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Abstract: By using the quadratic spatial filtering (QSF) operation of interferograms, we
propose a fast and accurate phase retrieval algorithm in 2-step phase-shifting interferometry
(PSI), in which both the interference signal separation and blind phase shift estimation
can be realized. Compared with the existed 2-step PSI algorithms, the proposed QSF
algorithm reveals two advantages: First, when the background intensity is not accurately
estimated, which is a serious problem in 2-step PSI, the distortion of the retrieved phase
can be released. Second, there is no requirement about the fringe density of interference
pattern, reflecting the phase shift estimation can be realized even if the fringes density
is sparse. The former is a valuable solution to reduce most significant errors in 2-step
PSI, and the latter makes the accuracy robust against different fringe patterns. Both the
simulation and experimental results demonstrate the excellent performance of the proposed
QSF algorithm.

Index Terms: Interferometry, fringe analysis, phase measurement.

1. Introduction
Phase-Shifting interferometry (PSI), a full-field and quantitative phase measurement technology,
has been used in various fields [1], [2] over the past decades. Compared with other phase
measurement methods [3]–[6], by encoding the phase signal into interferogram in a linear way,
PSI offers a deterministic and accurate solution for phase retrieval. Moreover, by introducing
the phase shift between interferograms for signal demodulation, PSI can be realized in temporal
domain [7], [8], spatial domain [9], [10], or their hybrid [11], [12]. In addition, as a computational
imaging technology, different phase coding strategies in PSI will reveal different advantages and
disadvantages. Temporal PSI can fully use the space-bandwidth product of image detector while
the spatial PSI can realize single-shot measurement. In temporal PSI, the requirement of many
phase shift interferograms makes it sensitive to the environmental vibration [13], [14], and the
accuracy of self-calibration algorithm plays an important role in accurate phase retrieval due to
the uncertainty of phase shift [15]–[19]. Recently, although some good solutions are proposed, the
accuracy of self-calibration algorithm is greatly related to the fringe’s number. For instance, in order

Vol. 12, No. 6, December 2020 6901812

https://orcid.org/0000-0003-1827-0861
https://orcid.org/0000-0002-5697-5216


IEEE Photonics Journal Two-Step Phase-Shifting Algorithm

to remove the error induced by the additional aberration removal procedure, the phase aberration
is physically compensated [8], [20], so only the phase induced by the sample can generate fringes
and total fringes’ number will become small. In this case, many algorithms will encounter accuracy
decreasing or even cannot work. Actually, the spatial PSI is a spatial-multiplexing technology, in
which the phase coding and decoding way is similar with Fourier transform phase demodulation
method [21]–[23], so only less than one-third of total spatial-bandwidth product of camera can be
used in conventional spatial PSI due to the inevitable band-pass filtering operation.

2-step PSI is first proposed in [24] and then causes more and more attention [25]–[34], in which
only 2-frame interferograms are enough for phase retrieval while at least 3-frame interferograms are
necessary in conventional PSI, therefore both temporal and spatial information can be fully used.
Consequently, high temporal resolution and vibrational robustness can be expected. Since only
one-time phase shift is necessary, so 2-step PSI is a good solution for dynamic phase measure-
ment. Compared with the spatial multiplexing methods, which can obtain 2-frame interferograms
simultaneously [35]–[38], 2-step PSI can reserve more high frequency component of the encoded
phase corresponding to the details of the measured sample.

Although with significant advantage as a compromise solution of temporal and spatial PSI, 2-
step PSI has a challenge: The background intensity removal operation, which is usually realized
by the temporal subtraction in temporal PSI [39] or the spatial filtering [21] in spatial PSI and
the high-pass filtering operation [40] used in 2-frame interferograms will lead to serious phase
distortion, especially near the location with sparse fringes [17]. To address this, a lot of algorithms
are proposed to remove the background [41]–[43] and it is assumed that the background intensity
is a slowly changed signal relative to the interference intensity, which is not usually valid in practice.
Another task in 2-step PSI is to blindly estimate the phase shift. Generally speaking, the accuracy
of phase shift estimation is also strongly related to the fringe’s number in the interferograms.

In this study, we propose a new 2-step PSI algorithm based on the quadratic spatial filtering
(QSF) of interferograms, in which the phase distortion induced by the background-removal oper-
ation can be released by properly using a direct subtracted-interferogram. What’s more, the blind
phase shift estimation is not related to the fringe number, and the accuracy of phase retrieval is
robust against different fringe patterns. Following, we will introduce the details of the proposed QSF
algorithm.

2. Principle and Analysis
2.1 Basic Procedure of the Quadratic Spatial Filtering (QSF) Algorithm

In general, 2-frame interferograms in 2-step PSI can be described as:

I1 (r ) = A (x, y ) + B (x, y ) cos φ (x, y ) = A (r ) + B (r ) cos φ (r ) (1a)

I2 (r ) = A (x, y ) + B (x, y ) cos [φ (x, y ) + δ] = A (r ) + B (r ) cos [φ (r ) + δ] (1b)

Here, r = (x, y ) denotes 2-dimension coordinate; A(r ) and B(r ) represent the background inten-
sity and the modulation amplitude, respectively; the phase shift between two interferograms is δ.
Usually, in conventional 2-step PSI, the background intensity A(r ) is filtered in advance, we have
that:

P1 (r ) = F−1 {H (f )F [I1 (r ) + I2 (r )]}

= F−1
[
H (f )F

{
2A (r ) + 2B (r ) cos

(
δ

2

)
cos

[
φ (r ) + δ

2

]}]

≈ 2B (r ) cos
(

δ

2

)
cos

[
φ (r ) + δ

2

]
(2a)

P2 (r ) = I1 (r ) − I2 (r ) = 2B (r ) sin
(

δ

2

)
sin

[
φ (r ) + δ

2

]
(2b)
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Here, F and f represent the Fourier transform operation and spatial frequency, respectively; H (f )
denotes a high-pass filter. The aim of direct subtraction between two interferograms (Eq. (2b))
is expected to save time and release the phase distortion induced by the filtering bank. If δ is
known, B(x ) cos φ(x ) and B(x ) sin φ(x ) can be determined by solving linear equations Eqs. (2a) and
(2b). In order to estimate δ, it is needed to make some reasonable assumptions. As we know,
in conventional 2-step PSI, the background removal procedure is based on the fact that A(r ) is a
slowly varying function while the property of B(r ) has not been considered. In principle, B(r ) can
also be assumed as a slowly varying function, we can obtain more information. However, because
B(r ) is multiplied with the cosine/sine terms of phase φ(r ), its utilization is not easy. To address this,
in this study, we implement a quadratic procedure for P1(r ) and P2(r ):

T1 (r ) = P1(r )2 ≈ 2B(r )2cos2
(

δ

2

)
{1 + cos [2φ (r ) + δ]} (3a)

T2 (r ) = P2(r )2 = 2B2 (r ) sin2
(

δ

2

)
{1 − cos [2φ (r ) + δ]} (3b)

Subsequently, by performing the similar procedure in Eq. (2a), we can remove the DC compo-
nents in Eqs. (3a) and (3b) by high-pass spatial filtering as following:

T̃1 (r ) = F−1 {H (f )F [T1 (r )]} ≈ 2B(r )2cos2
(

δ

2

)
cos [2φ (r ) + δ] (4a)

T̃2 (r ) = F−1 {
H (f )F [T2 (r )]

} ≈ −2B2 (r ) sin2
(

δ

2

)
cos [2φ (r ) + δ] (4b)

Where T̃ (r ) denotes the high-pass filtering result of T (r ). Clearly, in Eqs. (4a) and (4b), the same
cosine terms are modulated. That is to say, there is a constant c that can satisfy following equation:

T̃2 (r ) + cT̃1 (r ) ≈ 0 (5)

In order to determine the value of c, we define a cost function as:

K (c) =
∑ ∑

r

[
T̃2 + cT̃1 (r )

]2
(6)

Thus, the value of c can be determined by solving a linear least-square equation. If Eq. (5) can
be satisfied, we have that:

T2 (r ) + cT1 (r ) = L0 (r ) ∝ B2 (r ) (7a)

[P2 (r )]2 + [√
cP1 (r )

]2 = L0 (r ) ∝ B2 (r ) (7b)

Here, L0(r ) is a quasi-constant in spatial domain which is proportional to B2(r ) because from
T1(r ), T2(r ) to T̃1(r ), T̃2(r ), the removed DC term is proportional to B2(r ). Clearly, P1(r ) and P2(r ) are
two linear combinations of B(r ) cos φ(r ) and B(r ) sin φ(r ) as shown in Eqs. (2a) and (2b), so we
have that:

J1 (r ) = P2 (r ) = mB (r ) cos
[
φ (r ) + δ′] (8a)

J2 (r ) = √
cP1 (r ) = mB (r ) sin

[
φ (r ) + δ′] (8b)

Here, δ′ is an unessential piston term which can be neglected and m is a trivial constant. Then,
φ(r ) can be calculated by:

φ (r ) = arg [J1 (r ) + iJ2 (r )] (9)

Note that two important approximations are respectively introduced in Eq. (2a), Eqs. (4a) and
(4b), and these equations can be strictly satisfied only when Fourier spatial filtering can accurately
estimate and remove the DC-terms, i.e., A(r ) and B2(r ). Actually, in most cases, especially when the
fringe’s number is not large enough, the above approximations cannot be satisfied, the distortion
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will appear in the retrieved phase. In this study, we implement 3-time spatial filtering operations
instead of 2-time in most other algorithms [25]–[34]. However, in the obtained interference signals
i.e., J1(r ) and J2(r ) in our QSF algorithm, only J1(r ) is implemented spatial filtering, so the accuracy
should be improved, and the detailed analysis is presented in section 2.2. Note that the second and
third FFT operations in the QSF algorithm are used in Eqs. (4a) and (4b) for c value estimation. The
utilization of FFT and high pass filtering is to remove B2(r ) instead regarding it as a constant, like
the strategy in ellipse fitting technology, the former is suitable for the non-uniformity of illumination.

2.2 The Distortion Analysis for 2-Step PSI

In this section, we will discuss how the distortion of the retrieved phase is introduced in the spatial
filtering operation, and then implement a quantitative characterization about this distortion. First,
we consider an interference term by the filtering operation. If the size of interferogram is set as
Sx × Sy , we have that:

h (r ) ⊗ B (r ) cos [φ (r ) + δ] =
∑ τx=Sx ,τy=Sy∑

τx=1,τy=1

h (τ ) B (r − τ) cos [φ (r − τ ) + δ]

=
∑ τx=Sx ,τy=Sy∑

τx=1,τy=1

h (τ ) B (r − τ) cos [φ (r ) + f (r, τ ) + δ]

= cos [φ (r ) + δ]
∑ τx=Sx ,τy=Sy∑

τx=1,τy=1

h (τ) B (r − τ) cos [f (r, τ )]

− sin [φ (r ) + δ]
∑ τx=Sx ,τy=Sy∑

τx=1,τy=1

h (τ) B (r − τ) sin [f (r, τ )]

=
√

T (r ) cos [φ (r ) + δ + η (r )] =
√

T (r ) cos
[
φ′ (r ) + δ

]
(10)

Where ⊗ denotes the spatial convolution, and the functions f (r, τ ), T (r ), η(r ), φ′(r ) are defined
as:

f (r, τ ) = φ (r − τ ) − φ (r ) (11a)

T (r ) =
⎡
⎣∑ τx=Sx ,τy=Sy∑

τx=1,τy=1

h (τ) B (r − τ) sin [f (r, τ )]

⎤
⎦

2

+
⎡
⎣∑ τx=Sx ,τy=Sy∑

τx=1,τy=1

h (τ) B (r − τ ) cos [f (r, τ )]

⎤
⎦

2

(11b)

η (r ) = arccos

⎡
⎢⎢⎢⎢⎣

∑ τx=Sx ,τy=Sy∑
τx=1,τy=1

h (τ) B (r − τ ) cos [f (r, τ )]

√
T (r )

⎤
⎥⎥⎥⎥⎦ (11c)

φ′ (r ) = φ (r ) + η (r ) (11d)

From Eqs. (11a)–(11d), we can see that in the interference term, the encoded phase distribution
is changed from φ(r ) to φ′(r ) and the modulation amplitude is changed from B(r ) to

√
T (r ) after the

spatial filtering operation. And from Eq. (10), it is found that the phase distortion appears in the
spatial domain, but the phase shift remains unchanged after the spatial filtering operation. Clearly,
this result will provide a guarantee of c value estimation from Eqs. (4) and (5).
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Fig. 1. The flow chart of releasing phase distortion with the proposed QSF algorithm.

What’s more, Eqs. (11a)-(11d) present a symbiotic character between the modulation amplitude
distortion (B(r ) to

√
T (r )) and the phase distortion (φ(r ) to φ′(r )) by the spatial filtering. That is to

say, the more serious phase distortion exists, the more serious modulation amplitude distortion
appears. Intuitively, if the spatial filtering operation introduces the distortion in the retrieved phase,
by replacing a spatial filtered-interferogram with a direct subtracted-interferogram (Eq. (2b)), we can
realize the accuracy improvement of phase retrieval. At the first glance, it seems that all 2-step PSI
methods are benefit from the similar strategy. Actually, this improvement can be realized only when
the information of modulation amplitude is properly used for 2-step phase retrieval. For comparison,
we present the result of GS algorithm [27], in which a spatial filtered-interferogram is replaced with
a direct subtracted-interferogram. It is found that the accuracy is not improved as expected but
deteriorated instead. Next, we will explain the reason that the QSF algorithm release the phase
distortion by properly using the direct subtracted-interferogram. For ease of understanding, Fig. 1
gives a flow chart to present the reason and procedure of releasing phase distortion with the
proposed QSF algorithm.

In the conventional strategy, based on the spatial filtering, 2-frame background-removed interfer-
ograms can be described as:

Ĩ1 (r ) =
√

T (r ) cos [φ (r ) +η (r )] (12a)

Ĩ2 (r ) =
√

T (r ) cos [φ (r ) +η (r ) +δ] =
√

T (r ) cos [φ (r ) +η (r )] cos (δ) −
√

T (r ) sin [φ (r ) +η (r )] sin (δ)
(12b)

In Eqs. (11a)-(11d), η(r ) represents the additional phase term reflecting the phase distortion and√
T (r ) represents the distorted modulation amplitude. In order to obtain

√
T (r ) sin[φ(r )+η(r )] from
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Ĩ1(r ) and Ĩ2(r ), we have that:

√
T (r ) sin [φ (r ) +η (r )] = Ĩ2 (r )

sin (δ)
− cot (δ) · Ĩ1 (r ) = k1 Ĩ2 (r ) − k2 Ĩ1 (r ) (13a)

k1 = 1
sin (δ)

, k2 = cot (δ) (13b)

In this case, we can obtain accurate k1 and k2 because even both the phase and modulation are
distorted, the following relationship [27] is still valid:

∑ τx=Sx ,τy=Sy∑
τx=1,τy=1

T (r ) cos2 [
φ′ (r )

] �
∑ τx=Sx ,τy=Sy∑

τx=1,τy=1

T (r ) sin
[
φ′ (r )

]
cos

[
φ′ (r )

]
(14a)

∑ τx=Sx ,τy=Sy∑
τx=1,τy=1

T (r ) cos2 [
φ′ (r )

] ≈
∑ τx=Sx ,τy=Sy∑

τx=1,τy=1

T (r ) sin2 [
φ′ (r )

]
(14b)

However, after introducing the direct subtracted-interferogram and considering the distortion,
Eqs. (2a) and (2b) can be rewritten as:

P1 (r ) = F−1 {H (f r )F [I1 (r ) + I2 (r )]}

= F−1
[
H (f r )F

{
2A (r ) + 2B (r ) cos

(
δ

2

)
cos [φ (r ) + δ]

}]

≈ 2
√

T (r ) cos
(

δ

2

)
cos

[
φ (r ) + δ

2

]
(15a)

P2 (r ) = I1 (r ) − I2 (r ) = 2B (r ) sin
(

δ

2

)
sin

[
φ (r ) + δ

2

]
(15b)

Note that the modulation amplitude in P1(r ) is different from P2(r ), i.e.,
√

T (r ) and B(r ). Due to the
loss of low-frequency spatial filtering, there is the expression

√
T (r ) < B(r ) according to Parseval’s

theorem. In this case, we cannot properly normalizeP1(r ) and P2(r ) due to:

∑ τx=Sx ,τy=Sy∑
τx=1,τy=1

T (r ) cos2 [
φ′ (r )

]
<

∑ τx=Sx ,τy=Sy∑
τx=1,τy=1

T (r ) sin2 [
φ′ (r )

]
(16)

Thus, the assumption of GS algorithm will become invalid.
On the contrary, the QSF algorithm provides a convenient solution for the normalization of P1(r )

and P2(r ). As mentioned in Eqs. (10)-(11) that the distortion of φ(r ) is accompanied with the
distortion of B(r ). Meanwhile, the distortion of B(r ) is reflected as the fringe’s intensity, by changing
it from a slowly varying function to a rapidly varying function, the spatial high-frequency component
will increase. That is to say, in QSF algorithm, by compensating high-frequency component in
the obtained modulation amplitude according to Eqs. (4-7), we can normalizeP1(r ) and P2(r ) in
a suitable way. As a result, this directly subtracted interferogram can be properly used, and the
accuracy of phase retrieval can be improved.

3. Numerical Evaluation
In order to verify the above theoretical analysis, we use 2-frame simulated fringe patterns to
perform phase retrieval with three different algorithms, i.e., GS algorithm with 2-frame spatial
filtered-interferograms Ĩ1(r ), Ĩ2(r ) named as GS1, GS algorithm with 1-frame direct subtracted-
interferogram and 1-frame spatial filtered-interferogram Ĩ1(r ), I1(r ) − I2(r ) named as GS2 and the
proposed QSF algorithm with Ĩ1(r )+Ĩ2(r ), I1(r ) − I2(r ).
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Fig. 2. (a)–(d) simulation details; (a1)–(a3) the phase distribution obtained by the QSF, GS1 and GS2
algorithm, respectively; (b1)–(b3) the phase errors between (a) and (a1-a3), respectively; (c1)–(c3) the
normalized modulation amplitudes obtained by the QSF, GS1 and GS2 algorithm, respectively, in which
root mean square (RMS) is used to describe the spatially changing rate of a given function.

Fig. 3. The variations of RMSEs with different (a) phase shifts; (b) SNRs of interference patterns, in
which A(x, y ) = 50ex p[−0.1(x2 + y2)] + 50, B(x, y ) = 50ex p[−0.1(x2 + y2)].
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Fig. 4. (a)-(b) The interferograms and reference phases corresponding to the dense fringes and sparse
fringes used in Fig. 4(c), respectively; (c) the variation of RMSEs with different K values, in which
A(x, y ) = 50ex p[−0.1(x2 + y2)] + 50, B(x, y ) = 50ex p[−0.1(x2 + y2)].

In the above simulation, we set A(x, y ) = 50ex p[−0.05(x2 + y2)] + 50 and B(x, y ) =
50ex p[−0.05(x2 + y2)] with �x = �y = 0.01, then perform the normalization:

A(x, y )normal ized = A (x, y ) − Ā (x, y )
A (x, y )

(17a)

B(x, y )normal ized = B (x, y ) − B̄ (x, y )
B (x, y )

(17b)

In order to evaluate the simulation results, we introduce two parameters of root mean square
error (RMSE ) and root mean square (RMS) to represent the quality of phase retrieval and the spatial
variation of a given function, respectively:

RMSEφ(x,y ) =
√∑

x,y [φ (x, y ) − φ0 (x, y )]2

N
(18a)

RMSB(x,y ) =

√√√√∑
x,y

[
B(x,y )−B̄(x,y )

B̄(x,y )

]2

N
(18b)

Where φ0(x, y ) represents the ground truth of the phase distribution and B̄(x, y ) denotes the
spatial average of B(x, y ), N denotes the total pixels’ number. Clearly, by using a direct-subtracted
interferogram, the accuracy of phase retrieval with GS algorithm will become worse ( RMSEφ(x,y )=
0.079rad in GS1 and RMSEφ(x,y )= 0.177rad in GS2). And from Figs. 2(b1)-2(b3) and Figs. 2(c1)-
2(c3), we can see that the larger spatial variation in the obtained modulation amplitude, the more
serious phase distortion.

Furthermore, we present the accuracy variation of phase retrieval with the phase shift and noise
level. In Fig. 3(a), the interferograms are corrupted by the random noise with signal noise ratio
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Fig. 5. The variation of phase retrieval with the nonuniformity of illumination by using the GS1 and
QSF algorithms, respectively. (a1-a3) the distribution variation of A(x, y, t ) = 50ex p[−0.01t (x2 + y2)] +
50 with the time; (b1-b3) the distribution variation of B(x, y, t ) = 50ex p[−0.01t (x2 + y2)] with the time;
(c) the variation of phase error with the time.

(SNR) of 45dB and the phase shifts are changed from 0.3rad to 2.8rad; and in Fig. (3b), the phase
shift is a constant of 1.5rad and the SNR of 2-frame interferograms are changed from 30dB to
50dB. Clearly, this result demonstrates good performance of the proposed QSF algorithm.

As we know, another important property of PSI method is good accuracy stability under different
fringe density. Using the proposed QSF algorithm, Fig. 4 shows the RMSEs of phase retrieval
under different fringe density, in which P0 is chosen as a reference phase model, and the function
φK = [1 − 0.025(K − 1)]P0 is used to generate interference patterns with different fringe density.
The larger K value, the sparser fringe patterns.

Clearly, along with K increasing, the accuracy of phase retrieval with the GS1 and QSF algorithms
is decreased due to the phase distortion increasing. Meanwhile, it is found that in QSF algorithm,
when the fringe pattern becomes sparse, the accuracy advantage with a directly subtracted
interferogram becomes obvious.

Furthermore, in QSF algorithm, it is assumed that B(x, y ) is a slow variation signal, so we need
to examine the accuracy of phase retrieval with the uniformity of illumination. As shown in Fig. 5,
we set A(x, y, t ) = 50ex p[−0.01t (x2 + y2)] + 50, B(x, y, t ) = 50ex p[−0.01t (x2 + y2)]. It is found when
t = 21, A(x, y ) and B(x, y ) are respectively reduced to about 50% and 10% of the spatial maximum
value near the edge of interferogram(A(x, y )>B(x, y ) must be satisfied). That is to say, although the
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Fig. 6. The quantitative evaluation of phase retrieval with the QSF and GS1 algorithms, respectively.
The reference phases and interferograms used (a1) (b1) in the first group; (a2) (b2) in the second
group; (c1) (c2) the phase distributions of (b1) (b2) obtained by the QSF algorithm, respectively; (d1)
(d2) the phase errors between (b1) (b2) and (c1) (c2), respectively; (e1) (e2) the phase distributions of
(b1) (b2) obtained by GS1 algorithm, respectively; (f1) (f2) the phase errors between (a1) (a2) and (e1)
(e2), respectively.

accuracy of phase retrieval is decreased with the nonuniformity increasing of illumination, the QSF
algorithm still works well under a reasonable illumination.

4. Experimental Research
In this section, we will verify the feasibility of the proposed QSF algorithm by the experimental
research. A He-Ne frequency stabilized laser with wavelength of 632.8nm is employed as the
illumination source, a holographic microscopy system is built based on the Mach-Zehnder interfer-
ometer. A HeLa cell is used as the sample. In the first group, the circular fringes with the aberration
phase in the interferogram are captured, and the reference phase is calculated from 150-frame
temporal phase-shifting interferograms by using the advanced least square iterative algorithm
(AIA) [15] method. Subsequently, the 1st and 25th interferograms are chosen to perform phase
retrieval, the obtained results with the QSF and GS1 algorithms are shown in Figs. 6(a1)-6(f1),
respectively. In the second group, in order to remove the phase aberration, the interferometric
system is modified as a telecentric one [44]–[45], in which the fringe number is reduced. In this

Vol. 12, No. 6, December 2020 6901812



IEEE Photonics Journal Two-Step Phase-Shifting Algorithm

case, we can estimate the phase aberration induced by the sample. Actually, the fringe number
decreasing will lead to the accuracy decreasing of background intensity estimation in 2-step PSI,
and the phase distortion induced by the spatial filtering will become obvious when the fringe
becomes sparse. Consequently, the proposed QSF algorithm will reveal obvious advantage under
the suppression of phase distortion. As shown in Figs. 6(a2)-6(f2), after the unwrapping operation
[46], in GS1 algorithm, a serious cloud-like phase distortion appears (Fig. 6(e2)) while the phase
retrieved by the proposed QSF algorithm reveals high accuracy (Fig. 6(c2)) (The Matlab codes and
the experimental data are shared at [47].

5. Conclusion
In this study, we propose a new 2-step PSI solution named as QSF algorithm to perform phase
retrieval, in which both interference signal separation and blind phase shift estimation can be realize
by using the quadratic spatial filtering (QSF) operation of interferogram. Specially, it is found that the
phase distortion induced by the spatial filtering operation, a main error source in the existed 2-step
PSI algorithm, can be effectively released by using the QSF algorithm. Moreover, the obtained
results demonstrate that the blind phase shift estimation is not related to the statistical property of
phase distribution, so the needed fringe number is reduced. Both the simulation and experimental
results demonstrate excellent performance of the proposed QSF algorithm, and this will provide a
good solution for phase retrieval in 2-step PSI.
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