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Abstract: We propose and experimentally demonstrate a photonic-assist measurement
of microwave frequency by utilizing two cascaded photonic crystal (PC) cavities. By in-
jecting different powers into the PC cavities, the device transmission spectra could be
effectively manipulated. Consequently, the central frequencies of the microwave photonic
filters (MPFs) can be flexibly adjusted. By utilizing the different MPF responses, adjustable
amplitude comparison functions (ACFs) could be constructed. As the mapping relationships
between the ACF ratios and the microwave frequencies are unique, the frequency with
dynamic ranges could be measured according to the adjustable ACFs. The experimental
results show that the measurement range of the microwave frequency is from 9 GHz to
19 GHz and the largest measurement errors are lower than 0.15 GHz. More importantly, the
required optical power to manipulate the nanocavities is highly energy-efficient for on-chip
nonlinear effect-based microwave measurements. The energy-efficient silicon device with
compact size and low power is significant for dynamic frequency measurements in on-chip
microwave systems.

Index Terms: Microwave frequency measurement, photonic crystal cavity, low power, low
measurement error.

1. Introduction
In radio frequency (RF) systems, microwave frequency measurement is a fundamental function
so as to transmit the RF signals to the specialized equipment and receivers [1]–[3]. Especially,
photonic-assist approaches for microwave frequency measurements have attracted widespread
attention due to its advantages of immunity to electromagnetic interference and large bandwidth
[4]–[9]. In the past decades, numerous photonic methods for instantaneous microwave frequency
measurements have been demonstrated based on optical fiber technology [10]–[12], which are
unfavorable for large-scale on-chip integration. To realize better reliability and lower cost, silicon-
on-insulator (SOI) technology provides a promising solution for on-chip optical signal processing
[13]–[16]. One important theory is to build an amplitude comparison function (ACF). Subsequently,
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Fig. 1. Illustration of the photonic crystal nanocavity.

on the basis of the unique mapping relationship between the frequencies and power ratios in the
function monotonic regions [17]–[21], the microwave frequency could be estimated. But the ACFs
of many schemes are difficult to be flexibly adjustable, which could not meet the requirements
of dynamic measurements and reconfigurable systems. Some important approaches have been
proposed based on the tunable laser diodes [22] or multiple modulators [23]. Especially, nonlinear
effects in integrated devices have been also utilized to realize adjustable ACFs, such as stimulated
Brillouin scattering (SBS) [5] and Kerr nonlinearity [14]. Nevertheless, the relatively high powers
of these schemes are not beneficial to build low-power microwave systems. Due to the above
limitations, more compact devices with low-power mechanisms for photonic measurement of
microwave frequency are highly desirable.

In this paper, a photonic-assisted scheme for microwave frequency measurement has been
demonstrated by using energy-efficient cascaded photonic crystal (PC) cavities, whose size is
as compact as 100 μm2. With the measurement errors lower than 0.15 GHz, the microwave
frequency ranges are larger than 10 GHz which could be further largely improved. Moreover, the
measurement range could be flexibly adjusted with low power consumption, which is sufficient to
be utilized in low-power dynamic microwave systems.

2. Operation Principle
The schematic image of the PC nanocavity is illustrated in Fig. 1, which includes a PC L3
nanocavity and a straight waveguide. The optical field injecting from port 1, the nanocavity optical
mode and the optical signal outputting from port 2 are written as S+1, u and S-2, respectively.
The symbols r, a and 2d represent the radii of the air holes, lattice constant and light propagation
distance [24].

The relationships between u, light amplitudes S+1 and S-2 can be described as follows [24]
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where the propagation constant is written as β and ω0 is the cavity resonant angular frequency.
The decay rates are described by 1/τ in (from the PC cavity into the waveguide) and 1/τ v (from
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Fig. 2. Simulation of the nanocavity transmissions.

the PC cavity into the free space). The quality (Q) factors are expressed as Qv (Qv = τ vω0/2) (the
vertical Q) and Qin (Qin = τ inω0/2) (the in-plane Q).

Owing to the cavity small mode volume and long resonant photon lifetime, the nonlinear effects
(including Kerr effect, thermo-optic effect and plasma dispersion effect) in the PC nanocavity
could be extremely enhanced. Therefore, the cavity transmission characteristics can be efficiently
manipulated when injecting low input powers, which benefits for realizing energy-efficient signal
processing devices.

Due to the nonlinear effects, the resonant frequency of the PC cavity could be denoted by

ω′ = ω0+�ωKerr + �ωthermal + �ωplasma (4)

where the resonant frequency shifts are written as �ωKerr (induced by the Kerr effect), �ωthermal

(thermo-optic effect) and �ωplasma (plasma dispersion effect). The thermal effect dominates the
resonance shifts of the nanocavity. The detailed analysis of the cavity nonlinear effects could refer
to ref. [25].

To theoretically research the transmission spectrum of the PC nanocavity, Fig. 2(a) shows the
PC transmission spectra which are simulated by utilizing the above equations and the nonlinear
coupled mode models [26]. The parameter τ v and the cavity resonant wavelength are set to 0.6 ns
and 1551.532 nm, respectively. Detailed physical parameters are given by ref. [27]. With injecting
optical powers around −16 dBm and −25.9 dBm, the cavity transmission spectra are shown as the
red dashed curve and the green solid curve, respectively. It is clear that the PC nanocavity could
be tuned with high efficiency.

Figure 3(a) shows the operation principle of the photonic-assisted microwave frequency mea-
surement is shown in Fig. 3(a). The laser diode 1 (LD1) and LD2 emit the optical carriers λ1

and λ2 respectively which are both injected into the phase modulator (PM). In the meantime, the
PM is driven by a random RF signal to achieve optical double sideband (ODSB) signals. Then the
ODSB signals are sent into the cascaded PC cavities. The original resonant wavelengths of the two
nanocavities are λc1 and λc2, shown as the green solid line in the dotted box. The optical carriers
λ1 and λ2 are far away from the cavity resonances. The frequency intervals between the optical
carriers λ1 and the resonant peak λc1, λ2 and λc2 are f1 and f2, respectively. The output signals
from the PC cavities are processed by the two tunable optical filters (TOFs) and photodetectors
(PDs). Finally, Fig. 3(b) shows that two responses of the microwave photonic filters (MPFs) with
central frequencies of f1 (the blue line) and f2 (the green line) could be obtained in the two PDs.

The obtained response in the PD could be represented by [28]

iAC (f ) ∝ 4π2 jP0J0(γ )J1(γ )H∗(fs )H (fs + fRF ) (5)

where P0 is the input power, J0 and J1 are the first-order and second-order Bessel functions, γ

represents the phase modulation depth, fRF and fs are the RF signal frequency and optical carrier
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Fig. 3. (a) Illustration of the frequency measurement principle. (b) MPF responses. (c) ACF12.
(d) ACF34.

frequency respectively, and H(f ) is the amplitude transmissions of the cavity [cavity 1: H1(f ), cavity
2: H2(f )].

The corresponding ACF12 can be denoted by

ACF 12 = iAC (f1)
iAC (f2)

= H1
∗(fs1)H1(fs1 + fRF )

H2
∗(fs2)H2(fs2 + fRF )

(6)

The measurement principle is described as follows. The two MPF responses (iAC1 and iAC2)
could be used to construct ACF12 (ACF12 = iAC1/ iAC2), as shown in Fig. 3(c) and Eq. (6). In
the monotonic increasing region of ACF12, the microwave frequency and power ratio is a unique
mapping relationship, thus the frequencies of the microwave signals could be estimated from f1 to
f2. Subsequently, the control powers are injected into the cascaded PC cavities. Due to the cavity
nonlinear effects, the device transmission spectra could be effectively shifted [the red dashed curve
in the dotted box of Fig. 3(a)]. Consequently, the frequency intervals between λ1 and the resonant
wavelength of cavity 1, λ2 and the resonance of cavity 2 are changed to f3 and f4, respectively.
Thus the MPF frequencies can be accordingly tuned to f3 and f4. Therefore, Fig. 3(d) shows that
the achieved ACF34 could be used to measure the microwave frequency from f3 to f4. Namely,
the measurement range of the microwave frequency could be flexibly manipulated by adjusting the
control powers.

To experimentally verify the measurement system of the RF frequency, we fabricated the cas-
caded PC L3 cavities on an SOI commercial wafer (the top silicon thickness: 220 nm). We utilized
the E-beam lithography (EBL) to transfer the cavity layout to the photoresist and the inductively
coupled plasma (ICP) to etch the upper silicon layer downward for 220 nm. The scanning electron
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Fig. 4. The nanocavity SEM image.

Fig. 5. (a) Measured transmission of the cascaded cavities. (b) The shifted transmissions of cavity 1.

microscope (SEM) image of the cascaded PC L3 cavities is shown in Fig. 4. The air hole radius
and lattice constant of the cavity are 135 nm and 450 nm, respectively. The footprint of the whole
device is 100 μm2. The vertical grating couplers are used to couple the transverse-electric (TE)
polarized light from the fiber to the silicon device. The coupling loss for a single side is 4 dB.

The measured transmission spectrum of the silicon cascaded nanocavities is shown as the
blue line in Fig. 5(a). The resonant wavelengths of cavity 1 and cavity 2 are 1551.532 nm and
1552.59 nm, respectively. The extinction ratios are both higher than 20 dB. The Q factors of the
two PC cavities are 2.28 × 104 and 2.16 × 104, respectively. The simulated transmission of cavity
1 is shown as the red dashed line, which is almost consistent with the measured response. The
responses of the PC cavities are stable in a constant temperature environment, which could be
realized by a temperature controller. To investigate the influence of the nonlinear effects on the
cavity transmission characteristics, a control light with an optical power around −16 dBm (after
subtracting the coupling loss) is utilized to manipulate the silicon cavity. Figure 5(b) illustrates the
measured shifted transmission (the green solid curve) and the simulated transmission (the black
dashed curve) of cavity 1. The measured results show that the tuning characteristics of the silicon
nanocavities are energy-efficient.

3. Experimental Results
At first, the two optical carrier wavelengths λ1 and λ2 are fixed at 1551.46 nm and 1552.458 nm,
which are 9 GHz and 16.5 GHz from the resonances of cavity 1 and cavity 2, respectively. The input
microwave power is -5 dBm. Consequently, Fig. 6(a) illustrates that the frequencies of the obtained
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Fig. 6. (a) Two experimental MPF responses. (b) ACF12. (c) The difference between the measured and
input microwave frequencies. (d) Frequency errors.

microwave responses are 9 GHz (the green line) and 16.5 GHz (the blue line), respectively.
The rejection ratios are about 47 dB and 44 dB, respectively. Subsequently, on the basis of the
operation principle in Fig. 3, Fig. 6(b) shows that the two measured MPF responses are utilized to
construct ACF12. The frequency range and vertical height of the ACF monotonic increasing region
are from 9 GHz to 16.5 GHz and 80 dB, respectively. Namely, the frequency resolution is about
10.67 dB/GHz, which could effectively identify the microwave frequency. Under multiple measure-
ments, Fig. 6(c) shows the difference between the measured and input microwave frequencies
ranging from 9 GHz to 16.5 GHz. As shown in Fig. 6(d), the most frequency measurement errors
are around 0.1 GHz and the largest error is lower than 0.15 GHz.

Then, the device transmission spectrum is manipulated based on the nonlinear effects. With
injecting optical power of −13.2 dBm, the two cavity resonances would be shifted to 1551.556 nm
and 1552.61 nm, respectively. Consequently, the frequency intervals between λ1 and the shifted
resonant wavelength of cavity 1, λ2 and the shifted resonance of cavity 2 change to 12 GHz and
19 GHz, respectively. Thus the central frequencies of the achieved another two MPF responses
are 12 GHz and 19 GHz, shown as the green line and blue line in Fig. 7(a). Accordingly, Fig. 7(b)
shows that a new ACF34 can be built through using the above microwave filters. The monotonic
increasing region of ACF34 is from 12 GHz to 19 GHz with 86 dB vertical height. Namely, the
frequency resolution is about 12.3 dB/GHz. With multiple measurement steps, Fig. 7(c) shows
the difference between the measured and input microwave frequencies. Figure 7(d) illustrates that
the largest frequency error is lower than 0.15 GHz. From Figs. 6 and 7, it can be seen that with
maintaining the measurement errors lower than 0.15 GHz, the RF frequency can be investigated
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Fig. 7. (a) Another two microwave responses. (b) ACF34. (c) The difference between the measured and
input microwave frequencies. (d) Frequency errors.

Fig. 8. The comparison between the measured ACF and the simulated ACF.

from 9 GHz to 19 GHz. Moreover, the measurement range could be flexibly adjusted with injecting
a low power. Hence, the PC L3 cavities provide an energy-efficient solution for on-chip microwave
measurements.

The theoretical responses of the PC cavity could be utilized to achieve the simulated ACF (the
red dotted line), which is compared with the measured ACF (the blue solid line) in Fig. 8. The
measurement errors are mainly attributed to the variation of the modulation characteristic and
imperfect property of the silicon device. As we know, the modulation characteristic is related with the
power of the input microwave signals. Consequently, RF drivers with precise amplification should
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be used to equalize the RF power. The property of the silicon device (including the sidewall rough-
ness) is determined by the fabrication technology. Better fabrication process and post-processing
techniques could be used to improve the performance of the cavity. Meanwhile, by designing the PC
cavities at the critical coupling, the cavity could achieve the highest extinction ratios. In this case,
the MPF rejection ratios and ACF frequency resolutions can be accordingly increased, which are
significant to improve the frequency measurement accuracy. Moreover, the required powers could
be reduced. By adopting more advanced manufacturing methods and post-processing techniques
[29]–[31], the device loss and Q factor can be largely improved [32]. On the other hand, the air
hole positions of the PC cavity could be optimized to further increase the cavity Q factor and tuning
efficiency [33]–[36]. Once the cavity Q factor is improved [37]–[41], the power consumption of the
silicon device could be significantly reduced [42]–[45].

4. Conclusion
A photonic-assist scheme to measure the microwave frequency is experimentally demonstrated
by using the silicon cascaded PC cavities. By using a low power to manipulate the cavities,
the RF frequency can be characterized from 9 GHz to 19 GHz with flexibly adjustable ranges
and 0.15 GHz measurement errors. There are three major advantages of the proposed scheme.
Firstly, the proposed approach demonstrates microwave frequency measurements with flexibly
adjustable measurement ranges based on the nonlinear effects in nano-cavities, which could avoid
the requirement of tunable laser diodes. Secondly, the required power consumption to drive the
integrated devices of other nonlinear effect-based schemes are 20 dBm [9], 18.7 dBm [14] and
−3.9 dBm [18], respectively. Thirdly, the device sizes of the above schemes are 6.5 cm long [9] and
35 cm long [14]. In contrast, the power consumption and device size of the proposed method are
as low as −13.2 dBm and 100 μm2, respectively. Therefore, with various advantages of low-power
consumption, adjustable measurement range, low errors and compact device size, the proposed
approach is highly energy-efficient for dynamic microwave frequency measurements in radar and
communication systems.
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