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Abstract: Faced with the challenge of transceiver design over the Poisson channel, we
leverage the deep-learning technique and devise two novel end-to-end learning schemes
to fulfill the design task in this paper. One of the schemes accords with the basic principle of
the currently available autoencoder (AE) but is specially designed for the Poisson channel
with the aid of the square root (SR) transform. The other scheme, following a different
design philosophy from AE, is developed based on a double neural network (DNN) model,
which regards the receiver and the transmitter as two separate networks. By these designs,
the end-to-end learning task can be conducted over Poisson channel. Extensive computer
simulations reveal that 1) the transceiver learned by the DNN scheme always performs
better than or comparably to the currently available artificially designed transceivers, and 2)
compared with the transceiver learned by DNN, the transceiver learned by SR-AE suffers
performance loss in some cases, but the SR-AE scheme has a lower complexity to compute
the loss function and fewer network parameters. This study takes the first step toward
applying end-to-end learning techniques in the field of the Poisson channel and lays a
foundation for further works on this topic.

Index Terms: Optical wireless communication, photon counter, Poisson channel, deep
learning, transceiver optimization.

1. Introduction
The Poisson channel, as a type of standard channel model for optical communications [1], [2],
has been widely studied for a long time [3], [4]. Recently, the discrete-time Poisson (DTP) channel
has drawn much attention due to the prevalence of intensity modulation in optical wireless com-
munication (OWC) and has been studied in various communication scenarios such as single-input
single-output (SISO) [5], [6], multiple-input multiple-output [7], [8], multicarrier [9], [10] and multiuser
scenarios [11], [12]. Although the mathematical model of the Poisson channel is clear and concise,
the optimization problem formulated for a given communication system is always challenging and
complex. This forces researchers to adopt some expedients, such as classified discussion, approx-
imation and numerical search, to obtain suboptimal solutions or solutions with high implementation
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complexity [12]–[15]. Such limitations of manpower motivate us to investigate the deep learning
(DL) technique in this paper.

More recently, the success of DL in solving very complicated optimization problems has promoted
the applications of various DL techniques in the communication field [16]. As one of the DL
techniques, end-to-end learning follows the philosophy of joint optimization to train multiple neural
network modules together in a single task. Such a training fashion caters to the need for joint
transceiver optimization and leads to the popularization of end-to-end learning in current research
related to transceiver design [17]–[23]. More specifically, based on whether the channel information
is involved in the calculation of the training stage, end-to-end learning can be divided into two
categories: model-aware and model-free. Model-aware (MA) means the channel model is available
in the learning procedure of a neural network. Thus, in the MA case, the existing end-to-end
learning method, called an autoencoder (AE) in DL terminology, merges the transceiver and the
channel into the same neural network. Contrary to the concept of MA, model-free (MF) means the
channel model is unknown in the learning procedure. Thus, various methods, such as the policy
gradient method [18] and the generative adversarial network [19], have been developed to provide
surrogates for the intermediate variables which are required by the learning procedure but related
to the channel model [24].

For the Poisson channel, the currently available MA learning scheme (i.e., the AE) is only suitable
for the Gaussian channel or its variant since the Gaussian distribution can be embedded into
the network via the reparameterization trick [25]. Unfortunately, since the reparameterization trick
stems from the exclusive property of Gaussian distribution, embedding the Poisson channel as a
differentiable component into the AE is still an open problem. Additionally, although the MF learning
schemes are not restricted by the channel types and are expected to be effective for learning over
the Poisson channel, the value of developing an MA learning scheme for the Poisson channel
cannot be ignored. First, the MA training scheme enjoys the advantages of easy-deployment and
low cost compared with its MF counterpart. Even though the transceiver learned by MA may suffer
performance loss due to the inaccuracy modeling of the actual channel [26], the MA learning
scheme is still worth considering. Second, to obtain the surrogate intermediate variables, approxi-
mations are introduced in the MF schemes, which inevitably diminishes the learning effectiveness.
Therefore, in the studies of MF schemes [18], [19], the MA scheme plays the role of a baseline to
evaluate MF schemes. To the best of our knowledge, to date, no research has focused on the topic
of end-to-end learning over the Poisson channel.

The above factors indeed motivate us to develop novel end-to-end learning schemes for the
SISO DTP channel in the MA case. This research is a bedrock for further studies on more complex
systems and advanced techniques in this field. Our main contributions are summarized as follows:
1) We first propose an square-root (SR) AE learning scheme to conduct the end-to-end learning
over Poisson channel. This scheme accords with the design philosophy of currently available AE but
introduce the SR transform trick to surmount the unavailability of an AE over the Poisson channel.
2) Instead of the design philosophy of AE, we propose a novel learning scheme called DNN which
implement the transmitter and receiver by two separate networks respectively. Theoretical analysis
reveals its intrinsic connection with the AE model. 3) A comparative study between the SR-AE and
DNN indicates that the DNN scheme enjoys a performance advantage over the SR-AE in some
cases but has a drawback in the computation complexity. 4) Different from the currently prevailing
sigmoid activation function, an alternative function is proposed to embed the peak power constraint
into the network; this is shown to allow the model to easily avoid the local minima and achieve
high-quality results.

Notations: The following notations are used throughout this paper. Boldface upper-case letters
denote matrices and the boldface lower-case letters denote vectors. (·)T denotes the transpose
operation. For a given random variable, e.g. m, Em{·} denotes the expectation operation with respect
to (w.r.t.) m. ∇ is the derivative operator, for example ∇xf (x) means computing the derivative of f (x)
w.r.t. x. The letter accented by a tilde or a bar represents the approximation or the estimation of the
original variable. Other main notations are listed in Table 1.
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TABLE 1

List of Notations

2. System Model and Problem Statement
In this section, we introduce two kinds of neural network models used to describe a typical SISO
communication system. Both of them can jointly optimize the transceiver by their corresponding
training algorithm. A comparison between these two models highlights the challenge of applying the
currently available AE over the DTP channel and provides insight into the design of the end-to-end
learning scheme over the Poisson channel.

2.1 DNN Model

As shown in Fig. 1 (top), let us consider a DNN model for an SISO communication system over
a certain channel in which the three main components, the transmitter neural network, Gaussian
channel and receiver neural network, are symbolized by fθT (m), p(y|x) and fθR (y) respectively and
successively connected. Specifically, a message m, m ∈M = {1, . . . 2K } is mapped to a transmitted
symbol x by the transmitter neural network, where K denotes the number of bits transmitted
per symbol. Assume that N time-intervals (channels) are occupied to transmit the symbol x in
a nonnegative real-number space with a peak-power constraint. Then, for each symbol x, the
channel component outputs a received signal y sampled from a random variable whose conditional
probability mass function (PMF) or probability density function (PDF) is denoted by p(y|x). The
task of the receiver neural network is to output the likelihood ρ = [ρ1, . . . , ρM ]T for each symbol in
M based on y. Let θT and θR separately denote the parameter vectors of the transceiver neural
networks. Assume that fθT (m) and fθR (y) are differentiable w.r.t. θT and θR respectively, and that the
categorical cross-entropy l (ρ, m) = − log(ρm ) is adopted as the loss function. Finally, the desired
transceiver optimization problem can be formulated as follows [19]:

min
�

L�(m, ρ) � min
�

Em

{∫
l (fθR (y), m)p(y|fθT (m))dy

}
(1)
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Fig. 1. Structural transformation from the DNN model to the AE model over the Gaussian channel.

where ρ = fθR (y), and � = [θT
T , θT

R]T constitutes the parameter space of this optimization problem.
In the field of DL, this optimization is conducted by gradient descent or a variant w.r.t �, i.e., by
updating � according to the direction of ∇�L�. It can be noticed that, according to (1), the DNN
model can be applied over an arbitrary type of channel as long as the derivative is available. This
flexible adaptability is an advantage of the DNN model. However, instead of the DNN model, the
AE is currently a popular method for MA end-to-end learning and has a strong association with
DNN.

2.2 AE Model

By regarding the entire communication system as a single neural network, the AE model gains the
advantage of executing an end-to-end back propagation over the whole system [27]. Although, in
the way of constructing the neural network, the AE model is quite different with the above introduced
DNN model, there is a strong connection between these two models. As depicted in Fig. 1 (bottom),
the key to transforming the DNN model to an AE is applying the reparameterization trick over the
Gaussian distribution [25], namely, if the conditional PDF of the channel follows a general Gaussian
distribution N (h(x),�(x)) whose mean h(x) and variance �(x) are the element-wise functions of
x, the DNN model can be transformed to an AE by the trick as follows:

y � fv(x) = h(x)+
√

�(x)v, (2)

where v is a sample of an N-ary random vector obeying the standard Gaussian distribution N (0, I).
This equation actually reflects a well-known property that an arbitrary normal distribution can be
obtained by scaling and translating a standard normal distribution. Then, with the assumption that
both h(x) and �(x) are differentiable w.r.t x, (2) and (1) are further combined to obtain:

L�(m, ρ) � Em

{∫
l (fθR (fv(fθT (m))), m)p(v)dv

}
= Em,v

{
l (f�(m), m)

}
, (3)

where f�(m) � fθR (fv(fθT (m))) for notational convenience. Then, the optimization of (3), i.e., min� L�,
is conducted by gradient descent or its variant w.r.t �.
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2.3 Problem Statement

Although, (1) or (3) can lead to an analytical expression for the gradient, ∇�L�, numerically
evaluating such an expression is computationally expensive. Thanks to the chain structure of the
network, a complex gradient computation can be done by recursively applying the chain rule. This
computation method is commonly known as back propagation [27, Ch. 6]. In this pattern, each layer
of the network needs to compute their own derivative. For this reason, to realize an AE scheme
over the Poisson channel, we need to not only embed the Poisson channel into the network but
also to make sure the output of each layer in the network differentiable w.r.t its own input [19].
Unfortunately, these two targets are impeded by the following obstacles.

1) Unavailable reparameterization trick: Supported by the property described by (2), this trick is
only effective for the Gaussian channel. As far as we know, the Poisson distribution does not
hold this property and thus can not be embedded into the network.

2) Discrete output: Even if the Poisson channel could be embedded as a layer into the network,
the discrete output of the Poisson layer will make the subsequent layer non-differentiable.

These challenges indeed motivate us to devise novel end-to-end learning schemes over the
Poisson channel. Details of our proposed schemes are provided in the following section.

3. Theoretical Analysis
In this section, we consider the case where the channel model is available in the training process
and develop two kinds of end-to-end learning schemes for communication systems under the
Poisson channel.

3.1 Square-Root (SR) AE Scheme

Let us consider a specific SISO DTP channel

p(y|x) =
N∏

n=1

(Axn + η)yn

yn!
e−Axn−η (4)

in which A, η and 1N respectively denote the received peak photon number, the photon counts
caused by background noise and an N-ary vector whose entries are all one. Then, we attempt to
establish an AE model for this channel with the aid of the square-root (SR) variance-stabilization
transform [28] whose property is given below.

Property 1: For a random variable Y whose PMF satisfies y = e−λ λy

y! , its square root
√

Y asymp-

totically obeys the Gaussian distribution as λ→∞, say,
√

Y ∼ √λ+ V , where V ∼ N (0, 1
4 ).

Let y(SR) stand for the element-wise square root of y, where y is the received signal from (4). As
revealed by Property 1, y(SR) can be regarded as a sample from the following SR Gaussian channel:

p(y(SR)|x) = (2/π )N/2 e
−2

∥∥∥y(SR)−
√

Ax+η1N

∥∥∥2

2 , (5)

where
√· denotes an element-wise square root operation when this operator acts on a vector or

metric. Obviously, by the reparameterization trick (2), the SR Gaussian channel (5) can be further
expressed as

y(SR) � fv(x) =
√

Ax+ η1N +
√

�v, (6)

which is a special case of (2) with h(x)=Ax+η1N and �(x)= 1
4 I. Then, let f (SR)

θT
(m) and f (SR)

θR
(y(SR) )

represent the transmitter and receiver components in the SR-AE network respectively. (6) leads us

to the loss function defined by (3), where f�(m)= f (SR)

θR
(
√

Af (SR)

θT
(m)+η1N+

√
�v). Then, by the law of

large numbers, the mean in (3) can be estimated by a batch of samples as follows:

L̃� = 1
W

W∑
w=1

l (f�(m(w) ), m(w) ), (7)
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Algorithm 1: Communication Over the Poisson Channel (SR-AE).
1: � Transmitter:
2: x = f (SR)

θT
(m)← message: m ∈M = {1, . . . , M}

3: � Poisson channel:
4: Generate y from p(y|x) (4)← transmitted signal: x
5: � Receiver:
6: y(SR) = √y← received signal: y
7: ρ = f (SR)

θR
(y(SR) )← transformed signal: y(SR)

8: Gain estimate of m:
m̂ = arg maxm∈M ρm ← likelihood vector: ρ

where W is the number of samples in a batch and m(w) stands for the wth training sample. Finally,
we can easily compute the gradient by ∇�L̃� and train the AE over SR Gaussian channel by a
usual optimizer such as stochastic gradient descent (SGD) or its variant [27, Ch. 8].

Owing to Property 1, after the learning procedure is completed, we can use the obtained
transceivers, f (SR)

θT
(m) and f (SR)

θR
(y(SR) ), over the Poisson channel as long as the received signal y

is processed by the SR transform before being input into f (SR)

θR
(y(SR) ). The specific communication

process of the SR-AE is detailed below.

3.2 DNN Scheme

In this subsection, our main purpose is to develop a training method based on the DNN model over
Poisson channels. The DNN model has the same goal as that of AE (minimizing L� w.r.t �) but
requires a different algorithm because its loss function L� is defined in a distinct way. This can
be confirmed by comparing (1) and (3). For the DNN scheme, a simple and effective method for
optimizing the parameters of the networks is applying gradient descent, which presupposes the
gradient of the loss function, i.e., ∇�L� = [(∇θT L�)T, (∇θRL�)T]T, where L� is defined by (1). The
gradient, ∇�L�, is divided into two parts,∇θT L� and ∇θRL�, deliberately for convenient analysis.
Assume that p(y|x) is differentiable w.r.t. x. According to (1), the first part of the gradient ∇θT L� can
be expressed as

∇θT L� = Em

{∫
l (fθR (y), m)∇θT p(y|fθT (m))dy

}

= Em

{∫
l (fθR (y), m)∇θT log p(y|fθT (m))p(y|fθT (m))dy

}

= Em,y

{
l (fθR (y), m)

[∇θT fθT (m)
]T ∇x=fθT

(m) log p(y|x)
}

, (8)

in which the first equality comes from the definition of L� (1), the second equality holds due to the
log-trick ∇zu(z) = u(z)∇z log(u(z)), and the third equality leverages the expectation formula and the
chain rule. Again, ∇θT L� can be estimated by

˜∇θT L� = 1
W

W∑
w=1

l (fθR (y(w) ), m(w) )
[
∇θT fθT (m(w) )

]T
∇x(w) log p(y(w)|x(w) )

= ∇θT

1
W

W∑
w=1

l (fθR (y(w) ), m(w) )
[

fθT (m(w) )
]T
∇x(w) log p(y(w)|x(w) )

� ∇θT

1
W

W∑
w=1

l (D)(y(w), x(w), m(w) ) (9)
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Fig. 2. Flowchart of the training algorithm for the DNN under the MA case.

Algorithm 2: DNN Training Algorithm.
1: While:
2: � Transmitter:
3: Xt = fθT (mt )← training samples: mt ∈MW

4: Transmit(Xt)
5: � Poisson channel:
6: Sample Yt from p(Yt|Xt )← Xt

7: � Receiver:
8: Pt = fθR (Yt )← received signals: Yt

9: l(Pt, mt ), l(D)(Pt, Yt, Xt, mt )← Pt, Yt, Xt, mt

10: Training fθR by SGD(θR, l)← θR, l
Training fθT by SGD(θT, l(T ) )← θT, l(D)

11: Break: If stop condition is true

Notations: mt, Xt, Yt and Pt respectively denote a batch of samples from the variables, m, x,
y and p, e. g., mt consists of W samples from the message m, i.e., mt = [m1, . . . , mW ]T

where ∇θT fθT (m(w) ) denotes the Jacobian of the function fθT (m(w) ) w.r.t θT and

l (D)(y(w), x(w), m(w) ) � l (fθR (y(w) ), m(w) )
[

fθT (m(w) )
]T
∇x(w) log p(y(w)|x(w) ). (10)

l (D)(y(w), x(w), m(w) ) can be viewed as a special loss defined for the transmitter network and
∇x(w) log p(y(w)|x(w) ) is determined by the distribution of the specific channels.

For the second part of the gradient, ∇θRL�, we have

∇θRL� = Em

{∫
∇θR l (fθR (y), m)p(y|fθT (m))dy

}
= Em,y

{∇θR l (fθR (y), m)
}
, (11)

Then, estimate (11) by sampling

˜∇θRL� = 1
W

W∑
w=1

∇θR l
(

fθR (y(w) ), m(w)
)

(12)

Thus, combining (9) and (12), we can finally obtain the estimate of ∇�L�, i.e.,
[( ˜∇θT L�)T, ( ˜∇θRL�)T]T. The proposed training method is illustrated in Fig. 2 and detailed in Al-
gorithm 2.

Remark 1: By the comparison between the training algorithms of the DNN and SR-AE schemes,
we notice that the former needs to compute two loss function as defined by (9) and (12) but the
later only computes one loss function (7); this highlights the low-complexity advantage of the SR-AE
scheme in computing the loss function.
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Fig. 3. Generic structure of the DNN and SR-AE schemes over the Poisson channel.

3.3 Neural Network Configuration

In this section, we detail the generic structure of the above introduced models. Assume that A and
d are available at the receiver side, which is a common assumption in studies related to maximum
likelihood detection (MLD) over Poisson channels and can be realized by pilot techniques since
they are almost invariant for thousands of successive symbols [11]–[14].

1) DNN: We only adopt dense layers to comprise the transmitter and receiver neural networks.
As shown in Fig. 3, we feed the one-hot version of the message m into the transmitter
network. Determined by the system constraints of the normalized peak-power and the number
of channel use, the last layer is an N-unit dense layer with sigmoid activation, which is
the most common activation function for embedding the peak-limited constraint into the
network [22], [29]. The last layer of the receiver network is also fixed as an M-unit dense layer
with softmax activation, enabling the receiver network to deal with M-category classification
(i.e., signal detection). Additionally, a concatenation layer is used before the dense layers
in the receiver network to concatenate the three inputs together. The other layers, briefly
represented by ‘multiple layers’ in Fig. 3, can be arbitrarily adjusted according to the specific
situation.

2) SR-AE: The architecture of the SR-AE is illustrated in Fig. 3. It can also be noticed that the
structure of the SR-AE is basically consistent with that of the DNN except for the embedded
channel layer and the concatenate layer. Specifically, the channel layer can be implemented
by the built-in Gaussian layer of Keras.

Remark 2: Owing to the decoupling effect caused by the SR transform between the signal
and noise, only two variables, y and η

A , are input into the concatenate layer. Assume U units
in the layer subsequent to the concatenate layer for both the DNN and SR-AE networks, which
means that, in the U -unit layer, the DNN network has a 3×U parameter matrix while the SR-AE
network has a 2×U parameter matrix. Thus, the AE model has an advantage of using fewer
parameters.

4. Simulation Results
In this section, our main purpose is to evaluate the performance of the above algorithm by
simulations.
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TABLE 2

Specific Network Structures of the AE and DNN Schemes for K = 4, N = 2

4.1 Evaluation Over Poisson Channels

In our simulations, intensity modulation and the peak-power constraint are considered, which leads
to the normalized transmitted symbols restricted into an N-dimensional nonnegative unit hyper-
cube. Performance comparisons are undertaken between the transceivers respectively learned by
the SR-AE and DNN schemes. In the rest of this section, these learned transceivers are called an
SR-AE transceiver and a DNN transceiver respectively for convenience. All of the simulations are
conducted with the following settings.

� Simulation settings: We evaluate both of the SR-AE and DNN transceivers over the Poisson
channel. The squared pulse amplitude modulation (SPAM) [13] and (7,4) Hamming code are
set as the respective baselines for the cases of and K = 4, N = 7. For N = 2, the normalized
SPAM constellation is given by x ∈ X = { 19 (i2, j2)|0 ≤ i ≤ 3, 0 ≤ j ≤ 3}. The corresponding
MLD is defined as x̂ = arg maxx∈X p(y|x) where p(y|x) is defined by (4) and x̂ denotes the
estimate of x.

In what follows, we will provide and analyze the specific simulation results.
4.1.1 Case 1: K = 4, N = 2: In this case, we train the networks with two phases and Adam

optimizer [27, Ch. 8] whose learning rate is set to be 0.01. In the two phases, we set the
collocation, batchsize\epoch, as 64\15 and 1000\10 respectively. The structures of the SR-AE
and DNN schemes are provided in Table 2, where the depth and width of the networks are
empirically determined, such that increasing the depth and width cannot further promote the
learning performance. Besides, for the SR-AE scheme, the parameters of the Gaussian layer
are set according to Fig. 3. These two learning schemes are trained with various transmitted
peak optical power, P = −85,−84,−83 dBm, since Poisson noise is signal-dependent. Other fixed
parameters, including background noise count rate, photon detection efficiency, symbol duration
per channel use and energy of single photon, are denoted by Nbcr , C, T , and Ep; and set to be
7.27× 103, 20%, 10−4 and 4.42× 10−19 respectively. These parameters determine the values of A
and η by the equalities A = CPT/Ep and η = Ndcr T [13]. In particular, for Poisson channel, the loss
l (D) of DNN (10) can be written as

l (D) = l (fθR (y(w) ), m(w) )
[

fθT (m(w) )
]T (

Ay(w) 
 (Ax(w) + η1N )− A1N

)
(13)

in which 
 denotes the element-wise division operation and l (D) will be used in Algorithm 2 to train
the transmitter network of the DNN scheme. After obtaining the transceivers from the proposed
two learning schemes, we evaluate the block error rate (BLER) of the transceivers on the same
test set for various peak optical power. The simulation results are illustrated in Fig. 4, where the
BLER of the SPAM with MLD is appended as a baseline. In the high optical power regime, the
performances of the AE and DNN transceivers are almost consistent with each other and slightly
better than that of SPAM with MLD. However, In the low optical power regime, we can observe an
evident performance loss of the AE transceiver; this can be explained by Property 1. Low optical
power causes the parameter λ so small that it hinders the effectiveness of SR transform. Additional
results of comparing the constellations of the learned transceivers with that of SPAM are shown
in Fig. 5. It can be noticed that those constellations of the learned transceivers are graphically
similar to that of SPAM. As it can be seen, the distance between arbitrary two neighbour points
of these constellations increasing with the their power; such nonuniform constellation structure
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Fig. 4. BLER of the leaned transceivers and the SPAM with MLD.

Fig. 5. Constellations of the learned transceiver and the SPAM.

Fig. 6. The codebooks and distance spectrum for the learned two kinds of code with the BN+RL
activation.

benefits to resist the signal-dependent Poisson noise. The above results indict the effectiveness of
our proposed two end-to-end learning schemes over Poisson channel.

4.1.2 Case 2: K = 4, N = 7: Interestingly, as it can be seen in Fig. 7, when the proposed learning
schemes are trained with K = 4, N = 7 and the activation functions in the last layer of their trans-
mitter networks being sigmoid functions, the finally learned DNN and SR-AE transceivers perform
worse than the traditional transceiver, i.e., the (7, 4) Hamming code with MLD. Although one could
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Fig. 7. BLER of the (7,4) Hamming code (HC) with MLD and the transceivers learned by the proposed
learning schemes with various activation functions, i.e. the currently available sigmoid and the proposed
BN+RL.

TABLE 3

Specific Network Structures of the AE and DNN Schemes for K = 4, N = 7

easily envision that the performance decisive criterion of the code over Poisson channel may differ
from that of Gaussian, i.e., Hamming distance criterion; current coding theory is inadequate to
provide an allied “distance criterion” of Poisson channel. Here we do not claim any optimality of
the (7, 4) Hamming code for our considered case, but it indeed performs best according to our
current experiments. We find that the learned constellations usually consist of 16 binary vectors
but none of them has the same performance and code distance as the (7, 4) Hamming code. Such
phenomenon also appears in our previous work [29] and results in about 1.5 dB performance loss
compared with the (7,4) Hamming code with MLD. This dilemma should be blamed to the vanishing
gradient problem of the sigmoid activation, which is located in the last layer of the transmitter
component and leads to the update cessation of the transmitter network when it learns a kind of
binary permutation. To alleviate this problem, we introduce the following improvements:

1) A combination of the batch normalization (BN) and the linear rectification (LR) function
is adopted to replace the sigmoid activation in the last layer of transmitter network. The
function of these two components can be expressed as xout = BN(xin) and xout = LR(xin) =
0.5 min(max(xin + 1, 0), 2), where BN(·) denotes the batch normalization (BN) operation with-
out moving average, offset and scaling [30];

2) We embed another BN layer as default of Keras before the Relu activation of the first layer in
the receiver component since its inputs have large dynamic range and stabilizing them by BN
will benefit the training convergence;

3) We increase the number of layers and neurons of network since enlarging the size of network
decreases the probability of finding a ‘bad’ local minimum [31].

Specific network structures of the proposed learning schemes are listed in Table 3, where two
kinds of activation functions (i.e., BN+RL and sigmoid) are considered in last layer of transmitter
networks. The training needs more epochs than before due to the increment of the network
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Fig. 8. Constellations of the learned transceiver and the SPAM with η = 7.

scale. In the learning procedure of the proposed schemes, their networks are trained with three
phases and various learning rate of Adam optimizer. The collocation set for the three training
phases, batchsize\epochs\learning-rate, are 200\15\0.03, 1000\15\0.01 and 10000\15\0.01 re-
spectively.The simulation results are illustrated in Figs. 6 and 7, which mainly include the results for
the case where the proposed BN+RL activation is adopted. Additionally, simulation results for the
case of sigmoid activation are also added in Fig. 7 as performance references. As shown in Figs. 6,
the proposed schemes learn two kinds of code, i.e., the linear and nonlinear codes. As it can be
seen, only the linear code has the same codebook as the (7, 4) Hamming code; nevertheless, the
nonlinear code can also achieve the same performance as the (7, 4) Hamming code due to the
identity between their distance spectrum. The BLER curves of the learned transceivers and the
traditional transceiver, i.e., the (7, 4) Hamming code and MLD, are illustrated in Fig. 7. It shows
that the DNN transceiver has the same performance as the (7, 4) Hamming code with MLD but
outperforms the AE transceiver; this is because the AE transceiver has the same codebook as the
DNN transceiver but suffers a performance loss induced by the SR transform. A further discussion
of this loss will be hold in the next subsection.

4.2 The Convergence of SR Transform

Obviously, the performance of the SR-AE scheme will be strongly influenced by the convergence of
the SR approximation. In light of the Property 1, this convergence will be guaranteed by enlarging
λ = Ax + η. One can always increase λ by enlarging the transmitted power when x is not zero but
will be stranded for the case of x = 0. Unfortunately, in a usual case, a constellation excluding zero
point is not energy-efficient. Thus, the system parameters T and Nbcr become the decisive factors
of the performance since λ = η when x = 0. To further validate this, we simulate the performance of
SR-AE and DNN with various η and N = 2, K = 4 in the following subsection, where the SPAM with
MLD is set as a baseline. The training setups except Nbcr remain unchanged as before. For different
Nbcr , we first train the networks and then carry out the BLER simulation of the learned transceiver.

4.2.1 Case 1: η = 7: Without loss of generality, let T = 10−4 and Nbcr = 7× 104. The constel-
lations learned by the proposed schemes are compared with the constellation of SPAM in Fig. 8
and appear quite different. In Fig. 9, the DNN and SR-AE transceivers evidently outperform the
SPAM with MLD; since, in order to make the design problem tractable, the SPAM constellation is
obtained under the assumption that the background noise count can be ignored. Accordingly, the
SPAM dose not perform well in the case of η = 7. Furthermore, the BLER comparisons in Fig. 9
also show the performance similarity between SR-AE and DNN for large background noise, which
accords with the previous expectation.

4.2.2 Case 2: η = 0.01: Without loss of generality, we simulate the performances of the SR-
AE and DNN schemes with T = 10−4 and Nbcr = 100. The results are illustrated in Fig. 9. Not
surprisingly, the error performance of SR-AE transceiver worse than that of the DNN transceiver;
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Fig. 9. BLER of the leaned transceivers and the SPAM with MLD for given background noise.

Fig. 10. Actual probability distribution and theoretical PDF of the SR transformed variable y (SR).

and the low background noise also benefits the SPAM to deliver the same performance as the
DNN. Based on the current clues, we have known that 1) in the case of λ small, the theoretically
assumed probability distribution of SR transform’s output will deviate from the actual distribution; 2)
this derivate performs differently depending on whether the symbol includes nonzero points since
the noise is signal dependent. Thus, the remaining question is how this deviation reflects on the
different symbols of a given constellation by the error performance. To answer this question, we
study the following hypothesis detection for given constellation S = {0, 1}. Consider a binary-input
binary-output DTP channel and denote the average number of the counted photons by λ0 if 0
is transmitted, otherwise, by λ1. Additionally, let Pe(1|0) and Pe(0|1) denote the probabilities of
mistaking 0 to 1 and mistaking 1 to 0 respectively. Then, for λ0 = η = 0.01, assume that λ1 =
5.01. Then, the SR transformed variable y (SR) is assumed to be Gaussian-distributed according to
Property 1. Both of the theoretical PDF and the actual probability distribution is illustrated in Fig. 10.
Based on the actual probability, an optimal threshold should be allocated in the interval [0,1] such
that Pe(1|0) = 0.01 and Pe(0|1) = 0.0067. However, from the perspective of the theoretical PDF,
the optimal threshold, as shown in Fig. 10, is situated on the right side of 1; this causes the total
error probability rises up due to the fact that Pe(1|0) decreases to 0.0001 and Pe(0|1) increases to
0.0397. For the same reason, as it is shown in Fig. 11, an evident increment of the error numbers at
the positions where the symbol includes the point nearest to zero in the error histogram of SR-AE
transceiver. These error numbers are counted up over 106 samples with P = −86 dBm. The results
in Fig. 11 indicate that the performance loss of the SR-AE transceiver mainly originates from the
error caused by the transmitted symbol including the near-zero point.
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Fig. 11. The respective histograms of the error numbers for each symbol in the constellations shown
by the inserted thumbnails.

5. Conclusion
In this paper, we develop two novel end-to-end learning schemes over the SISO DTP channel. First,
following the design philosophy of the AE, we propose an SR-AE learning scheme with the aid of
the SR transform. This scheme can lear n a transceiver model which shows a robust performance
over the Poisson channel. Then, we propose another learning scheme called the DNN, which
follows a different design philosophy from the AE scheme. This learning scheme is established
based on a framework where the transmitter and the receiver are regarded as two separate
networks. The training algorithm of the DNN scheme can realize joint transceiver optimization
over any channel whose conditional PDF or PMF is differentiable w.r.t the channel input. These
two schemes are proved effective by simulations and have their own features. Compared with the
transceiver learned by DNN scheme, the SR-AE transceiver suffers performance loss in some
cases where the SR approximation theory can not apply, but it has fewer network parameters
and only computes a single loss function. The transceivers learned by DNN always achieve the
best performance in comparison with the SR-AE transceivers and the considered hand-crafted
transceivers, but it requires the computation of two loss functions to update the parameters
of the transmitter and receiver neural networks. To the best of our knowledge, this is the first
study focusing on the end-to-end learning over Poisson channel and provides a basis for further
researches on other more complex techniques for OWC systems under Poisson regime.
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