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Abstract—Optical metasurfaces, i.e., thin planar structures with
subwavelength metal or dielectric unit cells, have attracted great
interest due to their intriguing capabilities of shaping light in both
linear and nonlinear regimes. However, their saturable absorption
properties and corresponding applications have so far been rarely
exploited. Here we report on passively mode-locked ytterbium-
doped fiber lasers utilizing saturable metasurfaces made of period-
ically arranged gold nanorods. Three 400-nm-period metasurfaces
with gold nanorods of different lengths (from 210 to 240 nm)
and plasmonic resonances (from 968 to 1044 nm) are fabricated
and found to exhibit nonlinear absorption with decent modula-
tion depths, facilitating the formation of mode-locking states at
1060 nm. The corresponding lasers generate typically mode-locked
pulses with the duration of ∼ 62.3 ps, repetition rate of 10.33
MHz, and signal-to-noise ratio of∼74 dB. Our experimental results
demonstrate that the gold nanorod-based metasurfaces can be
used as relatively broadband mode-lockers in the 1-µm-wavelength
range.

Index Terms—Metamaterials, mode-locked lasers.

I. INTRODUCTION

MODE-LOCKED fiber lasers are widely used in optical
communication [1], material processing [2], as well as

medicine and fundamental research [3], [4] due to their robust-
ness and compactness [5], [6]. There are active and passive
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mode-locking methods according to the associated mechanisms.
Active mode-locking techniques mainly employ electro-optic
[7], and acousto-optic modulators [8], etc. Generally, actively
mode-locked lasers suffer from bulky sizes, high costs, and weak
peak power due to the presence of modulators in the cavity [9].
Compared to active counterparts, passively mode-locked lasers
require simpler configurations with lower costs. A nonlinear
optical component - saturable absorber (SA) [10], plays a key
role in achieving passive mode-locking states. Owing to their
saturable absorption properties [i.e., absorption decrease with
upgrading incident optical power] [11], SAs can transform the
continuous-wave (CW) lasing into a train of ultrashort optical
pulses under certain conditions. At the same time, semicon-
ductor saturable absorber mirrors (SESAMs) [12] that are cur-
rently commercial mode-lockers suffer from narrow operation
wavelength ranges and sophisticated manufacturing processes
[13]. Many novel materials have been exploited as SAs, in-
cluding carbon-based materials including carbon nanotubes [6]
and graphene [13], topological insulators (TIs) [14], transition
metal dichalcogenides (TMDs) [15], black phosphorus (BP)
[16], antimonene [17], bismuthene [18], and MXene [19], etc.
Metallic nanostructures are promising candidates due to their
relatively large third-order nonlinearities [20], wideband absorp-
tion (associated with plasmonic resonances), and fast response
time [21]. Gold nanorods (GNRs) as SAs for mode-locked
lasers or Q-switched lasers have experimentally been demon-
strated [22]–[26]. However, the mainstream synthesis methods
like seed-mediated growth method [27]–[29], result in solution
samples containing dissimilar GNRs with dispersed dimensions
(and therefore resonance wavelengths) and random directions,
a circumstance that hinders accurate performance control.

Optical metasurfaces, two-dimensional thin planar structures
composed of subwavelength metal or dielectric units, have
ignited our imagination to realize a new generation of planar
optical elements with unique functions for numerous potential
applications [30]. Metasurfaces enable the control over reflected
and transmitted optical fields by manipulating their amplitudes,
phases, polarization states, and so on [31]. Due to their ultrathin
geometry, metasurfaces are easy to integrate into other devices
[32]. There have been a series of practical applications such as
metalenses [33] and hologram [34], among others [31]. Meta-
surfaces can additionally be utilized to tailor nonlinear optical
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Fig. 1. (a) The unit cell of the metasurface samples, and (b) the SEM image
(top view) of the metasurface with L = 210 nm, W = 60 nm, H = 45 nm, Px =
Py = 400 nm.

processes [35], e.g., second-harmonic generation [36], boosted
up by the associated resonances and electromagnetic local-field
enhancement. Saturable absorption properties of semiconductor
metasurfaces [37] and intersubband polaritonic metasurfaces
[38] have been studied very recently. Furthermore, resonant
saturable plasmonic metasurfaces have also been explored for
achieving passive mode-locking in fiber lasers and generating
ultrashort optical pulses at the wavelength of 1.5 μm [39].
There has however been no report on passively mode-locked
lasers at other wavelength regions by using metasurface-based
SAs. Besides, the nonlinear absorption properties of resonant
metasurfaces in terms of operation bandwidth, robustness (with
respect to geometrical parameters realized), and polarization
sensitivity need further investigations.

In present work, we report on passively mode-locked
ytterbium-doped fiber laser (YDFL) operating in the 1-μm-
wavelength range that utilize, as SAs, resonant plasmonic meta-
surfaces comprising periodic GNRs. The near-field enhance-
ment generated by GNRs of different lengths (and featuring
therefore different resonance wavelengths) is numerically ana-
lyzed as a function of the wavelength, promising relatively broad
operation bandwidths when being used as saturable metasur-
faces. Three 400-nm-period metasurfaces with gold nanorods
of different lengths (varying over 30 nm) and plasmonic res-
onances (from 968 to 1044 nm) are fabricated and found to
exhibit nonlinear absorption with decent modulation depths,
facilitating the formation of mode-locking states at 1060 nm.
An assembled fiber laser operates typically at 1060.6 nm with
a 1.86-nm spectral bandwidth and emits ∼62.3 ps pulses with a
repetition rate of 10.33 MHz. A high signal-to-noise ratio (SNR)
of ∼74 dB at fundamental rate has been obtained for the RF
spectrum of the pulse train, indicating stable pulse operation. To
the best of our knowledge, this is the first demonstration of non-
linear metasurfaces for all-normal-dispersion ytterbium-doped
mode-locked fiber laser. Meanwhile, our work systematically
analyzes the relationship between SA properties and near-field
enhancement, further confirming the wide SA properties and
mode-locking ability of gold-nanorod metasurfaces.

II. CHARACTERIZATION OF GOLD METASURFACES SA

The metasurfaces consist of periodic GNR arrays with size
of 100 μm× 100 μm, prepared by standard electron-beam
lithography and lift-off process. A unit cell of the metasurface
samples is schematically shown in Fig. 1(a), where the bottom

Fig. 2. Linear transmission spectra of the metasurface samples with differently
sized GNRs arrays for incident linearly y-polarized light: (a) simulation and
(b) experimental results. Blue, red, and black curves represent the results for
metasurfaces with nanorod long-side length L1 = 210 nm, L2 = 230 nm, and
L3 = 240 nm, respectively.

layer is SiO2 substrate, and the top layer is a GNR. The nom-
inal geometric parameters of the GNR are as follows: length
L ranging from 210 nm to 240 nm, width W = 60 nm, and
thickness H = 45 nm. The periods of the metasurfaces along x-
and y-direction are Px = Py = 400 nm respectively. Fig. 1(b)
depicts the scanning-electron-microscope (SEM) image of the
periodic GNRs with length of 210 nm.

The saturable absorption is activated by the local-field en-
hancement associated with localized surface plasmon resonance
(LSPR) of the metasurfaces. Owing to LSPR, strong light-matter
interaction occurs at resonances, resulting in large absorption
and reflection of light and small transmission at the corre-
sponding resonance wavelength. By carefully designing relevant
geometric parameters of the unit cell as described above, it is
possible to tune the LSPR position of the plasmonic metasurface
to the wavelength region of ∼1 μm, which would be used
for enabling a mode-locked laser at this wavelength regime.
The linear transmission spectra of the three plasmonic meta-
surfaces with lengths L1 = 210 nm, L2 = 230 nm, L3 = 240
nm are shown in Fig. 2 with both simulation and experiment.
The simulation was performed using finite element method
while the experimental results were measured by a home-made
setup using a broadband supercontinuum as the light source.
In both simulation and experiment, light beam polarized along
y-direction [Fig. 1(a)] is normally incident onto the samples, and
longitudinal LSPR modes are excited. It can be visualized that
the valleys of the transmission spectra locate around 1μm region
for all three metasurface samples. The dip values of transmission
spectra of the three arrays (blue, red, and black curves in Fig. 2
respectively) in simulation [Fig. 2(a)] are 965 nm, 1020 nm, and
1050 nm, and corresponding experimental results [Fig. 2(b)]
are 968 nm, 992 nm, and 1044 nm, respectively. These results
confirm that larger aspect ratio of the plasmonic nanorods can
lead to LSPR at longer wavelength. Differences occur between
simulation and measurement mostly owing to fabrication im-
perfections and mismatch of the dielectric constant of materials.
Noteworthily, since the supercontinuum has a sharp peak at
∼1080 nm and its power is not very stable, small but fake
spikes around the same region appear for all three samples in
Fig. 2(b). We also need to mention that the resonance widths
of about 100 nm or 200 nm for all three samples are very
typical for plasmonic nanostructures that include considerable
damping losses. In order to understand the saturable absorption
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Fig. 3. Simulation results for the metasurface with L2 = 230 nm. (a) Electric
near-field distributions at light wavelength of 1060 nm at the plane of the half
height of the gold nanorod. The incident linear polarization is along the long axis
of the nanorods. (b) The relationship between the electric-field enhancement and
wavelength at different polarization angles.

properties versus the local-field enhancement, we performed
careful numerical calculations of the electrical field distribution
in the vicinity of a nanorod, whose corners were rounded with the
radius of 5 nm to avoid field singularities [40]. Fig. 3(a) depicts
electric-field distributions at the nanoscale at 1060 nm of the
array with L2 = 230 nm. Due to the LSPR, the electrical field is
strongly enhanced with the maximum near-field enhancement
|E/E0|max reaching ∼14.1. The one-order-of-magnitude larger
local electric field compared with incident counterpart is very
typical for plasmonic systems [41], which is also the origin for
enhanced second- and third-order nonlinear frequency conver-
sion processes in previous works [35]. Note that the calculated
field enhancement is influenced by the corner rounding used
and thus might deviate from what actually takes place in the
experiment, but qualitative relationships should still hold, pro-
viding us with the fundamental insight on saturable absorption
of resonant metasurfaces. Fig. 3(b) shows the relationship be-
tween the electric-field enhancement and wavelength at different
polarization angles. Apparently, when the polarization angle θ
is 0° (namely, incident light polarized along y-direction), the
array exhibits largest field enhancement at almost the resonant
wavelength, and the spectrum gives a linewidth around 400
nm. The field enhancement covering a large wavelength range
indicates a broadband saturable absorption that might occur
in experiment. With increasing the polarization angle θ, the
field enhancement becomes weaker, owing to the less efficient
excitation of the longitudinal LSPR mode. It is worth mentioning
that when the polarization angle is 90°, only transverse LSPR
mode is excited, with corresponding resonant wavelength at
about 680 nm, and thus the field enhancement around 1 μm
is very small, as expected.

Quantitatively, the corresponding field enhancement
|E/E0|max of different arrays on resonance and off resonance
is listed in detail respectively in Table I. It can be seen that
the local field is always greatest at the resonant wavelength,
but considerable field enhancement can still be achieved at
1035 nm or 1060 nm (the spectral region where saturable
absorption properties were measured or used for mode-locking
in experiment) compared with the far off-resonant position
(1450 nm) for all three metasurface samples. It may lead
to broadband nonlinear absorption performances of the

TABLE I
CALCULATED FIELD ENHANCEMENT OF THE METASURFACES WITH

DIFFERENTLY SIZED NANOROD ARRAYS AT RESONANT, MODE-LOCKING

OPERATION, AND FAR OFF-RESONANT WAVELENGTHS

Fig. 4. Nonlinear transmission measurement of three metasurface samples
with differently sized gold nanorods. Results for the arrays with length L1 =
210 nm, L2 = 230 nm, and L3 = 240 nm are given in (a)–(c), respectively.
Incident polarization is along y-axis. Results for the array with L2 = 230 nm
at different polarization directions of the incident light are given in (d)–(f).
The angles between polarization direction and y-direction are 0°, 30° and 90°,
respectively.

metasurfaces, and relax the demand of rigorous geometrical
control of the nanostructures during fabrication.

Nonlinear transmission measurement for gold plasmonic
metasurfaces was performed by launching a mode-locked laser
(center wavelength of 1035 nm, pulse width of 122 fs, and
repetition rate of 50.1 MHz) onto the samples. As depicted
in Fig. 4(a)–(c), all three gold plasmonic metasurfaces (i.e.,
with different long-side length L) exhibit saturable absorption
behaviors, where the blue circles denote the experimental results
and the red curves are S-shape fitting. Limited by the measure-
ment range of our power meters, we did not achieve complete
saturation of the absorption. Hence, we use S-profile to fit the
measurement results, as in [39]. Modulation depth is a critical
parameter to evaluate the performance of a saturable absorber,
which can be defined as the difference between maximum and
minimum transmittance in the nonlinear transmission measure-
ment. The modulation depths Md of the metasurfaces with L1 =
210 nm, L2 = 230 nm, and L3 = 240 nm are 2.97%, 1.70%, and
0.79%, respectively. The magnitude of the modulation depth as
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Fig. 5. Schematic diagram of the ytterbium-doped mode-locked fiber laser
based on gold metasurfaces as SAs.

well as the fluence where saturable absorption can be observed
locates at the similar level as other nonlinear nanomaterials such
as Bi2Se3 [42]. For a higher modulation depth, one can design a
novel plasmonic metasurface with stronger field enhancement,
or introduce other nonlinear materials (like graphene [43]) into
the pure gold nanostructures, to fabricate hybrid metasurfaces.
Furthermore, we measured the nonlinear transmittance of the
metasurface with L2 = 230 nm for incident light with different
linear polarization orientations, as shown in Fig. 4(d)–(f). Ob-
viously, modulation depths decrease with increasing the polar-
ization angle, as expected by the field-enhancement simulation
shown in Fig. 3(b). The LSPR near 1 μm is most efficiently
excited by incident light polarized along y-direction. Based on
the above results and analysis, it is well confirmed that the
polarization-dependent nonlinear absorption properties of the
metasurfaces are directly linked to their local-field enhancement,
and we could further tailor the saturation conditions either by
flexible structural design (i.e., shape, material, arrangement) or
by altering the properties of the excitation light (i.e., polarization
state) in the future.

III. EXPERIMENTAL SETUP AND RESULTS

Fig. 5 illustrates the experimental configuration of the
ytterbium-doped mode-locked fiber laser based on gold plas-
monic metasurface SA. A laser diode (LD) with emission
wavelength centered at 976 nm is used as the pump source
and delivered into the laser cavity via a 980/1060 nm wave-
length division multiplexer (WDM). A segment of 70-cm-long
ytterbium-doped fiber (YDF) with a group velocity dispersion
(GVD) of approximately ∼23.26 ps2/km at 1060 nm serves
as a gain medium. A polarization-insensitive isolator (PI-ISO),
placed behind the YDF, is utilized to ensure unidirectional
operation of the ring cavity. A 10/90 optical coupler (OC) is
introduced to extract 10% power of the generated pulses as
output for characterization. A band-pass filter centered at 1064
nm with a bandwidth of 8 nm, is employed for self-consistence in
the spectral regime after a round-trip propagation. Two collima-
tors (C1, C2) are used to realize efficient coupling between the
free-space and fiber optical paths with a coupling efficiency of
56%, which means that the power received at the collimator C2

is approximately 56% of the power emitted from the collimator
C1. Furthermore, the light is focused on the metasurfaces by lens
L1 resulting in a spot within the metasurface region, and restored

Fig. 6. The typical laser output properties: (a) the typical pulse train,
(b) the optical spectrum, (c) the corresponding RF spectrum at 10.33 MHz (Inset:
RF spectrum measured over a 0-300 MHz span), and (d) the corresponding
autocorrelation trace. The metasurface with L2 = 230 nm was employed.

to a parallel beam by lens L2. The length of the free-space path
is about 0.6 m. The use of a polarization controller (PC) is for
adjusting intracavity polarization states and thus enabling us to
finely tune the mode-locking operation of the laser. The optical
fiber path is connected by single-mode fiber (SMF) of 18.1 m
long with a GVD of approximately ∼21.65 ps2/km at 1060 nm.
Therefore, the overall optical fiber section is about 18.8 m long,
and the corresponding dispersion is approximately 0.423 ps2.
The output is monitored by a digital oscilloscope, an optical
spectrum analyzer, an autocorrelator and a radio-frequency (RF)
spectrum analyzer coupled with a photodetector.

We first tested the mode-locking effects by using the meta-
surface with L2 = 230 nm. When the pump power exceeds the
threshold of 149 mW, stable pulse traces are observed after
a careful adjustment of PC. The characteristic laser output is
illustrated in Fig. 6, measured at a pump power of 300 mW.
In this case, the fluence focused on the metasurface are about
40 μJ/cm2, on the level where saturable absorption of the
metasurface occurs [see Fig. 4(b)]. Fig. 6(a) depicts the typical
pulse train in time domain. The temporal interval between two
adjacent pulses is about 97 ns, corresponding to a repetition rate
of ∼10.33 MHz, which coincides with the calculated value by
using the optical length of the total cavity as well. The output
optical spectrum in Fig. 6(b) centers at 1060.6 nm with a 3-dB
bandwidth of 1.86 nm. It manifests the feature of fiber lasers
in the all-normal dispersion regime [29]. Fig. 6(c) illustrates the
corresponding RF spectrum at the fundamental repetition rate of
10.33 MHz with a large SNR of ∼74 dB, which indicates good
stability of the lasing operation. The inset photograph of Fig. 6(c)
shows the RF spectrum over a span of 300 MHz that gives more
details of the stability. Fig. 6(d) displays a 3-dB temporal width
of∼87.8 ps of the autocorrelation trace corresponding to a pulse
width of 62.3 ps if a Gaussian pulse profile is assumed. The
calculated time-bandwidth product (TBP) is 30.91, indicating
a highly chirped essence of the mode-locked pulses. The large
chirp of the pulses is mainly caused by the normal dispersion of
the fiber laser, in addition to weak modulation depth of the SA.
Shorter pulse width could be achieved if intracavity dispersion
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Fig. 7. The output power as a function of the pump power. CW and mode-
locked regimes are marked with red and blue shaded areas, respectively. The
metasurface with L2 = 230 nm was employed.

Fig. 8. The typical mode-locking performances of the other two plasmonic
metasurfaces. The optical spectra for the arrays with length L1 = 210 nm
and L3 = 240 nm are given in (a) and (b), respectively. The corresponding
autocorrelation traces for L1 = 210 nm and L3 = 240 nm are given in (c) and
(d), respectively.

is carefully controlled, such as achieving net negative dispersion
or near-zero dispersion.

Fig. 7 reveals the change of output power as a function of the
pump power. CW lasing output are obtained for pump power
reaching the range between 80 and 148 mW, while for even
larger pump power, the laser operation enters a mode-locking
regime. The output power versus pump power in mode-locking
regime leads to a slope efficiency of about 1.47%, as shown by
the blue shaded area. Larger slope efficiency could be expected
if we eject more power from the OC output port, together with
better coupling control between free space and optical fiber by
elaborate collimation and focusing design.

In addition, the mode-locking performances of the other two
plasmonic metasurfaces with long-side length L1 = 210 nm
and L3 = 240 nm were also tested with the same laser cavity
configuration shown in Fig. 5. Stable mode-locking operation
was achieved as well, with Fig. 8 depicting typical spectral
and autocorrelation profiles of the mode-locking states. Due to
slightly different saturable absorption characteristics, the three
plasmonic metasurfaces enable robust mode-locking states with
distinguishable spectral and temporal features. The results imply
the broadband nature of the saturable absorption of the gold
metasurfaces owing to the LSPR resonances. Hence, there is

no rigorous requirement of finely controlling fabrication accu-
racy of gold metasurfaces. In contrast, the performances of the
commercial SAs like SESAMs usually suffer dramatically from
lattice mismatch during preparation. Besides, SESAM is also
difficult to design as broadband SA.

To unambiguously confirm that the mode-locking states arise
from the metasurfaces, we focused the beam directly on the
substrate instead of the metasurface area. No matter how we
adjusted the PC and/or changed the pump power, only CW
operation was achievable. But still, our metasurfaces might
introduce nonlinear polarization rotation (NPR) effect in op-
tical path due to their strong polarization-dependent losses, and
accordingly, it is difficult to attribute the mode-locking to pure
SA properties of the metasurfaces. Instead, we used a polarizer
to replace the metasurface in the optical path, to introduce even
stronger polarization-dependent loss to the cavity. In this case,
no mode-locked pulses were obtained in the experiment. In other
words, although we cannot completely exclude the influence of
NPR effects, the realization of mode-locking must have made
use of the SA properties of the metasurfaces. Most likely, the
mode-locking stems from a hybrid mechanism based on the SA
properties of the metasurfaces and the residual NPR effects.

IV. CONCLUSION

In summary, we have numerically and experimentally inves-
tigated linear and nonlinear optical properties of gold nanorod
metasurfaces particularly their saturable absorption. Due to
anisotropy, the gold nanorod arrays exhibit adjustable modu-
lation depths which are sensitive to the incident polarization
direction. By inserting the plasmonic metasurfaces as a SA in
a fiber laser cavity, we experimentally demonstrate a mode-
locked fiber laser at 1-μm regime. Mode locked states at ∼1
μm were realized by using three metasurfaces with different
LSPR wavelengths, owing to the broadband LSPR induced
saturable absorption behavior. Typically, the metasurface-based
fiber laser could achieve a stable pulsed lasing output with a
1060.6 nm central wavelength, ∼62.3 ps pulse width, ∼10.33
MHz repetition rate, along with a up to ∼74 dB SNR of the
RF spectrum. Our experimental demonstration verifies the fea-
sibility and robustness of using gold metasurfaces as SAs for
mode-locked fiber lasers at 1 μm region.

In the future, novel metasurfaces involving versatile mate-
rial compositions and resonance properties can be designed
so that saturable absorption properties and functionalities far
beyond conventional SAs could be envisioned. For example,
metasurfaces could provide manipulation over phase [44], am-
plitude [45], polarization state [46], and even angular momen-
tum [47] of light at the nanoscale. When in combination with
highly nonlinear materials such as epsilon-near-zero materials
and graphene [43], [48] etc, nonlinear metasurfaces could add
unprecedented degrees of freedom to the ultrafast optics and
photonics paradise. Our current work serves as an initial basis
and nonlinear metasurfaces might move toward more complex
spatial-temporal tailoring of light for more practical usage in the
areas of nonlinear optics, integrated optics, and neuromorphic
photonics.
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