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Audio Signal Extraction and Enhancement Based on
CNN From Laser Speckles
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Abstract—A micro vibration signal extraction method based
on deep neural network is proposed. Rough surface of vibrating
object modulates the illuminating laser wave front and generates
speckle pattern, which is recorded by a linear array CMOS and
preprocessed and input into a 16-layer convolution neural net-
work (CNN) trained with specially prepared data. The optical
experimental setup is analyzed to fulfil the temporal and spatial
Shannon sampling theorem. The output audio signals are evaluated
with standard algorithms and show enhanced segmental SNR and
intelligibility. The effects of different input audio types and quality
of raw audio signals are investigated, and the results show that
the neural network is robust to the input. The CNN structure is
optimized and the results show the performance decrease with the
reduction of convolution layers. The performances of three popular
deep neural networks are compared and the performance of CNN
is better.

Index Terms—Speckle, audio signal extraction and
enhancement, convolution neural network.

I. INTRODUCTION

WHEN a coherent laser beam is used to illuminate a rough
surface, the scattered light will generate a random light

field, which is known as the secondary speckle [1]. The features
of surface and its substrate are embodied in the speckle patterns,
which can be used in flood flow imaging [2], vibration detection
[3], material identification [4], and many others [5]. In 2009,
Z. Zalevsky extracted audio and heart beat signal through image
correlation algorithm from speckle pattern sequences recorded
by a high-speed camera [3]. Compared to the laser Doppler
vibration detection method [6], the speckle imaging method
has the advantages of long detection distance, simple system
setup, loose surface requirement of vibrating object. According
to the Nyquist-Shannon sampling theorem, the frame rate of the
camera should be at least twice the highest vibration frequency
of target, which challenges the imaging frame rate of the camera
used in some applications.
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To overcome the problem of frame rate, Veber et al. exploited
a commercially available photodiode to extract vibration signals
from photocurrent generated by the light flux of speckle [7].
A mask is put between the imaging lens and the detector to
enhance the sensitivity. Furthermore, Bianchi optimized the
beam size of the probing laser and the detector’s aperture to
suppress the distortion and enhance the SNR and intelligibility
of the recovered audio signal [8]. In order to improve the SNR
and decrease the data flow, Bianchi et al. exploited a linear-scan
CCD to record the speckle patterns [9]. Intensity correlation
method is used to extract the audio signal and the maximum
detection distance of 300 m is realized. To enhance the signal
processing speed, the gray value of recorded speckle pattern is
used to recover the audio signal. The calculation time is reduced
and the SNR of the reconstructed audio signal is increased [10].
Recently, optical flow algorithm is introduced to laser speckle
analysis and real-time audio detection is realized [11]. In our
previous work, the multi-channel signals of a linear CMOS array
are fused, and the SNR and intelligibility of the recovered audio
signals are enhanced [12].

To extract audio signals from optical speckle patterns, the
principle signal processing algorithms include cross-correlation,
flux variations, optical flow, channel fusion, complex pyramid
[13], and machine learning. Barcellona et al. compared the com-
monly used algorithms and concluded that the machine learning
method obtained the best performance [14]. However, detailed
investigation of machine learning method is not introduced in
that paper. To our knowledge, there is no detailed report of
machine learning method used to extract audio signal from
speckle patterns up to now. In contrast, machine learning method
is used in various fields and excellent performances are obtained
[15], [16]. Therefore, investigation of audio signal extraction
and enhancement using machine learning method in speckle
vibration detection field is necessary and interesting.

In this paper, a convolutional neural network (CNN) is spe-
cially trained to extract and enhance audio signal from speckle
patterns, which is generated by illuminating a 532 nm laser
beam on a vibrating rough surface. The speckle is collected
by a photograph lens and recorded by a linear CMOS array.
The CNN training sets are obtained by randomly mixed noisy
audio segments in our experiment with pure audio samples from
TIMIT speech dataset. The CNN structure is optimized for audio
signal extraction and enhancement. The recovered audio signals
are evaluated by standard audio signal evaluating algorithms,
including segmental SNR (SegSNR) [17], log likelihood ra-
tio (LLR) [18] and normalized subband envelope correlation
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Fig. 1. (a) Experimental setup. The inset shows a picture of typical recorded
data. The vertical axis of the inset represents time, and the horizontal axis shows
the gray values of the linear CMOS. (b) Schematic description of the system.

(NSEC) [19]. The results show that CNN can enhance the
SegSNR and intelligibility of the extracted audio signals.

In addition, speech enhancement based on recurrent neural
network (RNN) with gated recurrent unit (GRU) [20] and vari-
ance constrained autoencoder (VCAE) [21] are also used to
compare the performances of different deep neutral networks.
The rest of the paper is organized as follows. The experimental
setup and CNN structure used are introduced in Section 2. The
signal processing models, results and analysis are presented in
Section 3. Section 4 is a brief conclusion.

II. EXPERIMENTAL SETUP AND CNN STRUCTURES

The experimental setup is shown in Fig. 1(a). Beam from a 532
nm green laser (CNI laser MSL-III-532-50 mW) is collimated
and illuminated on the diaphragm of an ordinary table speaker,
which is droved by a laptop computer with different kinds of
audio signals in Chinese and English. The vibrating diaphragm
is used as the micro-vibration excitation source. The surface of
the diaphragm is rough enough to generate speckles, which is
collected via a photography imaging lens (Sigma Zoom Master
with focal length 35 mm∼70 mm) and recorded by a linear
array CMOS (Basler racer raL2048-48gm). Tilt of the vibrating
diaphragm generates a transverse shift of the speckle pattern,
which can be recorded by a defocused imaging lens and used to
recover the source vibrating signal.

According to the Nyquist-Shannon sampling theorem, the
experiment needs to satisfy the following two conditions.

Firstly, the frame rate of the camera should be at least twice
the highest vibration frequency of the signal. The audio signal
usually can be represented in the frequency range of 300-3400
Hz. Therefore, the sampling line rate is set to 8000 Hz in our ex-
periment. Secondly, the speckle size should be greater than two
pixels in length. Speckle can be divided into objective speckle
and subjective speckle. Objective speckle is the speckle formed
through free space transmission, and subjective speckle is the
speckle formed through the imaging system. The relationship
between objective speckle size (So ) and subjective speckle size
(Ss ) is approximately described as (1).

So

Ss
=

Z2

f
(1)

where Z2 is the distance between the objective speckle and the
imaging system (the object distance of the imaging system) and
f is the focal length of the imaging system. Schematic diagram
of the experimental system is shown in Fig. 1(b). The mean size
of objective speckle can be expressed as,

So = 1.22
λZ1

D
(2)

where λ is the wavelength of laser, Z1 is the distance from
the rough surface to the objective speckle and D represents the
diameter of illuminating laser spot. According to (1) and (2), Ss
may be expressed as follows:

Ss = 1.22λ
Z1f

Z2D
(3)

The appropriate subjective speckle size can be obtained by
controlling these parameters.

Fig. 2 shows the structures of the CNN network and the feature
loss network. The CNN used in this experiment is composed of
16 convolution layers [22]. The first layer and the last layer
represent the noisy input speech signal and the enhanced output
speech signal, respectively. Both layers are one-dimensional
vectors. The middle layers (2-15) are two-dimensional n × W
tensor, where W is the number of feature maps in each layer,
which is set to 64 in this network. The content of each layer is
calculated by 3× 1 convolution check on the data of the previous
layer, followed by an adaptive normalization and a pointwise
leaky rectified linear unit (LReLU) activation. The parameters
of adaptive normalization are determined by back propagation
method.

The loss function is based on a feature loss network, which is
consisted of a stack of 15 convolutional layers. Each feature layer
(i.e., layers 2 through 15) is computed from the previous layer
via a convolution with 3×1 learned kernel, followed by batch
normalization and a pointwise LReLU. Layer 1 corresponds to
the input signal with length N. Other layers are half the length
of the previous layer. The width of the first layer is 1. The
widths of the other layers (2-14) are 32×2[(L-2)/5], where L is
the layer number. The length of the 15th layer, which is also the
output layer and obtained through average-pooling, is 1. The
loss function is based on the difference between output of the
feature loss network and the output of the denoising network
being trained.
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Fig. 2. (a) The structures of the CNN network, (b) the structure of the feature
loss network.

Fig. 3. Flow chart of the signal processing.

III. SIGNAL PROCESS AND ANALYSIS

A. Signal Process

Signal processing flow chart is shown in Fig. 3. Speckle
pattern data recorded by a linear array CMOS are preprocessed
and used as raw audio signals, from which noise segments are se-
lected. Through randomly mixing these noise signals with pure
audio signals from TIMIT speech dataset, specialized training
set is prepared. This training set is used to train the adopted CNN.
Consequently, a trained network specialized to our application is
obtained. The raw audio files are input into the trained network
and the output enhanced signals are evaluated and analyzed.

The recorded speckle patterns should be transformed into
the input data format of the CNN. Firstly, the CMOS recorded
data is converted into a matrix, the gray values of each column
corresponding to a vibration signal. Then, the gray values of
each pixel in that column are squared and summed. The sum
represents the energy of the respective vibration signal. Ten
strongest signals are selected as seed signals. Finally, every
seed signal is processed to eliminate the DC component and
normalized to fulfil the 16k sample requirement of the CNN
used. These signals are written into a .wav file respectively
using the audiowrite function in MATLAB and are the raw audio
signals, which are used as input for the CNN.

In order to enhance the performance of the network, spe-
cialized training sets are prepared. As the play and record of
the audio signals are asynchronous, there are noise parts at
both ends of the raw audio signal. 100 non-repeating noise
segments are intercepted from the raw audio files using Adobe
Audition software. Significantly, this noise signal is specified
to our experimental environment. By randomly mixing these
100 noise signals with 6200 pure audio samples downloaded
from TIMIT speech dataset, 6200 groups of training data are
obtained. Consequently, the noise mixed audio signals and the
corresponding clean audio signals are aligned in time, which is
important for the training. Among the 6200 groups of training
data, 5000 groups are used for the training and 1200 groups
are used for testing. The network is trained on a server with a
GeForce RTX 3070 GPU and 10GB video memory and lasted
for 1000 epochs.

In the first experiment, a piece of 4 seconds length audio from
TIMIT dataset is used as input signal and the measuring distance
is about 5 m. The recorded speckle patterns are transformed into
raw file and used as input for the trained 16 layers CNN. The
results are shown in Fig. 4. The waveform of the original, the raw
input of CNN and the CNN enhanced audio signal are shown in
the left column from up to bottom. We can see that the noise and
distortion are both decreased in the CNN enhanced signal. The
respective spectrograms are shown in the right column of Fig. 4.
We can see that the amplitudes are increased in the enhanced
audio signals and the increase in the high frequency component
is more evident.

B. Effect of Audio Types and Quality

The enhanced audio signals are evaluated by SegSNR, LLR
and NSEC algorithms and the results are shown in Table I.
From Table I we can see that the SegSNR score is enhanced
by 4.9 dB (from -14.48 to -9.58) for the single English audio
signal. Ideally, the maximum LLR and NSEC are 0 and 1,
respectively. LLR evaluates the likelihood between two signals.
NSEC evaluates the intelligence of the audio signal. For the
single English signal, the LLR and NSEC are enhanced by
8.9% and 13.8%, respectively. From Table I we can see that
the CNN can also enhance the Chinese speech and song audio
signals. For Chinese audio signal, the SegSNR, LLR and NSEC
are enhanced by 53.8%, 12.1% and 22.4% respectively. For
the song, the SegSNR and LLR are enhanced by 71.3% and
10.8% respectively. The NSEC evaluation results for the song
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Fig. 4. Waveforms and spectrograms of the input and recovered audio signals.
The left column shows the waveforms of original input, raw signal and CNN
enhanced audio signal from up to down. Right column is their respective
spectrograms.

TABLE I
TYPICAL EVALUATION RESULTS FOR DIFFERENT AUDIO SOURCE TYPES

are bad. The authors think that the main reason is that the NSEC
algorithm is not suitable to evaluate song and may consider the
music background as noise.

Either in experiments or in future application, laser vibration
measurement must face the problem of acquisition quality. The
power fluctuations of the laser, the adjustment of the collecting
system, can both effect the quality of the recorded signal. The
effect of raw audio quality on the performance of CNN are shown
in Table II. In this paper, we classify the audio quality according
to their SegSNR evaluation results into low (smaller than -18dB),
middle (-18dB ∼ -15dB) and high (larger than -15dB), respec-
tively. From Table II we can see that the SegSNR are increased
by 19.0%, 34.8% and 33.8% for low-, middle- and high-quality
audio signals, respectively. Accordingly, the LLR are increased
by 2.4%, 8.3% and 10.3%, respectively. The NSEC are enhanced

TABLE II
EFFECT OF QUALITY OF RAW AUDIO SIGNAL

TABLE III
TYPICAL EVALUATION RESULTS FOR DIFFERENT LAYERS

TABLE IV
TYPICAL EVALUATION RESULTS FOR DIFFERENT NETWORKS

by 23.3%, 22.7% and 13.8%, respectively. The results show that
the enhancement of SegSNR and LLR for low-quality audio
signal is not as good as that for middle- and high-quality audio
signals. These results show that an optimized signal collecting
system is important for obtaining high performance.

C. Effect of Network Structure

In order to evaluate the effect of network structure on the
performance, CNN with 14, 10, 6 and 2 convolution layers are
trained utilizing the same training set. The output audio signals
are evaluated and the results are shown in Table III. With the re-
duction of convolution layers, the performance degrades quickly.
The authors think the main reason is that the mapping from the
input to the output is not complete with reduced convolution
layers.

The performance of different type of deep neural networks
are compared and the results are shown in Table IV. The source
audio signal is 4 seconds length English audio. The performance
of the 16-layers CNN is used in the comparison. The RNN
includes a total of 215 units, 4 hidden layers, with the largest
layer of 96 units [20]. Three hidden layers are realized with gated
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recurrent unit (GRU), which make it suitable for training with
small samples. VCAE has an encoder/decoder structure with a
learned latent representation, which prevents overfitting and im-
proves generalization [21]. VCAE is selected as a reprehensive
of unsupervised learning network.

From the viewpoint of SegSNR, the performance of CNN is
best, that of VCAE is in the middle. The performance of GRU
is worst. From the viewpoint of LLR, the performance of CNN
and GRU are almost the same and both are better than that of
VCAE. The NSEC results show that the performance of CNN
and VCAE are almost the same and both are a little better than
that of GRU. Therefore, the performance of CNN is best in the
deep neural networks used in this paper.

The different performances of the exploited neutral networks
may partly be attributed to the fact that only CNN is specially
trained exploiting the costume prepared training data set. The
others are trained using general data sets and applied directly
in this manuscript. The second important reason is that the
number of trainable variables are different for these networks.
The numbers of trainable variables of the exploited networks
are 160k, 87k, 948k for CNN, GRU and VCAE, respectively.
The VCAE owns the maximum number of trainable variables.
However, its performance is inferior to that of CNN. Therefore,
the authors think that VCAE is not suitable for the process of our
audio signals. Generally, GRU is appropriate for the process of
audio signals. In this paper, its performance is inferior to that of
CNN. The main reason may partly be that its number of trainable
variables is about half that of CNN.

It is found in experiments that changes of the speaker surface
or the speaker device would affect the performance of the trained
network. The authors think that the main reason is that the
detailed noise feature changes with the variation of speaker
surface or the speaker device. To improve the generalizability
of the trained neural network, noise signals extracting from
experiments with different speaker surfaces or speaker devices
should be used in the preparation of the training data set.

IV. CONCLUSION

In this paper, a micro vibration signal extraction method based
on deep neural network is proposed. Laser speckle patterns
generated by the surface scattering of the vibrating object is
recorded by a linear CMOS camera and preprocessed and used
as input for the trained CNN. The 16-layer CNN is specially
trained utilizing custom dataset, which is prepared by randomly
mixing the noise segment in our raw audio files with pure audio
signals from TIMIT dataset. The output of CNN is evaluated
using SegSNR, LLR and NSEC algorithms.

The effects of audio types, raw audio quality and network
structures on performance are investigated. The results show
that audio types cannot affect the quality of the processing results
evidently, which means the neural network is robust to the input
audio type. The performance for low quality input raw file is
bad. On the contrary, the performance for middle- and high-
quality input raw files are almost same and good. These results
show that an optimized signal collecting system is important for
obtaining high performance. The performances of three popular

deep neural networks, CNN, GRU and VCAE, are compared and
the comprehensive performance of CNN is slightly better, which
is attributed to the specialized training set on the one hand and
the appropriate number of trainable variables on the other hand.
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