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Abstract: The non-volatile memory is a crucial functionality for a wide range of applications
in photonic integrated circuits, however, it still poses a challenge in silicon photonic technol-
ogy. This problem has been overcome in the microelectronic industry by using SONOS
(silicon-oxide-nitride-oxide-silicon) memory cells, in which the non-volatility is enabled by a
dielectric trapping layer such as silicon nitride. Analogously, in this work, a similar approach
in which the nitride has been replaced by a hafnium oxide layer, named as SAHAS configu-
ration, is proposed for enabling a programmable erasable photonic memory fully compatible
with the silicon platform. The structure features an efficient performance with writing and
erasing times of 100 ps, retention times over 10 years and energy consumption in the pJ
range, which improve the current SONOS or floating gate based photonic approaches that
exploit the plasma dispersion effect in silicon. The proposed non-volatile photonic memory
device shows an extinction ratio above 12 dB and insertion losses below 1 dB in a compact
footprint. In addition, because the memory is optically read, ultrafast access times in the
picosecond range are also achieved.

Index Terms: Silicon photonics, photonic memory, non-volatile, integrated photonics,
plasma dispersion effect.

1. Introduction

Silicon technology has gradually emerged as the platform of choice when it comes to developing
photonic integrated circuits (PICs) due to its potential integration with electronic circuits in the same
chip and the possibility of reusing the mature and cost-effective manufacturing infrastructure of the
microelectronic industry. In addition, silicon has excellent properties for the development of photonic
devices such as high thermal conductivity, high optical damage threshold and the presence of third-
order non-linearities [1]. Furthermore, the large index contrast between silicon and silica makes
the SOl (silicon-on-insulator) technology a great candidate for developing compact devices. The
presence of Raman and Kerr effects joined to the high optical density coming from the large index
contrast has made possible optical amplification [2]-[4], lasing [4]-[6] and wavelength conversion
[71-[9] in the silicon platform. However, non-volatile electro-optical memories, which is a crucial
functionality demanded by a wide range of applications such as efficient data storage, are still a
challenge in this platform. Several solutions have been proposed to overcome this issue, some of
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TABLE 1

Comparison With the State-of-the Art in Silicon Non-Volatile Photonic Memory Devices Based on the
Plasma Dispersion Effect

TECHNOLOGY Vwrite Verase  Twrite TERASE Sim/Exp Ref.
SONOS 10V 100V 1s 2s Simulation [20]
SONOS 120V N/A ~ms N/A Experimental [21]

Floating gate 20V 6V 600 ms 225ms Experimental [16],[17]
SAHAS 21.5V  -30V  100pus 100ps Simulation This work

those relying on the integration of new materials [10]-[15], however, they come with the drawback
of not using the standard fabrication process flow of the CMOS industry. On the other hand, a
solution for a programmable erasable memory that exploits plasma dispersion effect has been
proposed based on a floating gate scheme [16], [17]. Despite the good outcomes of the device, it
has some limitations coming from the chosen technology and the complexity of the structure. In fact,
the scaling of the tunneling layer is a key issue in floating gate memories: as a consequence of the
conductive nature of the polysilicon floating gate, complete memory discharge is caused whenever
there is a fabrication defect in the thin tunnel oxide [18], [19]. This issue has been overcome in
the microelectronic industry by replacing the floating gate by a charge trapping dielectric such as
silicon nitride [18], [19]. In photonics, two works have been reported to date following this approach
[20], [21], however, the voltages needed for discharging the device exceed 100 V and the operation
speed was in the millisecond range and above. In fact, the most recent one [21] is oriented to
ring-resonator trimming instead of memory applications due to the need of UV (ultraviolet) light in
order to charge the device.

In this work, we propose a solution for a charge trapping based photonic memory in which
hafnium oxide (HfOs) has been chosen as the charge storage layer due to its higher trap density
and aluminum oxide (Al;O3) as the blocking and tunnel oxides. The designed structure, named
as SAHAS (silicon-aluminum oxide-hafnium aluminum oxide), shows improved writing and erasing
capabilities down to the ps regime, which is a crucial point for a practical device, and outperforms
in about three orders of magnitude the current state-of-the art of silicon non-volatile devices based
on the plasma dispersion effect, as shown Table 1. The writing and erasing processes are carried
out by applying voltages of 21.5 V and —30 V, respectively, achieving retention times over 10 years.
By embedding the waveguide structure into a ring resonator, a photonic memory device can be
achieved. Our simulation results predict extinction ratios above 12 dB and insertion losses well
below 1 dB for such device. The design of the charge trapping photonic structure and non-volatile
memory device are described in next section. Main results and conclusions are then summarized.

2. A Programmable Erasable Photonic Memory

Conventional SONOS memories are essentially a MOS (metal-oxide-silicon) transistor where the
metal has been replaced by a highly doped ( ~ 102° cm~3) polysilicon gate and the gate oxide
by a ONO (oxide-nitride-oxide) dielectric stack, as shown in Fig. 1(a). The dielectric placed in the
middle of the stack, usually silicon nitride, is used to capture the carriers injected from the silicon
channel. When trying to reuse this concept for a photonic memory, the ONO stack is placed over
the silicon waveguide. Once the silicon nitride is charged by applying a positive voltage to the gate,
carriers will accumulate in the waveguide border to screen the stored charge and will change the
effective index of the guided photonic mode due to the plasma dispersion effect in silicon. A sketch
of the concept is depicted in Fig. 1(b). However, this configuration comes with several limitations.
Usually, the metal or highly doped gate is placed relatively far from the photonic guiding structure
to avoid high optical losses, leading to an increase in the writing/erasing voltages and a decrease
in speed. Furthermore, the low overlap between the guided photonic mode and the accumulated
charges limits the effective index change achieved for a given carrier accumulation. To overcome
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Fig. 1. Sketch of (a) a conventional SONOS memory, (b) SONOS photonic structure used in [21], [20]
and (c) proposed SAHAS structure. Sketches are shown not to scale.

these restrictions, the configuration shown in Fig. 1(c) is proposed. In this structure, the mode is
partially guided by a relatively low doped polysilicon gate, placing the core of the optical mode right
on top of the charge accumulation. In addition, this configuration allows for a more direct voltage
application because the gate is placed next to the thin ONO stack.

2.1 Charge Trapping Waveguide Design

The dimensions of the proposed SAHAS trapping structure (Fig. 1(c)) have been designed to
optimize the TE polarized optical mode overlap with the carrier accumulation layer. Consequently,
gate and slab thicknesses of 70 nm and 100 nm, respectively, have been selected together with a
polysilicon width of 450 nm. Moreover, Al,O3; has been chosen as the tunnel and blocking oxides
due to its higher dielectric constant (¢,~9 [22]) compared to silica and HfO, as the charge storage
layer due to its high trap density ranging between 102 cm~3 and 102! cm~3 [23]. Both materials
ensure CMOS compatibility. Drain and source have been heavily doped (n*+-type 102° cm—2) to
avoid the creation of a Schottky contact and placed 300 nm away from the poly-silicon waveguide
to minimize optical losses. A more lightly doped area (n-type 5-10'® cm—23) is extended right next
to the polysilicon, as shown in Fig. 1(c). Analogously, the gate has also a highly doped thickness
of 20 nm on the top (10" cm~2). Soref equations have been used to obtain the index (An) and
absorption (A«) changes due to the plasma dispersion effect in silicon and polysilicon at A = 1.55
um [24]:

An = —8.88-10"2?AN—85-10""8 (AP)?8 1)
Aad = 85-107"8AN—-6.0-10"18 AP @)

where ANand AP are, respectively, the electron and hole concentrations. In addition, optical losses
of 20 dB/cm have been considered for the polysilicon material [25].

A 2-D simulation software, SILVACO [26], has been used to analyze and design the electrical
and optical performance of the structure. SILVACO calculates the tunneling currents through
the dielectric stack self consistently and obtains the structure behavior by solving Poisson’s and
charge continuity equations numerically. The dielectric stack has been modeled as a wide band
gap semiconductor and direct and Fowler-Nordheim tunneling currents have been considered to
compute the solution. The Poole-Frenkel effect as well as trap-assisted tunneling are known to
control the retention behavior of this kind of structures [27]-[31] and have also been included
to simulate this process. Nevertheless, it is important to stress that the retention characteristics
are also influenced by the creation of extrinsic defects in the tunnel oxide, which cannot be
considered through simulation models and makes specially important to control the oxide quality
during the fabrication process. In addition, the MOS parameter, which enables Shockley-Read-Hall
(SRH), Fermi Statistics (FERMI), and the Lombardi Mobility model (CVT) for transverse field and
concentration mobility dependence has been used. All these mechanisms and models are included
in the ATLAS package from SILVACO [32]. The values for the parameters involved in the simulations
are specified in Table 2.
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TABLE 2
Main Parameters Used for the Electrical Simulations

Symbol Quantity Value Ref.
Nt (cm™3) trap density 5-10%° [23]
b (eV) trap depth 1.5 [33]
HfO, € dielectric constant 22 [33]
X (eV) electron affinity 2.0 [34]
Egap (V) gap energy 5.8 [33]
m* electron effective mass 04 [35]
€ dielectric constant 9 [22]
A|203 . .
X (eV) electron affinity 1 [36]
Eqap (V) gap energy 8.8 [36]
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Fig. 2. Band diagram of the (a) writing, (b) erasing and (c) retention processes.

TABLE 3
Design Parameters for the Proposed SAHAS Structure

Symbol Quantity Value
tp (nm) blocking oxide thickness 6
t:(nm) tunnel oxide thickness 6
ty(nm) trapping diel. thickness 4

The main variables that will influence tunneling currents, i.e., electric fields E; and Eg, blocking
(t,) and tunnel (t;) oxide thicknesses and tunnel barriers ¢;,; and ¢;» seen by the electrons, are
depicted in the band diagram of Fig. 2 for the (a) writing, (b) erasing and (c) retention processes.
When a voltage is applied to the gate, an electric field will be created along the dielectric stack.
Consequently, there will be two tunneling currents: the desired one through the tunnel oxide to
charge and discharge the HfO, layer and an unwanted current through the blocking oxide that will
inject carriers from and to the gate. Another current, governed by the Poole-Frenkel effect and trap
assisted tunneling, will be in charge of moving the electrons across this layer hopping from trap to
trap. All dielectric thicknesses must be chosen such that they facilitate the writing process through
the tunnel oxide but thick enough to avoid currents through the blocking material and through both
oxides during the retention period. The designed parameters of the proposed SAHAS structure
are summarized in Table 3. A thickness of 6 nm has been designed for the tunneling oxide, which
enables the writing process but, at the same time, avoids excessive charge loss during the retention
period. Regarding the charge trapping layer, a thickness HfO, of 4 nm has been obtained together
with a blocking oxide of 6 nm, which prevents the back tunneling of the trapped carriers.

On the other hand, the writing/erasing speed and stored charge will heavily depend on the doping
levels of the silicon slab and polysilicon gate. To better illustrate the situation, Figs 3 (a) and (c)
show, respectively, the potential across the structure for the writing (V, = 21.5 V) and erasing (V,
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Fig. 3. Contour plot of the potential across the device for (a) the writing state at V, = 21.5 V and (c)
the erasing state at V,, = -30 V considering a low doped structure (10'® cm~3). Voltage drop along the
vertical line depicted in the contour plots for (b) the writing state at V, = 21.5 V and (d) the erasing
state at V, = -30 V for a low (1-10'® cm~23) and highly (5-10'® cm~3) doped structure.

= -30 V) processes for a p-type slab and gate with doping concentrations of 10'® cm~3. Fig. 3
(b) and (d) show the voltage across a vertical line at the center of the structure during writing
and erasing, respectively, for doping levels of 10'® cm=3 and 5-10'® cm~3. For the writing state,
majority carriers easily accumulate on both sides of the dielectric stack and all the applied voltage
drops along the dielectrics. However, at the erasing process, minority carriers are not enough to
screen the required voltage and a resistive path appears between gate and source/drain. As a
consequence, the voltage falls in the semiconductor materials instead of falling in the oxide stack
and strongly hinders the discharge process, especially for the low doped structure. By using a
higher doping concentration for gate and slab (5-10'® cm~—3), we can improve the performance and
a drop of 4 V is achieved inside the tunnel oxide.

Once the carrier and voltage distribution are known, the writing and erasing processes of the
HfO, layer are calculated and, by using Soref (1) and (2), the effect of the stored charge is
translated to the effective index change of the optical mode. In fact, a key feature is the amount of
stored charge needed to achieve a given effective index change. This result is shown in Fig. 4 for
different gate and slab doping concentrations, demonstrating an approximately linear relationship
between both parameters. Moreover, the lower are the doping concentrations of the structure, less
charge is needed to achieve the same effective index change and optical losses will also decrease.
Thereby, a trade-off must be achieved between the low doping approach and a faster and more
efficient programing/erase processes of a highly doped structure.

Using a doping concentration of 5:10'® cm=3 for the gate and slightly adjusting it to 3-10'® cm—2
at the slab, the writing process can be completed by applying a voltage of 21.5 V to the gate. A
maximum stored charge of 7-10~'® C/um is achieved, as shown in Fig. 5 (a), which is equivalent
to an effective index change of 1.5.:1073. The erasing state is accomplished by applying -30 V.
Both, the writing and erasing processes, are achieved within a 100 ps time range, however, a
small residual charge of around 0.6-10~'® C/um is left after the erasing process is completed,
although it will not significantly affect the device performance. On the other hand, optical losses
of 11.28 dB/mm and 8.24 dB/mm are obtained at the two non-volatile states after the writing and
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Fig. 4. Effective index change as a function of the stored charge for different gate and slab doping
concentrations.
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Fig. 5. (a) Evolution of stored charge with time at the writing and erasing processes and (b) retention
characteristics of the effective index variation for 10 years.

erasing processes, respectively, which are accomplished with an energy consumption of 1.25 pJ
and 5.7 pJ. In addition, the memory structure is also able to work at multiple intermediate stages by
decreasing either the time or the voltage applied to the gate. Finally, the retention characteristics
have also been analyzed to ensure the endurance of the stored data. As shown in Fig. 5(b), a value
for the effective index change above 1.1-102 is ensured over a time period of 10 years. A small
variability in the erased state is observed during the retention time due to the partial loss of the
residual charge, however, the maximum shift corresponds to an effective index change as small as
6-107°. On the other hand, a more significant variation happens at the written state. Its potential
impact on the device performance will be managed through a careful device design to ensure the
stability of the optical signal, as it will be explained in the following section.

2.2 Non-Volatile Photonic Memory Device

A functional non-volatile photonic memory device is achieved by making use of the designed
charge trapping waveguide structure. Ring resonators are highly versatile devices able to transform
the index change to intensity variation in a compact footprint, which makes them the perfect
candidate for high density data storage and low energy consumption. Thereby, the proposed
SAHAS waveguide structure can be embedded in a ring resonator as depicted in Fig. 6(a). A ring
radius of R = 20 um has been chosen with a gap between the bus waveguide and ring to achieve
a power coupling ratio of |k| = 0.15. In addition, the written state has been chosen to be out-of-the
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Fig. 6. (a) Sketch of the non-volatile photonic memory device based on a ring resonator, (b) applied
voltage vs. time to change the state of the memory, (c) normalized optical power (NOP) showing
photonic resonances at written and erased states and (d) corresponding NOP variation with time at
the output port.

resonance so that the output power is stable during the retention period. Under these conditions,
the resonator device will switch between the written and erased points marked in Fig. 6(c), which
shows the resonances for both states at the beginning and at the end of a retention period of
10 years thus demonstrating how the impact of the charge loss in the optical signal is almost
completely mitigated. Furthermore, the output power during the retention time is also depicted
in the inset, showing a small variation around 2 dB and extinction ratios above 12 dB during the
whole period. Finally, the temporal behavior through repetitive cycles is depicted in Fig. 6 (d), which
is obtained as a result of applying the voltage pattern shown in Fig. 6 (b). As it can be observed,
insertion losses below 1 dB at the written state and extinction ratios near to 15 dB are achieved.
Furthermore, the photonic memory device is designed to be electrically written but optically read,
therefore, the reading process will be only limited by photon lifetime and would enable reading
times in the picosecond range, which outperforms current electronic memories and offers ultra-fast
access data storage.

3. Conclusion

A novel configuration has been proposed for a programmable erasable photonic memory that can
be electrically written and optically read in the micro and picosecond ranges, respectively. Writing
and erasing times, which are a crucial point for practical devices, are improved in three orders
of magnitude with respect to current floating gate CMOS compatible approaches for photonic
memory applications based on the plasma dispersion effect in silicon [16], [17]. The proposed
device is based on exploiting the plasma dispersion effect inside a charge trapping configuration
memory cell, which is a well-known building block of the microelectronic industry and widely used
for data storage. The HfO- has been chosen to work as trapping layer due to its higher trap density.
The waveguide memory structure has been embedded into a micro-ring resonator to translate the
effective index change into a non-volatile intensity modulation, achieving insertion losses below
1 dB and extinction ratios above 12 dB. The experimental validation of the structure remains as
a future work, however, the similarities with the electronic flash memory would ensure maximum
CMOS compatibility and therefore the potential for large scale integration at low cost.
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