proposed optical architectures for CNNs cannot fully
utilize the tremendous capabilities of optical processing, due to
the required electro-optical conversions in-between successive
layers. To implement an all-optical multi-layer CNN, it is essen-
tial to optically implement all required operations, namely con-
volution, summation of channels’ output for each convolutional
kernel feeding the nonlinear unit, nonlinear activation function,
and finally, pooling operation. In this paper, we explored a
fully-optical design for implementing successive convolutional
layers in an optical CNN. As a case study, we considered a CNN
with two successive optical layers, named as 2L-OPCNN. The
proposed architecture achieved 87.40%, 74.15%, and 99.34%
accuracies for classifying images of Kaggle Cats and Dogs
challenge, CIFAR-10, and MNIST datasets, respectively, which
for Kaggle Cats and Dogs and MNIST datasets are almost
the same classification accuracies provided by the electrical
counterpart. Finally, it is worth noting that the 2L-OPCNN
improved accuracies for various datasets, compared to the CNN
utilizing a single optical layer. Also, a significant speedup were
achieved by 2L-OPCNN against it electrical counterpart. There
are still some issues with the proposed architecture which are
considered as the future works. Although utilizing optical com-
ponents provide considerable speedup in comparison with the
electrical counterparts, they are more expensive and suffer from
alignment noises. In this manner, an experimental feasibility
study should consider the area consumption and address the
translation invariance property of the ONNs to mitigate the
alignment noises, as considered in our future works.
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