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Continuous Depth Control of Phase-Only
Hologram With Depth Embedding Block

Won Jong Ryu , Jin Su Lee , and Yong Hyub Won

Abstract—Digital holography is a promising candidate for ad-
vanced display, although several obstacles remain, such as the
problem of heavy time consumption in the generation of phase-only
holograms. Recently, deep-learning-based methods have achieved
the real-time generation of holograms while maintaining high im-
age quality. However, the holograms created with deep neural net-
works can reproduce images only at a specific distance because their
target depth is fixed in the training process. This paper suggested
and demonstrated a deep neural network that can continuously
control the depth of the phase-only hologram. The network takes
a target depth and an input image and generates a phase-only
hologram. We added a depth embedding block that moves the
hologram latent vector depending on the target depth. Thus, we
can change the location of the image plane without retraining.
The numerical and optical experiments show that the network
understands the relationship between the depth and the appearance
of the phase-only hologram. As a result, phase-only holograms
generated with the proposed network can reconstruct images with
around 25-dB PSNR.

Index Terms—Holography, phase-only hologram, deep neural
network, depth embedding block, hologram latent space.

I. INTRODUCTION

D IGITAL holographic display is of great interest for next-
generation displays to implement natural 3D images. The

digital holographic display can reproduce realistic 3D objects at
the desired location by adjusting light’s amplitude and phase [1].
However, the current technologies are unsuitable for commer-
cialization because of several problems, such as strong noises
[2]–[6], heavy time consumption [7], [8], and a narrow field of
view [9], [10]. Furthermore, a spatial light modulator (SLM),
the main component in a digital holographic display, can only
control either amplitude or phase. When using a phase-only
SLM, the amplitude of each pixel is fixed to a uniform constant.
Therefore, a complex-amplitude hologram must be converted
into phase-only or amplitude-only hologram.
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Iterative phase retrieval algorithms are commonly used to con-
vert a complex-amplitude hologram into a phase-only hologram
[11]–[13]. However, because speed and accuracy are trade-offs,
it is not easy to generate high-quality holograms in real-time (30
frames per second). Moreover, the computation time increases
exponentially as the hologram resolution increases.

Recently, deep learning has been applied to hologram gen-
eration to overcome this problem. Deep learning approximates
a complex function with a simple but large number of calcula-
tions. Several neural networks have been designed to generate
holograms as follows. Horisaki et al. suggested a deep learning
model for generating a phase-only hologram [14]. The proposed
neural network is based on a U-net [15] with supervised learning.
Eybposh et al. proposed a training strategy of the self-supervised
method [16]. Aamir et al. proposed GAN-holo, constructed
of a generator and a discriminator [17]. Peng et al. proposed
HoloNet, which is composed of two sub neural networks [18].
They are a network that infers a wavefront of the target plane
and a network that synthesizes a phase-only hologram from a
complex-amplitude hologram.

Because the methods introduced above have a limitation that
they target a specific single-depth, methods for targeting multi-
depths have been proposed as follows. Eybposh et al. devel-
oped DeepCGH, a deep learning-based 3D computer-generated
holography [19]. Lee et al. suggested a multi-depth hologram
generation network (MDHGN). This network takes five im-
ages as an input and outputs an amplitude-only hologram [20].
Horisaki et al. introduced the 3D-CGH method with a priori
knowledge of reproduced optical patterns based on deep learning
[21]. These networks still treat the target depth as a constant
parameter in the training process. In other words, images can be
reconstructed at specific locations, and users should retrain the
networks if they want to change the target depth.

Shi et al. proposed Tensor Holography synthesizing a pho-
torealistic 3D hologram from a single RGB-depth image [22].
Tensor Holography requires a depth estimation map as well as
an RGB image and outputs a complex-amplitude hologram. The
complex-amplitude hologram is converted into the phase-only
hologram, and the captured scene with quasi-continuous depth
is well reconstructed with a high peak-to-noise ratio (PSNR). It
is possible to change the focal plane, but it is hard to change the
location of the object in the image by adjusting the depth map.
We suggest a neural network where we can position each object
directly.

This paper suggested and demonstrated a neural network that
generates a phase-only hologram corresponding to the input
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Fig. 1. (a) The proposed network generates a phase-only hologram corre-
sponding to the target depth. (b) Reconstructed images by varying the observing
depth. The phase-only holograms are generated from a single neural network
without retraining.

target depth. Continuous depth phase-only hologram generation
network (CDHGN) takes a target depth as an input and outputs a
phase-only hologram according to the depth. The depth enters a
depth embedding block that converts a target depth into a depth
embedding vector, as shown in Fig. 1(a). The depth embedding
vector is added to the hologram latent vector of the target image.

We have brought a simple experimental result to explain the
concept of the proposed network, as shown in Fig. 1(b). In
this case, we trained the network with the depth ranging from
20 cm to 30 cm, and phase-only holograms were generated
from the network without retraining. The phase-only holograms
reconstructed images by varying the observing depths. They
reconstructed high-quality images if the observing depth is the
same as the target depth. For example, the phase-only hologram
generated with the target depth of 20 cm well reconstructed the
image only at the observing depth of 20 cm.

We compared three types of network structure as depicted
in Fig. 2. We chose a network structure that generates high-
quality phase-only holograms with a relatively small number of

Fig. 2. Different methods to inject the depth information into the network.
(a) A target depth is added to the hologram latent vector in net A while (b) Net
B and (c) Net C exploit a depth embedding block.

parameters in a short time. We also evaluated the generalization
ability for depth and verified the network works fine for depths
not used in training. In other words, the network understands
the relationship between a depth and a phase-only hologram.
However, this work still has a limitation in that the network is
only working for a single plane image. Extending a phase-only
hologram to a 3D holographic display is still challenging.

The proposed network, including the architecture, the dataset,
and training details, will be described in Section II. The result of
numerical and optical experiments will be reported in Section III.
In detail, we first figured out how to inject depth information
into the network. Next, we tested the generalization ability for
depth. We experimentally determined the ratios of error metrics
and compared the quality of the reconstructed image with other
methods. Finally, a conclusion will follow in the final section.

II. OVERVIEW OF CDHGN

A. Network Architecture

The proposed network consists of an encoder, a decoder, and
a depth embedding block. The structures of the encoder and the
decoder refer to HoloNet [18], a state-of-the-art deep learning
model generating a phase-only hologram. The HoloNet consists
of two subnetworks. They both have the same structure but
different roles. The first subnetwork creates an initial phase
corresponding to a target image. Then the phase is combined
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Fig. 3. Detail structures of net B. An output shape of each layer or block is
written in the box.

with the target image and numerically calculated as if the light
propagates to the SLM plane. The complex-amplitude hologram
in the SLM plane enters the second subnetwork. The second
subnetwork outputs a final phase which can be reconstructed to
the target image.

As shown in Fig. 2, we modified the network architecture to
reflect the depth information. We experimented with how the
performance varies depending on adding the target depth to the
network. As shown in Fig. 2(a), target depth z is added to the
hologram latent vector without any processing. Otherwise, as
shown in Fig. 2(b), the target depth passes through the depth
embedding block. The depth embedding block takes the target
depth and returns a depth embedding vector. As shown in Fig. 3,
the block is a sequence of a fully connected layer and a rectified
linear unit. Each fully connected layer has 256 nodes, and the
size of the depth embedding vector is repeated to 4× 4× 256
before it is added to the hologram latent vector whose size is
4× 4× 256. In the case of net C, as shown in Fig. 2(c), the
hologram latent vector enters the depth embedding block after
the target depth is added to the hologram latent vector. Fully
connected layers in the depth embedding block of net C have
4096 nodes. Note that this network architecture change is applied
to the two subnetworks.

As mentioned above, the target depth is added to the hologram
latent vector without any preprocessing in net A. Therefore, the
scale of the parameters in the hologram latent vector may not
match the target depth. Moreover, the depth embedding block,
in net B and net C, can map the target depth to the probability
distribution, which has an advantage in the training.

Fig. 4. The training process of the proposed neural network repeats this
sequence by changing target images and target depths.

Fig. 3 shows the detailed structure of net B. An output shape
of each layer or block is written in the box. Conv Block consists
of a convolutional layer, a rectified linear unit, and batch nor-
malization. Deconv Blocks consist of a transposed convolutional
network, a rectified linear unit, and batch normalization. Deconv
Blocks take input from two ways by concatenating them along
the channel axis. FC Block consists of a fully connected layer
and a rectified linear unit. In net B, the output shape of the FC
block is 256, and it is reshaped and repeated to 4× 4× 256. In
net C, the depth embedding block is adopted after adding the
target to the hologram latent vector. The number of nodes is
4096 and it is reshaped to 4× 4× 256 to match the size.

B. Training and Test

Neural networks require a training process to understand
the input and output relationship. When the training is just
beginning, the output of the network is far from a phase-only
hologram. As the training progresses, the network learns how to
extract features from the input and how to make the phase-only
hologram from the features. Although the training takes a long
time, the trained network can generate a phase-only hologram
in a short time.

The process of training is presented in Fig. 4. First, a target im-
age and a target depth enter the neural network. The target depth
is randomly sampled in the predefined depth range. The neural
network outputs a phase-only hologram, and the hologram is
reconstructed to the image as if the light propagates to the image
plane. After that, the error between the reconstructed image and
the target image is computed with some error metrics such as a
mean square error (MSE) and a perceptual loss function. Finally,
the network is modified by analyzing the error. This sequence is
repeated by changing the target images.

The test process is similar to the training process but does
not require updates to the network. The reconstruction process
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is performed by either numerical or optical propagation. In the
optical experiment, no further calculations are required at this
stage during application to the holographic display system.

At the reconstruction step, we use the Fresnel diffraction
model to propagate from an origin plane to a destination plane:

U2 = F−1 {F {U1 (x, y)}H (fx, fy)} (1)

Here, U1 and U2 are an origin plane and a destination plane,
respectively; F and F−1 are the Fourier transform and the
inverse Fourier transform, respectively; and H is the transfer
function given as:

H (fx, fy) = exp
(−jπλz

(
f2
x + f2

y

))
(2)

where k is the wavenumber, z is the depth, λ is the wavelength of
light, and fX , fY are the coordinates of the frequency domain.

C. Training Details

The training dataset is a significant element in determining the
generalization ability and the performance of the network. The
dataset must be large enough and must include various images
for the network to be applied to all images in general. Overfitting
occurs if the dataset is small or skewed. The network then loses
its generality and cannot process unseen images. In previous
research, Lee et al. used images of randomly combined dots and
circles [20], Eybposh et al. used datasets of 2D images with a
random number of disks, squares, or lines [19]. Peng et al. used
the DIV2K dataset [18], a widely-used open dataset consisting
of high-resolution images [23]. We exploited the DiV2K dataset
containing 1000 images. Among these, 800 images are used for
training, and the remaining 200 images are used for testing.

The depth embedding block consists of fully connected layers
and rectified linear units. The encoder and the decoder refer to
HoloNet [18], but we set strides to 4, initially 2. We modified the
loss ratio to 0.25, which is experimentally decided. Moreover,
we did not use hardware optimization. We used the NVIDIA
GeForece RTX Titan for training the network used in Figs. 6 and
8. NVIDIA GeForece RTX 3090 was used to train the networks
used in other figures. While the maximum step is set to 300
steps, and one step is recorded for every 100 images processed.
The training was ended within 6 hours.

III. EXPERIMENTAL RESULTS

We verified the performance of the CDHGN with several
tests. We evaluated the quality of reconstructed images with
the peak signal-to-noise ratio (PSNR). We used 200 test data of
the DiV2K dataset to evaluate the network performance, which
is never used in the training process. Because we explained the
image quality and the functionality of the network in Fig. 1(b),
we show the change of the average PSNR according to the
training steps or the target depth.

A. Network Architecture Test

The architecture of the network determines the complexity
and capacity of the network. We exploited the HoloNet and
modified it to inject the target depth into the network. As

Fig. 5. The PSNR and MSE of the reconstructed images during the training.
Net B and net C have a depth embedding block and higher performance than
net A.

described above, three types of injecting methods are compared.
In Fig. 2(a), a target depth is directly added to the hologram latent
vector. In the case of net B and net C, the depth embedding block
is used to preprocess the depth information. Net B takes the depth
embedding vector, while net C takes the target depth and passes
the hologram latent vector to the depth embedding block.

Fig. 5 shows the effect of the depth embedding block. The
PSNR of the net A is much lower than the others. Net B and
net C, the networks including the depth embedding block, show
a similar result. However, net B is more efficient in terms of
parameters. There are 256 nodes in the fully connected layer
of net B, while there are 4096 nodes in net C. Therefore, net
C uses more parameters than net B. Without considering the
parameters of the encoder and the decoder, the depth embedding
block of net B has 131328 parameters while net C has 68 billion
parameters.

Furthermore, we test the computation time. It is a more direct
way to compare the performance of net B and net C rather than
the parameters needed for each structure. We measured the time
to process 200 images using the GPU. Net A takes 31 ms per
image, net B takes 35 ms per image, and net C takes 42 ms
per image. On the other hand, a traditional non-network-based
method such as Gerchberg–Saxton (GS) algorithm [11] and
double phase-amplitude coding (DPAC) [24] takes 232 ms and
1315 ms, respectively. Net A, without the depth embedding
block, satisfies the real-time condition, and the result of net B
is also close to it. However, net C takes a relatively longer time
than net A and net B. As a result, net B can reduce processing
time and memory usage while maintaining high image quality.
Note that the latter results are based on net B.

B. Depth Range Test

The generalization ability refers to how accurately the net-
work can process unseen data, and we also evaluated the gen-
eralization ability for depth. We tried to input depths out of the
depth range used for the training. Suppose a network trained in
the range of 20 cm to 25 cm can make a high-quality phase-only
hologram even when inputting 40 cm. It can be said that the
network understands the relationship between a depth and a
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Fig. 6. The PSNR and the SSIM of the reconstructed images according to the
target depth. The last row shows the phase-only hologram when the training
depth range is 20 cm to 40 cm.

phase-only hologram. It means the deep neural network has the
ability to generate phase-only holograms with continuous depth
control.

The result of the depth range test is shown in Fig. 6. We
evaluate the reconstructed image with the peak-to-noise ratio
and the structural similarity (SSIM). The reconstructed images
have PSNR over 20 dB even at depths outside the depth range
used for training. The brightness of the image may have changed
while saving the image to fit the 0–255 range. The last row
shows the phase-only hologram is varying according to the target
depth. Generating phase-only holograms for unlearned depths
means the neural network works with depth as an understandable
parameter.

C. Error Metric Test

Error metrics measure the difference between the target and
the reconstructed images. The PSNR is a well-known error
metric for estimating image quality. It is directly related to the
mean square error (MSE), and the MSE is a convenient method
to calculate errors. However, they have a limitation that their
ability to capture texture detail is relatively low because they are

Fig. 7. The PSNR of the reconstructed images according to the ratio of the
error metrics.

Fig. 8. Images in the first row are reconstructed from the phase-only hologram
generated from three networks. Images in the second row are the enlarged image
of them. They were trained with different error ratios. (a) Alpha is 0, (b) Alpha
is 0.25, (c) Alpha is 1.

defined based on a pixel-level image difference. Therefore, we
use both mean square error and VGG-loss [25] to evaluate the
reconstructed images. The MSE is used to compare pixel values,
and the VGG-loss estimates feature-level errors. The ratio of the
MSE and VGG-loss was experimentally decided as follows.

total loss = MSE_loss+ α× V GG_loss (3)

As shown in Fig. 7, the PSNR is the highest when alpha is 0.25.
Even if alpha is changed, PSNR is similar, but the image quality
differs. Fig. 8. shows the results of the networks trained with
different alpha. The image quality is significantly low when only
the MSE is used. This is why the perceptual loss, the VGG-loss,
is necessary. Also, the pixel level loss, the MSE-loss, could harm
the generalization ability of the network.

D. Comparing With Fixed Target Depth Network

We tested whether there is a disadvantage in adding the depth
embedding block. Therefore, we removed the depth embedding
block from our model and compared it with the original model.
The network with a fixed distance was trained separately for
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Fig. 9. Comparing the proposed network with a hologram generation network
without the depth embedding block.

TABLE I
AVERAGE VALUES OF THE PSNR AND THE SSIM OF TEST SET

20 cm, 25 cm, and 30 cm as their fixed target depths. After
generating a phase-only hologram, the image reconstructed at a
fixed distance is shown in Fig. 9.

The proposed method can control the location of the image
plane by inputting the target depth with the image. Thus, mem-
ory and training time can be saved, and the distance can be
continuously adjusted without retraining. However, as shown in
Fig. 9 and Table I, the PSNR and SSIM are lower than when the
target distance is fixed.

Without regard to the presence or absence of the depth em-
bedding block, the performance tends to decrease slightly as the
distance increases. It seems that the diffraction pattern becomes
slightly more complex as the distance increases.

E. Optical Experiment

Simple holographic display optics are set up on the optical ta-
ble to verify the proposed idea practically, as shown in Fig. 10(a).
A laser diode, which has a 520 nm wavelength, is combined with
an x10 beam expander. The phase-only SLM is put in front of a

Fig. 10. (a) Holographic display setup, (b) Target images, (c) generated phase-
only holograms, (d) Reconstructed images from the phase-only holograms, (e)
Captured hologram.

cube beam splitter. It has 3.6 μm pixel pitch and 4K resolution
and the number of phase levels of the spatial light modulator is
256. To figure out the strict performance of the proposed idea,
additional optical components such as 4F optics, spatial filter,
and eyepiece are not used in the experiment. Capturing device
is Nikon A5000 which has 20M pixels.

Before the optical experiment, we generated phase-only holo-
grams using the proposed network whit a target depth of 25 cm.
At this time, the network is trained with a depth range from
20 cm to 30 cm. Target images and numerically reconstructed
images are shown in Fig. 10(b) and (c). The images reconstructed
through the optical system are shown in Fig. 10(e). Although the
entire optical system was calibrated precisely, inevitable noises
such as speckles, dc noise, and aberrations were added into
the captured hologram. Nevertheless, captured holograms show
sufficiently similar to simulated ones.

IV. CONCLUSION

This paper proposed a method for the continuous depth con-
trol of a phase-only hologram. We control the depth of the
phase-only hologram by adding the depth embedding vector



RYU et al.: CONTINUOUS DEPTH CONTROL OF PHASE-ONLY HOLOGRAM 8821807

to the hologram latent vector. As a result, a single neural net-
work can generate phase-only holograms with continuous target
depth. We demonstrated that target images from phase-only
holograms are well reconstructed at the given target depth.
Moreover, numerical experiments show the effect of the depth
embedding bock and the generalization ability of this method.
As a result, we can reproduce an image at the desired location in
end-to-end processing. However, this work still has a limitation
in that the network is only working for a single plane. Our future
work is a one-shot generation of a phase hologram to reconstruct
multi-plane images.
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