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Abstract: Chest X-ray (CXR) images are usually used to identify the causes of patients’
symptoms, including the classes of lung or heart disorders. In visualization examination,
CXR imaging in anterior–posterior (A–P) views is a preliminary screening method used
by clinicians or radiologists to diagnose possible lung abnormalities, such as pneumoth-
orax (Pt), emphysema (E), infiltration (In), lung cancer (M), pneumonia (P), pulmonary
fibrosis (F), and pleural effusion (Ef). However, the identification of the causes of multiple
abnormalities associated with coexisting conditions presents a challenge. In ruling out
a suspected lung disease, the signs and symptoms of physical conditions need to be
identified to arrive at a definitive diagnosis. In addition, low contrast CXR images and manual
inspection restrict automated screening applications. Hence, this study aims to propose an
iterated function system (IFS) and a multilayer fractional-order machine learning classifier
to rapidly screen the possible classes of lung diseases within regions of interest on CXR
images and to improve screening accuracy. For digital image processes, a two-dimensional
(2D) fractional-order convolution is used to enhance symptomatic features. The IFS with
nonlinear interpolation functions is then used to reconstruct the 2D feature patterns. These
reconstructed patterns are self-affine in the same class and thus help distinguish normal
subjects from those with lung diseases. The accuracy rate is thus improved. Pooling
is performed to reduce the dimensions of the feature patterns and speed up complex
computations. A gray relational analysis-based classifier is used to identify the possible
classes of the signs and symptoms of lung diseases. For digital CXR images in A-P view,
the proposed multilayer machine learning classifier with k-fold cross-validation presents
promising results in screening lung diseases and improving screening accuracy rate relative
to traditional methods. The proposed classifier is evaluated in terms of recall (99.6%),
precision (87.78%), accuracy (88.88%), and F1 score (0.9334).

Index Terms: Chest X-ray, iterated function system, multilayer machine-learning decision-
making classifier, fractional-order convolution, nonlinear interpolation function.
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1. Introduction
Lung diseases may refer to several types of diseases or disorders that affect the pulmonary
functions in one or both sides of lungs and the right/left upper, middle, or lower lung regions; they
are caused by influenza, infection, tuberculosis, pulmonary edema, aspiration pneumonia (AP),
and lung cancer, which can lead to breathing problems or acute respiratory distress syndrome
(ARDS). Smoking is the most common cause of respiratory diseases and a common risk for lung
cancer. The incidence of this case has increased in about 25% of lung cancers patients who are
never-smokers [1], [2]. Several lung diseases, such as asthma and lung cancer, are caused by
environmental factors. Asthma symptoms include a chronic respiratory condition with difficulty in
breathing due to airway inflammation, allergies, or pollution. Asthma is a reversible obstructive
lung disease. Subjects with asthma have improved breathing flow rates compared with those with
chronic obstructive pulmonary disease (COPD). COPD, emphysema (E), and chronic bronchitis
are serious respiratory diseases and associated with cigarette smoking; they reduce air flow and
cause difficulty in breathing. Acute bronchitis is the sudden infection of the airways caused by a
virus. The above diseases all affect the airways.

Lung diseases affect the alveolus; these diseases include pneumonia (P), tuberculosis, pul-
monary edema, lung cancer, and ARDS. P presents with lung infection and infiltration symptoms,
such as those of the novel coronavirus disease (COVID-19), severe acute respiratory syndrome
(SARS), ARDS, AP, and influenza [3]–[6]; these conditions are caused by bacterial, viral, or fungal
infections, as shown in Fig. 1. P causes inflammation of the alveolus, resulting in filling of the lungs
with fluid or pus and reduced ability to hold air. The death rate of P is high in Taiwan, ranking
third after cancer and heart diseases and accounting for 13.4 thousand deaths [males (68.3%)
higher than females (45.7%)] in 2019 [7]. A high risk was also observed among individuals older
than 65 years, type 2 diabetes mellitus, and cardiovascular diseases. Pulmonary infiltration (In) is
caused by P, tuberculosis, and nocardiosis; it results in the accumulation of abnormal substances,
such as pus, blood, or protein, within cells or body tissues or spreads through the interstices of the
lung [8]. In addition, lung diseases of the pleura include pleural effusion (Ef) and pneumothorax
(Pt). Ef is caused by heart failure, P, pulmonary hypertension, malignancy, and chest surgery.
Large pleural Ef size (>1,000 mL) [9], [10] will affect the breathing, and Ef should be drained.
Pt may occur in COPD for about 70% of these cases [11], [12]. The above lung diseases can be
diagnosed using visualization examination with the upright chest X-ray (CXR) in anterior–posterior
(A-P) or lateral view, chest computed tomography (CT) scan, and chest ultrasound [4], [9]–[10],
[13]–[15]. In visualization examination, a CXR has A-P or lateral view for bilateral lung imaging
in a standing position, which can be digitalized to apply for the rapid detection of abnormalities
using artificial intelligent methods [4], [16]–[18]. CXR can also be used to observe the disease
progression during hospital admission. For example, in the Streptococcus pneumoniae pneumonia
presented in Fig. 2, the subject (gender: female, age: 25 years) showed an opacity spreading to
the right upper lung lobe and a developing opacity in the left lung (LL) [marked by the bounding
box with a blue dashed line in Figs. 2(b) and 2(c)]. This result is consistent with the widespread
infection in the right and left regions from Day 0 to Day 3. The right heart border was not observed.
The original CXR images can be enhanced to clearly to point out the opacity regions resulting from
infection and effusion in the right and left lungs [bounding boxes in Fig. 2(c)]. Hence, CXR images
can inform physicians about appropriate treatments and help them rule out any suspected lung
disease.

When any lung disease gradually develops, the lung becomes inflamed and stiff, preventing the
alveoli from fully expanding to limit the oxygen exchange. Upright CXR imaging is a rapid method
to screen various lung conditions. Through CXR image inspection, any lesion may appear as white
portions in the right/left chest cavity, and air spaces appear as black portions, as shown in Figs. 1
and 2, respectively. Hence, digital CXR images can be used to directly identify and locate the
lesions in A-P or lateral views. However, manual inspection has limitations: (1) poor-quality CXR
images need to be enhanced to view the contents within the chest cavity; (2) diagnostic results
depend on clinicians’/radiologists’ interpretations and experiences; (3) considerable time is needed

Vol. 12, No. 4, August 2020 4100218



IEEE Photonics Journal Enhancement of Chest X-Ray Images

Fig. 1. Original X-ray image, image enhancement, and right/left feature patterns with 2D FOC operation
for pneumonia (P) with lung infection and infiltration. (a) Novel COVID-19, (b) SARS, (c) ARDS, (d) AP.

for identifying single and multi classes for any amount of CXB images. Thus, in this study, a two-
dimensional (2D) fractional-order convolution (FOC) operation (with appropriate fractional-order
parameters, 0.0 < v < 1.0) [19], [20] in horizontal and vertical directions is applied to enhance
images or detect edges within a bounding region of interest (ROI) (right/left feature patterns in
Fig. 1). This operation can remove noise, sharpen specific features, or brighten an image so as to
easily detect pixel value changes and identify changes in the right / left lung tissues [21]. This spatial
domain-based convolution operation can preserve high-frequency contour features and improve
low-frequency texture details in a smoothing region, and it does not introduce noise during image
enhancement [10], [20].

In real world, fractals reconstructing patterns can be produced by the iteration of one or more
affine transformations (ATs) which can yield a new attractor in the final image. With a finite set
of ATs, we can reconstruct a new feature pattern using several ATs, with each AT having a 2 ×
2 transformation matrix and a 2 × 1 translational vector, the so-called “Iterated Function System
(IFS)” [21]–[24]. Hence, in this study, Katz’s algorithm [24], [25] is used to estimate fractal dimension
(FD) with finite sampling data. After the enhancement of CXR images with the 2D FOC operation,
specific features on the bounding ROI can be sharpened and brightened. The IFS with nonlinear
interpolation functions (NIFs) is proposed to model affine maps for reconstructing feature patterns,
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Fig. 2. Progression of CXR images during hospital admission (Day #0 - #3) for streptococcus pneumo-
niae pneumonia in frontal view. (a) Original CXR images in Gray level, (b) Original CXR in pseudo color
image, (c) CXR enhancement in pseudo color image.

including eight classes: normal (N) control, Pt, E, In, M, P, F, and Ef. The IFS model can produce
various fractal feature patterns in vector forms. Hence, after image enhancement and feature
extraction with a specific bounding box (B-box), the new feature pattern can be reconstructed
in the higher dimensional feature space and lead to separability in the feature space to improve
the screening accuracy in nonlinear separable classification or in multilabel image classification
problems. Then, a gray relational analysis (GRA) [26]–[29] based on a multilayer machine vision
classifier is carried out to deal with nonlinear separable tasks for multiclass classification to
distinguish the N control from those with lung diseases. In the validation stage, A-P CXR images
from the National Institutes of Health (NIH) CXR database (NIH Clinical Center) are enrolled [30].
The K-fold cross- validation is used to verify the performance of the proposed multilayer machine
vision classifier with recall (%), precision (%), accuracy (%), and F1 score [31].

The remainder of this article is organized as follows: Section II describes the methodology for
multilabel image classification problems, including the experimental setup, image enhancement
with 2D FOC process, feature pattern reconstruction of the IFS, and GRA-based multilayer clas-
sifier design. Sections III and IV present the experimental results and discussion, respectively, in
comparison with the traditional multilayer neural network and the conclusion.

2. Methodology
2.1 Experimental Setup

The NIH Clinical Center has released private CXR images from more than 30,000 patients for scien-
tific research; the images consisted of A-P view CXR images with labeled lung and cardiac-related
diseases [4], [16]–[18], [30]. These images with labeled classes will allow scientific researchers to
analyze the diseases affecting the airways, alveoli, interstitium, pleura, and blood vessels. Through

Vol. 12, No. 4, August 2020 4100218



IEEE Photonics Journal Enhancement of Chest X-Ray Images

TABLE 1

The Profile of the Enrolled Subjects [30]

clinical research, physicians or clinician investigators can translate research results into better ther-
apies, treatments, and interventions in clinical trials. However, patients may have single or multiple
symptoms, which will cause difficulty in localization of pathologies. Therefore, a computer-aided
decision-making (CADM) tool must be designed for the multi-label image classification problems.

These collected images with labeled classes allow clinical and engineering researchers to
analyze the datasets for designing the CADM tool. In lectures [4], [16]–[18], [32]–[37], digital image
process, statistical, multilayer machine learning, and deep learning methods have been applied
to various machine vision classifiers for automatic lung and cardia-related disease classifications,
such as Haar features, histogram of oriented gradients features, rule-based image segmentation
[32]–[36], linear discriminators, multilayer neural networks, deep learning neural networks, support
vector machines, and so on [4], [16]–[18], [37]–[40]. In multilayer classifiers, supervised backprop-
agation or unsupervised competitive-based learning algorithms are used to train the multilayer
neural networks or deep learning neural networks. However, these methods require the assignment
of the network connecting weights in multi-hidden layers by using iteration computations, which will
increase the rate of design cycle

The GRA algorithm [26]–[29] was used to design a classifier to identify the multi label classes in
the right lung (RL) and LL. The model consists of a radial Bayesian network (RBN) with Gaussian
activation functions, gray relational pattern analysis with Euclidean distance (ED), and maximum
and minimum operations, which are straightforward mathematical operations for nonlinear mapping
of the EDs to the degrees of similarity between the training and untraining patterns; thus, regardless
of the ED, the range of relational grade, as gray grade (GG), can be bounded in a specific closed
range [0, 1]. A recognition coefficient will enhance the distinguishing relational grade in GG. There-
fore, by feeding the clinical dataset through an ongoing investigation, artificial intelligence-based
CADM method can gradually refine diagnostic precision in clinical applications. In this study, 270
subjects aged 1–89 years (mean age: 47.82 ± 16.22 years), including 120 females (mean age:
46.55 ± 15.21 years) and 150 males (mean age: 48.84 ± 17.35 years), are selected for validation
of the proposed classifier (as seen in Table 1) [30], [41]. CXR images are collected from the 270
subjects and converted into a tagged image file format. Each image is digitized to a resolution of 96
× 96 dots per inch, thereby producing 24 bits per pixel which are then incorporated into a 190 × 230
pixel image (43,700 pixels). Spatial domain-based convolution with fractional-order mask is used to
enhance the images on bounding ROIs. Then, the right and left feature patterns are extracted with
a specific 50 × 50 B-box from different subjects with single or multiple lung-related diseases. The
dataset was based on feature patterns, which can be divided into two groups of dataset: one group
(trained patterns) for training the classifier in training stage and the remaining feature patterns
(untrained patterns) for testing the classifier in each fold cross-validation in recalling stage. The
performance is evaluated by recall (%), precision (%), accuracy (%), and F1 score indices.

2.2 Image Enhancement With 2D Fraction-Order Convolution Process

Fractional-order multi-scale convolution process has been designed for digital signal process and
image (texture) enhancement. This process can be used to enhance specific features (possible
abnormalities) in both LL and RL in a digitized CXR image, offering a gray gradient-based feature
patterns to solve the classification and contour search [10], [34]–[35], [38] for identifying and
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Fig. 3. Eight fractional-order operators in eight directions. (a) negative x-coordinate, (b) right upward
diagonal, (c) positive y-coordinate, (d) right downward diagonal, (e) positive x-coordinate, (f) left
downward diagonal, (g) negative y-coordinate, (h) left upward diagonal.

locating the lesions. A fractional-order operator has multiple symmetric directions and can rotate
clockwise every 45° in eight directions, as seen 8 fractional- order operators in Figs. 3(a) to
3(h), including negative x-coordinate, right upward diagonal, positive y-coordinate, right downward
diagonal, positive x-coordinate, left downward diagonal, negative y-coordinate, and left upward
diagonal directions, respectively. A multiscale general form with a Grümwald–Letnikov fractional-
order differentiator [19] for signal process can be expressed as follows:

d vs(t )
dt v

∼= t −vnv

�(−v)

n−1∑
k=0

�(k − v)
�(k + 1)

s
(

t − kt
n

)
(1)

where s(t) is the time-varying signal in a 1D signal; v is the fractional-order parameter, 0 < v <

1, v � R; �(•) is the gamma function; and n is the finite number of nonzero terms. The general
fractional-order form is a polynomial function determined as the sum of nonzero terms. For a 2D
digitized CXR image processing, Equation (1) can be modified and be proximately expressed in
horizontal (x) and vertical (y) directions by simplifying the fractional-order differentiator [19]:

d v I(x, y )
dxv

∼= a0I(x, y ) + a1I(x − 1, y ) + a2I(x − 2, y ) + a3I(x − 3, y ) + · · · + an−1I(x − n + 1, y ) (2)

d v I(x, y )
dyv

∼= a0I(x, y ) + a1I(x, y − 1) + a2I(x, y − 2) + a3I(x, y − 3) + · · · + an−1I(x, y − n + 1) (3)

where I(x, y) is the pixel value at location (x, y) in a CXR image, I(x, y) � [0, 255]; x = 1, 2, 3, …, W,
and y = 1, 2, 3, …, H, in which W and H are the image width and height, respectively; parameters
a0, a1, a2, a3, …, an-1, and an are the polynomial coefficients and can be expressed respectively
as [19]

a0 = 1, a1 = (−v), a2 = (−v)(−v + 1)
2

, a3 = (−v)(−v + 1)(−v + 2)
2

, . . . ,

ak = �(k − v)
(k )!�(−v)

, · · · , an−1 = �(n − v − 1)
(n − 1)!�(−v)

, an = �(n − v)
n!�(−v)

(4)

These polynomial coefficients can be used to set the elements of fractional-order operator, as
seen in Fig. 3, where k → n = 2m − 2, the dimension of fractional-order mask, (2m − 1) × (2m
− 1), can be designed, and n should be an even finite number (n = 2, 4, 6, …) to ensure that the
fractional-order mask has a specific center. Hence, a 3 × 3, 5 × 5, …, or (2m − 1) × (2m − 1)
fractional-order mask, m = 2, 3, 4, …, can be designed for the local convolution process. In this
study, the size of m = 2 is selected to construct 3 × 3 mask matrices. Then, two fractional-order
operators with three coefficients, a0, a1, and a2 (as a1 be a center in a mask matrix), can be
implemented in both horizontal (x) and vertical (y) directions:

Mx =
⎡
⎣0 a2 0

0 a1 0
0 a0 0

⎤
⎦ , My = MT

x =
⎡
⎣ 0 0 0

a2 a1 a0

0 0 0

⎤
⎦ (5)
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where Mx and My are shown in Fig. 3(a) (negative x-coordinate) and Fig. 3(g) (negative y-
coordinate), respectively. For digital CXR imaging, the spatial domain-based fractional-order op-
erators are used to enhance the CXR images by convolving the horizontal and vertical directions
[10]:

Gv
x I(x, y ) =

h−1
2∑

i=− h−1
2

h−1
2∑

j=− h−1
2

Mx (i, j )I(x + i, y + j ) (6)

Gv
y I(x, y ) =

h−1
2∑

j=− h−1
2

h−1
2∑

i=− h−1
2

My ( j, i )I(x + j, y + i ) (7)

where h = 3 is the size of the mask matrix for the 3 × 3 fractional-order operator; and i and j are
the row and column numbers in the mask matrix, respectively. The fractional-order gradient can be
computed and normalized as follows [10]:

∇v I(x, y ) =
√

(Gv
x I)2 + (Gv

y I)2 ∼= |Gv
x I| + |Gv

y I| (8)

∇ I = |Gv
x I| + |Gv

y I|
255

, (9)

where �I is the normalized gray gradient, �I � [0, 2]. With the simplified forms, |Gv
x I| and |Gv

y I|,
each convolution computation involves row and column elements, Mx (i, j ) = My ( j, i ). Each element
is multiplied by the corresponding input discrete pixel values, I(x, y), x = 1, 2, 3, …, W, and y = 1,
2, 3, …, H, which are used to enhance CXR images via convolution with structure tensor masks
Mx and My .

2.3 Feature Patterns Reconstruction

An IFS [21–24] is a model to reconstruct the feature pattern as stream data by NIFs, which
can perform family functions with different FDs. Its model is a finite set of mapping functions for
interpreting the sampling data to be modeled as a self-similarity pattern. Given a data sequence
from the flattening process layer, � = [∇ I1, ∇ I2, ∇ I3, ·, ∇ Ii , ·, ∇ IN ], i = 1, 2, 3, …, 2,500 (W = 50,
H = 50, and N = 2,500 in this study), ∇ Ii ∈ [0, 2], the pth interpolation map, �p, p = 1, 2, 3,..., N,
can be presented in matrix form using IFS:

�p

([
i

∇ Ii

])
=
[

ai bi

ci di

] [
i

∇ Ii

]
+
[

ei

fi

]
(10)

For a flattening pattern in a vector form, Equation (1) can be represented as follows:

�p(i ) = ai i + bi∇ Ii + ei (11)

�p(∇ Ii ) = ci i + di∇ Ii + fi , (12)

where parameters, bi = ei = fi , are set to zero, and the parameter, ai = 1, is fixed; the function
�p(i ) = i will become a linear interpolation function. For reconstructing the feature pattern, function
�p(∇ Ii ) as a NIF can map the stream data onto a reconstructed feature pattern with n interpolation
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Fig. 4. Original feature patterns and reconstructed feature patterns for eight classes. (a) N, (b) Pt,
(c) E, (d) In, (e) M, (f) P, (g) F, (h) and Ef.

Fig. 5. Feature patterns and mean gray gradients versus classes of lung diseases. (a) The 223 feature
patterns for eight classes, (b) 223 feature patterns with fractal interpolation reconstruction for eight
classes, (c) mean gray gradients versus classes of lung diseases, and (d) mean gray gradients versus
classes of lung diseases with fractal interpolation reconstruction.

points, and a reconstructed pattern can be created point by point as follow:

�p(∇ Ii ) = ci�p(i ) + di∇ Ii (13)

�p(i ) = 1
2

mod (�p(∇ Ii ), N ′) (14)

where parameters ci = 1
N and di = D = log10(N ′ )

log10(N ) ; D is the FD, D � (1, 2) for all feature patterns, 0 <

N < N’, N’ = 190 × 230 (43,700) is the number of CXR image pixel, N = 50 × 50 (2,500) is the
number of B-box pixel, di = D = 1.3657 in this study, and mod(•) is the modulo operator. FD can
be estimated by Katz’s algorithm [24], [25]. Equation, �p(i ), i = 1, 2, 3, ·, N, �p(i ) ∈ [0, 2], is a
simple form to reconstruct the complicated pattern. The fractal interpolation method as Equations
(13) and (14) is carried out to reconstruct the feature patterns with the data samples, and the
resulting reconstructed feature patterns are self-affine in the same class, including normal (N)
condition (25), Pt (34), E (15), In (28), M (25), P (46), F (25), and Ef (25), as seen in Fig. 4.

For example, given 223 feature patterns for eight classes (Fig. 5(a)), the reconstructed feature
patterns were created using Equations (13) and (14), as shown in Fig. 5(c)). The statistics for
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Fig. 6. Multilayer machine vision classifier for typical lung disease screening, including image enhance-
ment process, lesion extraction with B-box, flattening process, pattern reconstruction, pooling process,
and pattern recognition.

mean gray gradients and their standard deviations were obtained using the 223 feature patterns,
as shown in Figs. 5(b) and 5(d). The correlation between the mean gray gradients and symptom
classes indicates that the changes of gray gradients in a linear regression curve (R2 = 0.8552) with
a positive correlation between the mean gray gradients and eight classes. The correlation could be
used to quantify the gray gradient’s feature patterns to identify the possible classes. In Fig. 5(d),
feature patterns are recreated by fractal interpolation in gray gradient, and reconstructed feature
patterns of eight classes, including single class (N, Pt, E, In, M, P, F, Ef) and multi classes (Pt & E,
E & In, P & In, P & F, Pt & Ef, M & Ef), were dispersed in eight regions of the feature space, which
rendered the features more distinguishable to aid in classification for separating true positive (TP)
from true negative (TN). Then, the multilayer machine vision classifier is used to screen the normal
control and lung disease subjects. The next section will introduce the classifier method.

2.4 Multilayer Classifier Design

After feature pattern reconstruction (as presented by symbol “ 5©” in Fig. 6), a pooling process
is used to decrease the dimension of the feature pattern from 1 × 2,500 to 1 × 625. The pooling
feature pattern, �(i), i = 4i’, i’ = 0, 1, 2, 3, …, n’-1 (n’ = 625 in this study), is obtained by taking every
4th sample of the feature pattern �p(i ). Then, the pooling feature pattern is fed into the input layer
of a GRA-based classifier to perform the pattern recognition tasks, as indicated by the symbol “ 6©”
in Fig. 6. A GRA method uses the numerical measure of similarity between two sequence data,
defining the reference sequence (testing feature pattern), �0 = [φ1(0), φ2(0), ·, φi (0), ·, φ625(0)],
and Q comparative sequences (training feature pattern), �q = [φ1(q), φ2(q), ·, φi (q), ·, φ625(q)], q
= 1, 2, 3, …, Q. The output of GRA as GG distributed between zero and one, as a “Gaussian
function”, can be defined as [28]:

Gray grade (GG):

g(q) = ξ exp

(
−1

2

(
E D(q)2

σ 2

))
(15)

Euclidean distance (ED):

E D(q) =
√∑n′

i=1
(�di (q))2

,�di (q) = ∇ϕi (0) − ∇ϕi (q) (16)
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Variance:

σ 2 = (�dmax − �dmin)2,

⎧⎨
⎩

�dmin = min
∀i∀q

[�di (q)]

�dmax = max
∀i∀q

[�di (q)]
(17)

where �dmax and �dmin are the maximum and minimum deviation values, respectively; the standard
deviation (σ ) is estimated by (�dmax − �dmin). In Equation (15), g(q) is used to measure the
similarity degree between a reference sequence (testing pattern) and Q comparative sequences
(training patterns). g(q) is inversely proportional to the EDs, that is, when E D → E Dmax, g(q) → 0,
and E D → E Dmin, g(q) → ξ ; ξ is the recognition coefficient (RC), ξ � (0, 5]. Parameter ξ is used to
make the GG clearly distinguishable between pattern �0 and qth pattern �q so as to select ξ >> 1
to increase contrast; Q comparative sequences are created by the reconstructed feature patterns,
as indicated by the classes N, Pt, E, In, M, P, F, and Ef in Fig. 5(c).

When input reference sequence �0 is similar to any comparative sequence �q in Q datasets,
the g(q) will reach a higher value, which can be obtained by referring to the criterion index q∗ as
follows:

γq =
{

1,, g(q) ≥ 0.125,q = q∗
0,q �= q∗ , γq ∈ [0, 1] (18)

where the threshold value of 0.125 is set in screening high values for any possible class. In this
study, the associated class for reference sequence �0 can be encoded as connecting weighed
values, wq j ∈ [0, 1], between Q GG functions and eight classes (Q × 8), that is, j = 1, 2, 3, …,
8, using binary values with a value of “1” denoting a possible class and a “0” value for all other
classes. For example, for a single class #N, the weight values, wq j , can be denoted as [N, Pt, E, In,
M, P, F, Ef] = [1, 0, 0, 0, 0, 0, 0, 0]; for multiple classes (labels) #P and #F, wq j can also be denoted
as [0, 0, 0, 0, 0, 1, 1, 0]. If �0 belongs to any class, then the final output of the GRA-based classifier
can be represented as follows:

y j =
Q∑

q=1

wq jγq

/
Q∑

q=1

γq,wq j =
{

1, q ∈ Cl ass# j
0, q /∈ Cl ass# j

(19)

O j =
{

1, y j ≥ 0.50
0, y j < 0.50

, (20)

where the threshold value of 0.5 is set to confirm the disease present (value 1) or disease absent
(value 0); the output vector can be labeled as O = [N, Pt, E, In, M, P, F, Ef] = [o1, o2, o3, o4, o5, o6,
o7, o8], o j ∈ [0, 1]. With an openly available CXR image database and ongoing clinical investigation
dataset [30], [41], the CRA-based classifier can gradually train and refine diagnostic precision in
clinical applications, as shown in the flowchart of the screening procedure in Fig. 7, including the
dataset collection and labeling, feature extraction, classifier training and validation in learning and
recalling stages, and classifier refinement with new clinical CXR images. Indexes, including recall
(%), precision (%), accuracy (%), and F1 score, are used to validate the classifier performance in
the recalling stage and clinical validation.

3. Experimental Results and Discussion
In this study, 270 subjects were collected from the CXR database; the subjects included 230
individuals from the NIH CXR database [30] with typical lung diseases (N, Pt, E, In, M, P, F, and
Ef) and 40 subjects from COVID-19 CXR database [41] with novel COVID-19 (25), SARS (7),
Streptococcus pneumoniae pneumonia (5), and ARDS (3). The subjects were classified into (1)
female (120 subjects) and (2) male groups (150 subjects) (as seen in Table 1) [30], [41]. Among
the subjects, novel COVID-19 indicated several unique features, which were confirmed by using
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Fig. 7. Flowchart for rapid lung disease screening, including the training stage, recalling stage, and
cross-validation.

real-time reverse transcription–polymerase chain reaction (PCR) and conventional PCR method.
The infected subjects with P might also present symptoms on CXR and CT images compared with
those that had moderate characteristics for reliable identification of a possible case of COVID-19.
However, PCR is a general technique for replicating a particular region of DNA, and it is used to
match crime scene DNA with suspects. The DNA amplified by PCR might be sent for sequencing,
visualized by electrophoresis, or cloned into a plasmid for further experiments, such as biological
research, medical diagnostics, or branches of ecology [42]–[44]. This rapid process requires about
45–60 min to complete 40 cycles, depending on the particular protocol and instrument used
[45]. Upright CXR imaging is a first-line examination method used to directly inspect and locate
any abnormality with bilateral involvements, such as multiple lobular and subsegmental areas of
consolidation constitute or In in intensive care unit for novel COVID-19 cases [46]. Hence, CXR
images could be used to rapidly screening-related lung diseases.

Feature patterns (446), including 50 Ns, 68 Pts, 30 Es, 56 Ins, 50 Ms, 92 Ps, 50 Fs, and 50
Efs, were captured from all subjects, and they were divided into 223 trained datasets and 223
untrained datasets. Each dataset is a pair of a reconstructed feature pattern (input patterns in
Fig. 5(c)) and a label pattern with binary values (output pattern). Each output pattern was encoded
with value of 1 or 0 for the eight classes. A value of “1” was given for a possible class associated
with the input pattern, and the other values were encoded as “0” using Equation (19). All feature
patterns were extracted from the CXR images by using a screenshot–graphical user interface
(LabWindowsTM / CVITM, 2019, NITM, Austin, TX, USA) and labeled by radiologists as single or
multiple classes. In clinical practice, clinicians or radiologists could move the 50 × 50 B-box
(2,500 pixels) to locate and select possible lesions, and each feature pattern could be captured
in a screenshot. In image enhancement, the 2D FOC operation with fractional-order parameters,
0.00 < v < 1.00, was used to enhance the feature patterns (Fig. 8). The feature patterns were
over-enhanced with v < 0.30 and were decayed with v > 0.40. The fractional-order parameters
from 0.01 to 0.90 could not totally fit the CXR image enhancement. The appropriate parameters,
v = 0.30–0.40, could adequately sharpen and brighten the specific features for possible focus on
the right or left cavity, as shown in P and F in Figs. 8(a) and 8(b). Hence, these feature patterns
could be offered to train and validate the proposed classifier in learning and recalling stages. The
proposed multilayer machine vision classifier was implemented on a tablet PC using a high-level
programming language in LabVIEW (NITM, Austin, TX, USA) and MATLab 9.0 (MathWorks, Natick,
MA, USA). These application programs were operated using a graphics processing unit (GPU) on
a tablet PC (Intel Xeon, CPU E5-2620, v4, 2.1 GHz and 64 GB of RAM; GPU: NVIDIA Quadro
P620, 64-bits Windows 10.0 operating system) to speed up the digital image processing and lung
disease screening. Experimental tests indicated the GRA-based classifier’s training and testing
performances to validate the proposed automated screening methods, as detailed below.
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Fig. 8. CXR image enhancement with fractional-order parameters from 0.01 to 0.90. (a) Case study of
subject with P, (b) case study of subject with F.

3.1 Multilayer Machine Vision Classifier Training and Testing: A Case Study

In image enhancement, 2D FOC operation in the horizontal and vertical directions was used to
enhance the original CXR image within the ROI, as shown by the subject with novel COVID-19
(symptoms: fever and cough). The fractional-order parameter (v) was set to v = 0.3 for all CXR
images in this study. After digitalized image enhancement, feature pattern involving lesion in
matrix form was extracted with a 50 × 50 B-box, as presented by the right ( 1©) and left ( 2©)
feature patterns in Fig. 9(c). Then, we rescaled the feature pattern from 1 × 2,500 to 1 × 625 in
vector form using the flattening process, pattern reconstruction, and pooling process. The pattern
reconstruction for eight classes could be shown as the vector form (green line) in Fig. 4 or matrix
form in Fig. 10. This 1 × 625 pooling feature pattern was then fed into the inputs of GRA-based
classifier. In the learning stage, 223 trained patterns (25 Ns, 34 Pts, 15 Es, 28 Ins, 25 Ms, 46 Ps,
25 Fs, and 25 Efs) were randomly selected from eight labeled classes to train the machine vision
classifier, and the 223 remaining feature patterns as untrained patterns were randomly selected to
evaluate the performance of the classifier with a K-fold cross-validation at the recalling stage.

As shown in Fig. 6, the structure of GRA-based classifier could be determined with the
223 input–output paired feature patterns, including �q = [φ1(q), φ2(q), φ3(q), ·, φ625(q)] and
[wq1, wq2, wq3, ·, wq8] = [0/1, 0/1, 0/1, ·, 0/1], wq j ∈ [0, 1], q = 1, 2, 3, …, 223, j = 1, 2, 3, …,
8, which are denoted by binary values, “1” or “0”, for possible class identification. The 223 × 625
and 223 × 8 connecting weighted values were stored in weighting matrixes. Then, the classifier
structure could be set by 625 input nodes (n’=625) in the input layer, 223 GG functions in a RBN
(Q = 223), a maximum operation layer, and eight output nodes (eight classes) in the output layer.
Parameter RC was ξ = 5 in each GG function. The proposed GRA-based classifier was employed
to perform the pattern recognition task in a straightforward mathematical operation for numerical
and binary data computations without adjusting any of the parameters at the learning stage. For
223 trained patterns as testing patterns, a learning accuracy of 100% was guaranteed to identify
the eight classes in the learning stage. The total CPU time was about 4.8787 s.

For a case study, as presented in Figs. 9(a) and 9(b), a subject with COVID-19 had fever
and cough (follow-up of 5 days) and revealed worsening of bilateral perihilar and lower region
consolidation [41], which were caused by filling of the small airway with fluid (pus or water) or dead
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Fig. 9. CXR images of a subject with fever and cough indicating novel COVID-19 [41]. (a) Initial CXR
image: bilateral perihilar region consolidation, (b) follow-up CXR image (5 days later): worsening of
bilateral perihilar and lower region consolidation, (c) digital image enhancement and bilateral feature
patterns, (d) EDs and GGs versus the number of trained patterns for numerical computation results in
RL and LL.

Fig. 10. Feature patterns in matrix form. (a) Original feature patterns for eight classes; (b) restructured
feature patterns for eight classes.

white blood cells in bilateral lungs. Consolidation symptoms might cause difficulty in breathing in
the subject (shortness of breath). Two untrained feature patterns (pattern 1©: mean gray gradient
= 0.6202; pattern 2©: mean gray gradient = 0.6412) were extracted from the CXR image of the
RL and LL (Fig. 9(c)), and these patterns could be fed into the GRA-based classifier to identify the
possible classes. In the RBN, with the GG functions, EDs were employed to measure the similarity
degree between 2 untrained patterns and 223 trained patterns. The high similarity degree would
indicate the minimum ED value and maximum GG value, for example, two untrained patterns
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TABLE 2

Experimental Results of 10-Fold Cross Validation for GRA-Based Classifier With 2D FOC and Pattern
Reconstruction Processes

Note: 1) Recall (%)= ( T P
T P+F N ) × 100%, where TP and FN are the true positive and false negative, respectively.

2) Precision (%)= ( T P
T P+F P ) × 100%, where TP and FP are true positive and false positive, respectively.

3) Accuracy (%)= ( T P+T N
T P+F N+T N+F P ) × 100%, (4) F1 Score= 2T P

2T P+F P+F N [47].

were most similar to the #198th and #196th trained patterns within the subdataset of Class #F
(Fig. 9(d)). This case was also likely similar to Class #P, as #139th, #163rd, #167th, and #173rd
trained patterns within the subdataset of Class #P. Then, the final outputs were computed using
Equations (15) to (20):

� outputs in RL: Y = [0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00] and O7 = 1 for identifying
the Class #F in RL;

� outputs in LL: Y = [0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00] and O7 = 1 for identifying the
Class #F in LL.

The above screening process required a CPU time of 0.2210 s to identify Class #F for the
screening task. In clinical investigation, P is the most common cause of lung consolidation,
ground glass opacity (hazy opacity), atelectasis, idiopathic pulmonary fibrosis, and idiopathic
interstitial pneumonia, which are usually caused by bacteria, viruses, a novel coronavirus, or
gastro-esophageal reflux. In the early stage, lung consolidation and In were the possible symptoms,
which might have gradually developed into F symptoms in several days. The findings confirmed that
the proposed method could provide promising results for rapidly screening the possible classes and
offer the similarity degree to trace the disease progressions from Class #P to Class #F.

3.2 K-Fold Cross-Validation and Comparison With a Traditional Setups

At the recalling stage, the 223 untrained patterns were randomly selected from the remaining
datasets: 25Ns, 34 Pts, 15 Es, 28 Ins, 25 Ms, 46 Ps, 25 Fs, and 25 Efs, as seen in Table 2. We
evaluated the performance of the GRA-based classifier with 2D FOC and pattern reconstruction
process using tenfold cross- validation. The mean recall (%), mean precision (%), mean accuracy
(%), and mean F1 score [47] were used as indices to validate the screening performance by using
true positive (TP), false positive (FP), and false negative (FN), and were also used for comparing
the traditional setups Through experimental tests, a mean recall of 99.66% and a mean precision of
87.78% for identifying the “disease present (TP)” and a mean accuracy of 88.88% for determining
the possible correct classes (for both “disease present” and “disease absent”) were obtained in
tenfold cross-validation as mean mismatches (25) with 1 failure in N, 5 failures in Pt, 3 failures
in E, 3 failures in In, 1 failure in M, 5 failures in P, 4 failures in F, and 3 failures in Ef, as seen
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TABLE 3

Experimental Results of 10-Fold Cross Validation for GRA-Based Classifier With 2D FOC

experimental results in Table 2. A mean precision of 87.78% was greater than 80.00%, as a positive
predictive value (PPV), to evaluate the performance of the proposed classifier. The recall(%) as the
sensitivity (mean TP: 174, mean FN: 1) was a higher index to identify the possible TP in 7 major lung
diseases. The mean F1 score = 0.9334 also indicated a high value to evaluate the performance of
the proposed GRA-based classifier, which could provide promising results for rapid screening.

In addition, the 2D FOC process, maximum pooling process, flattening processes, and a
GRA-based classifier [27] could also be integrated into a multilayer machine vision classifier.
The extracted feature patterns were of size 50 × 50, we also flattened and pooled them from
50 × 50 to 1 × 625. Hence, the same structure of GRA-based classifier was setup. With tenfold
cross-validation using the same datasets as seen in Table 3, a mean recall of 98.99%, a mean
precision of 83.59%, a mean accuracy of 83.48%, and a mean F1 score of 0.9063 were obtained as
mean mismatches (35) with 2 failures in N, 6 failures in Pt, 3 failures in E, 4 failures in In, 4 failures
in M, 6 failures in P, 6 failures in F, and 4 failures in Ef. These experimental results were presented
in Table 3. PPV was also greater than 80.00% for identifying the possible “disease present (TP).” In
contrast to the GRA-based classifier with 2D FOC process, the experimental results indicated that
the proposed classifier had higher mean recall, mean precision, and mean accuracy in the clinical
indication. The proposed classifier also had a higher mean F1 score (0.9334) than one (0.9063)
of the GRA-based classifier without pattern reconstruction process for measuring the harmonic
mean of recall and precision indexes, and also improved the screening accuracy from 83.48%
(mean 2 mismatches in TN and 33 mismatches in TP) to 88.88% (mean 1 mismatch in TN and 24
mismatches in TP) for identifying the TP and TN cases among the total number untrained patterns.

The experimental tests showed that the proposed method performed better than the GRA-based
classifier with 2D FOC in terms of PPV and accuracy for screening subjects with single or multiple
symptoms. However, the CXR scans in A-P views were restricted by their low contrast, medium
quality, and lack of three-dimensional (3D) information for indicating details in the chest cavity.
In a case study, a subject (male, aged 83 years, with hypertension and Type 2 diabetes mellitus
[41]) was diagnosed with COVID-19 pneumonia with fever (38.9 °C) and cough. The TP result
was confirmed by PCR examination. After digital image enhancement with 2D FOC operation,
lung consolidation and pulmonary emphysema were found in the right middle, right lower, and left
middle lobes, as indicated by the red B-boxes in Fig. 11(a). Then, two feature patterns (bilateral
mean gray gradients = 0.4463 and 0.5477) were extracted and fed into the GRA-based classifier to
identify the possible classes. As presented in Fig. 11(c), with the GG functions in the RBN, the EDs
were employed to measure the similarity degree between 2 feature patterns and 223 trained feature
patterns. The minimum ED value and high similarity degree were associated with the 49th and 76th
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Fig. 11. CXR and CT imaging scans for a subject with novel COVID-19 P [40]. (a) Original CXR film,
image enhancement, and feature patterns for bilateral lungs; (b) original CT film, image enhancement,
and feature patterns for bilateral lungs; (c) EDs and GGs versus the number of trained patterns for
numerical computation results in RL and LL.

patterns in the RL and LL, respectively. The GRA-based classifier identified classes #Pt and #In
and established In risk to continuously provide notice of disease progression. With CT imaging
examination (Fig. 11(b)), we observed multiple ground glass opacities as initial consolidation
phenomena (segmental consolidation), resulting in the risk of acute pulmonary embolism. In taking
CT imaging scans, a computer can be used to obtain the cross-sectional films of internal structures
that could clearly indicate the extent of lung damage caused by consolidation, In, or F. Such films
can help narrow down the diagnosis and guide decisions for follow-up treatment and analysis. With
3D information, CT imaging could make internal structures, such as tumors, lung, heart, and blood
vessels in the chest cavity, increasingly apparent, thereby allowing radiologists and physicians to
identify the locations, textures, shapes, densities, and sizes of lesions. CT images could also be
enhanced by increasing the sharpness and brightness of specific features (bilateral mean gray
gradients = 0.6332 and 0.6698) via the 2D FOC operation (Fig. 11(b)). Such imaging could also
facilitate the examination of abnormalities found in A-P CXR images. In clinical applications, CXR
imaging serves as a primary diagnostic method for assessing lung diseases. Hence, radiologists
and physicians could use the proposed screening method with CXR images to rapidly assess
medical conditions and achieve early disease detection.

4. Conclusion
In this study, a multilayer fractional-order machine learning classifier had been used to rapidly
screen any lung lesion in bilateral lung zones. The screening process consisted of a 2D FOC pro-
cess, a flattening process, a pattern reconstruction with IFS, a pooling process, and a GRA-based
classifier. For 2D FOC process, the fractional-order parameter v = 0.3 was selected for all enrolled
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CXR images to enhance possible lesions in specific B-boxes (50 × 50 pixel) from low contrast CXR
films. Then, IFS with NIFs was used to restructure the feature patterns, which made the feature
patterns more distinguishable for further pattern recognition. The quantitative restructured patterns
were positively correlated with the classes of lung diseases. After digitalized image processes, the
bilateral feature patterns (right / left lung) were fed to the GRA-based classifier, which could identify
the possible class and display the similarity degree for assessing causes and diseases progress.
Through 10-fold cross-validation, the feasibility of the proposed multilayer classifier, relative to the
GRA-based classifier with 2D FOC, was validated and evaluated with a mean recall of 99.66%,
a mean precision of 87.78%, a mean accuracy of 88.88%, and a mean F1 score of 0.9334 and
a mean of 25 mismatches in TP and TN cases. All score indexes of the proposed classifier were
higher than those of traditional setups for TP case identification. Hence, for the feature patterns fed
with 2D FOC and IFS processes, the GRA-based classifier could improve the accuracy rate from
83.48% to 88.88% to separate “disease present” from “disease absent” and enable clinicians to
respond for treatment actions. In clinical applications, new case studies could be continually mined
from clinical investigations, and new CXR images of these cases could be analyzed and appraised
by clinicians and radiologists to achieve continuous data collection for retraining the classifier. The
proposed GRA-based classifier could adapt itself by using adding real world feature patterns in the
RBN without parameter assignments, statistical methods, and complex iteration computations. For
further CADM development and to address the bottleneck in CXR, GRA-based classifier could also
train new medical images, such as CT imaging or high resolution magnetic resonance imaging, to
enhance screening functions which could raise the accuracy rate and keep the intended medical
purpose in medical devices or commercial off-the-shelf platforms for further clinical applications.
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