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Abstract: In this paper, time-domain finite element methods for the full system of Maxwell’s
equations with cubic nonlinearities in 3D are presented, including a selection of computa-
tional experiments. The new capabilities of these methods are to efficiently model linear
and nonlinear effects of the electrical polarization. The novel strategy has been developed
to bring under control the discrete nonlinearity model in space and time. It results in energy
stable discretizations both at the semi-discrete and the fully discrete levels, with spatial
discretization using edge and face elements (Nédeléc-Raviart-Thomas formulation). In
particular, the proposed time discretization schemes are unconditionally stable with respect
to a specially defined nonlinear electromagnetic energy, which is an upper bound of the
electromagnetic energy commonly used. The approaches presented prove to be robust
and allow the modeling of 3D optical problems that can be directly derived from the full
system of Maxwell’s nonlinear equations, and allow the treatment of complex nonlinearities
and geometries of various physical systems coupled with electromagnetic fields.

Index Terms: Finite element analysis, nonlinear maxwell’s equations, backward euler
method, SDIRK method, energy stability, computational modeling, visualization.

1. Introduction
Nonlinear Optics deals with phenomena that occur when the optical properties of a material change
under the action of light. It is a key technology for optical communication, data processing and
storage. Nonlinear optical phenomena are nonlinear in the sense that the response of the medium
to the light is nonlinearly dependent on its intensity. Frequently, the behavior of light waves in a
material is modeled by means of a third-order polarization response, that is the polarization P(E)
is a cubic polynomial of the electric field intensity E. This modeling approach is widely accepted for
not too small, but still moderate intensities. At very high intensities, which shall not be considered
here, it is no longer adequate. The books [1]–[4] describe the fundamental concepts of nonlinear
Optics.

Since the investigation of light propagation in nonlinear materials involves the solution of non-
linear partial differential equations, various numerical methods for approximating the solutions
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dominate the practice, for instance finite difference time-domain (FDTD) methods, slowly varying
envelope approximations (SVEA), beam propagation methods (BPM), time-domain finite element
methods (TDFEM) – among them time-domain discontinuous Galerkin (TDdG) methods –, pseudo-
spectral methods, finite volume methods (FVM) (sometimes also called finite integration techniques
(FIT)), and many more.

The more conventional FDTD methods are regarded as robust simulation schemes for linear
and nonlinear models in Optics and Photonics [5]–[13], but also generally in the field of Compu-
tational Electromagnetism, although there are considerable limitations in terms of applicability to
complicated geometries, less smooth data (e.g. caused by material interfaces), etc. Typically the
spatial domain is discretized by regular, structured (quadrilateral or hexahedral), staggered grids.
The difference scheme presented in [5] served as the basis for one of the most commonly-used
methods to solve the linear Maxwell’s equations. This scheme is of second order in time and ex-
hibits a significant numerical dispersion over long time interval of wave propagation simulation [12].
FDTD simulations for the full system of nonlinear Maxwell’s equations have been presented in [7],
[8]. Among other things, interacting waves of different frequencies could be treated directly [8].
The auxiliary differential equation (ADE) method along with finite difference time-domain (FDTD)
schemes has been originally employed for linear dispersive materials [6] and for the coupling
between the polarization vector and the electric field intensity [7], [14]. This scheme was applied to
second- and third-order nonlinear phenomena including spatial soliton propagation [14], [15], linear
and nonlinear interface scattering [16], and pulse propagation through nonlinear wave guides [17].
A lot of interesting modeling and simulation results for linear and nonlinear Lorentz dispersion
with nonlinear Kerr response in case of 1D, 2D and 3D can be found in [15], [18]–[23]. Among
non-standard difference methods, pseudospectral spatial domain schemes have been employed
for optical carrier shock [24] and linear Lorentz dispersion with nonlinear response [25] simulation.

Slowly varying envelope approximations (SVEA) are mostly used to simulate effects in nonlinear
Photonics. Using this scheme, the system of Maxwell nonlinear equations transforms into the
nonlinear Schrdinger equation. Various nonlinear effects such as self phase modulation and the
Kerr effect can be successfully numerically treated [1], [26]. The beam propagation method (BPM)
with second-order indices of refraction is employed for modeling of nonlinear optical devices
exhibiting on-axis behaviour [27].

Finite volume methods have been applied to nonlinear Kerr media in 1D and 2D cases [28],
[29]. For the Maxwell’s equations with Kerr-type nonlinearity, a hyperbolic system is derived and
approximated by the Godunov method. Moreover a higher-order Roe solver is also employed for
simulations.

In the past few years, discontinuous Galerkin methods have attracted considerable attention
and are now being applied to a wide range of problems from hydrodynamics to acoustics and
electrodynamics. To the authors‘ knowledge, the first mathematical proof for the convergence of the
discontinuous Galerkin method when applied to Maxwell’s equations was given in the paper [30].
The methods allow a comparatively easy handling of elements of various types and shapes, irregu-
lar non-conforming meshes and even locally varying polynomial degree. For the linear situation the
papers [31]–[34] can be mentioned as examples, for dispersive media we refer to [35], [36]. For the
system of Maxwell’s equations with material nonlinearities, there are still very few rigorous analysis,
error estimates, and simulation results using time domain finite element methods ((TDFEM/TDdG)
available [26], [37]–[46]. In the paper [43] a higher-order discontinuous Galerkin method is used to
discretize the problem in space. Two time discretization schemes are investigated – a second-order
leapfrog and the implicit trapezoidal scheme. In the fully discretized problems, the nonlinearity is
treated by employing the auxiliary differential equation (ADE) approach. In [43] it has been proved
that the first scheme is conditionally stable, while the fully implicit method is unconditionally stable.
The results for the proposed schemes were given only for the 1D case, and error estimates were
obtained only for the semi-discrete problem under some additional assumptions on the strength of
the nonlinearity.

In this paper, we present a novel technique to solve the 3D nonlinear problem in Optics and
Photonics. We extend the semi-discrete mixed finite element method [47], [48] and the fully discrete
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finite element method [49], [50] to the fully time-dependent Maxwell’s equations with nonlinearities.
The electric and magnetic fields in the Maxwell’s equations with a cubic nonlinearity are discretized
in space by means of pairs of Nédeléc curl-conforming and Raviart-Thomas div-conforming finite
elements. The spatial discretization has all the well-known properties of these spaces [51]–[53],
especially a high accuracy and the ability to handle complex geometries. In addition, we are able
to demonstrate that the semi-discrete and fully discrete solutions have similar energy-conserving
propertie as the exact solution. The backward Euler-type and SDIRK solvers are used to discretize
the problem in the time domain. We also present fully discrete schemes for the nonlinear problem
in 3D that possess the property of energy stability and are unconditionally stable. Achieving these
results required a careful modeling of the nonlinearities in the fully discrete scheme by a suitable
application of the auxiliary differential equation (ADE) approach. The energy stability properties are
important in the sense that they reflect the physical behaviour of the exact solution and make the
schemes robust.

Let � be a smooth, simply connected domain in R3 with boundary ∂� and unit outward normal n.
Let D = D(x, t ), B = B(x, t ), E = E(x, t ) and H = H(x, t ) represent the displacement field, magnetic
induction, electric and magnetic field intensities respectively, where x ∈ � and the time variable t
ranges in some interval (0, T ), T > 0. Given an electric current density J = J(x, t ), we write the
time-dependent Maxwell’s equations as

∂t D−∇ × H = J in �× (0, T ), (1)

∂t B+ ∇ × E = 0 in �× (0, T ), (2)

where the following constitutive relations hold:

B := μ0H and D := ε0E+ P(E). (3)

ε0 > 0 and μ0 > 0 are the vacuum permittivity and permeability respectively. Often the nonlinear
constitutive relation for the polarization P = P(E) is approximated by a truncated Taylor series [1].
In case of an isotropic material, it takes the form,

P(E) := ε0

(
χ (1)E+ χ (3)E3

)
, (4)

where, in general, χ (i ) : �→ (R3)i+1 are the media susceptibility tensors i = 1, 3. Here we further
restrict the model to more symmetric materials so that the second term in (4) takes the form
χ (3)|E|2E with a nonnegative scalar coefficient χ (3) : �→ R. We also assume that χ (1) is a positive
scalar coefficient χ (1) : �→ R. For χ (3) = 0, we obtain the linear Maxwell’s equations. Thus the
nonlinear Maxwell’s equations (1)–(4) can be rewritten as:

∂t D− ∇ × H = J in �× (0, T ), (5)

μ0∂t H+∇ × E = 0 in �× (0, T ), (6)

where

∂t D = ε0

(
1+ χ (1) + χ (3)|E|2 + 2χ (3)EET

)
∂t E. (7)

On ∂� a perfect conducting boundary condition is assumed: n× E|∂� = 0. In addition, initial condi-
tions have to be specified so that E(x, 0) = E0(x) and H(x, 0) = H0(x) for all x ∈ �, where E0

and H0 are given functions on �, and H0 satisfies ∇ · μ0H0 = 0 in �, H0 · n = 0 on ∂�. Concerning
the function spaces and related notation, we refer to [53]–[56] for details; a short summary can be
found in [50, Section II].

The paper is structured as follows. Sections 2 and 3 describe the weak formulation and the spatial
discretization of the nonlinear problem. The time discretization and energy at the fully discrete level
are discussed in Section 4. Finally, Section 5 presents a collection of numerical experiments.
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2. A Weak Formulation
The test by functions � ∈ H0(curl ;�), � ∈ V = H(div;�) and integration by parts in the equa-
tion (5) leads to a weak formulation w.r.t. (E, H) ∈ C1(0, T, H0(curl ;�)× (C(0, T, H0(curl ;�)) ∩
C1(0, T, L2

ε0(1+χ (1) )(�)))× (C(0, T, H(div;�)) ∩C1(0, T, L2(�))) of (5)–(7) such that

(∂t D,�)− (H,∇ ×�) = (J,�) ∀� ∈ H0(curl ;�), (8)

(∂t D,�) = (ε0(1+ χ (1))∂t E,�)+
(
ε0χ

(3) (|E|2 ∂t E
)
,�

)

+ 2
(
ε0χ

(3) ([EET ] ∂t E
)
,�

)
∀� ∈ H0(curl ;�), (9)

(μ0∂t H,�)+ (∇ × E,�) = 0 ∀� ∈ H(div;�). (10)

In addition, the following initial conditions have to be satisfied:

E(x, 0) = E0(x) and H(x, 0) = H0(x), x ∈ �. (11)

The nonlinear electromagnetic energy of the system (8)–(10) at any time t is defined by

Energy := ‖E(t )‖2
ε0(1+χ (1) ) +

3
2
‖E2(t )‖2

ε0χ (3) + ‖H(t )‖2μ0
.

It can be shown that the nonlinear electromagnetic energy at any time t is bounded by the initial
energy plus the energy introduced through J. In the absence of the source term J, an exact energy
conservation law even holds.

3. Spatial Discretization
Let U0 h ⊂ H0(curl ;�), and Vh ⊂ V be finite-dimensional subspaces (as usual, h > 0 denotes a
typical mesh size parameter). For details about the finite element subspaces, curl-conforming and
div-conforming elements see, e.g., the spatial discretization in [50, Section IV, equations (19)–(23)].

For the equations (8)–(10), the semi-discrete problem involves the determination of elements
(Dh, Eh, Hh ) ∈ C1(0, T, U0 h)×C1(0, T, U0 h)×C1(0, T, Vh ) satisfying

(∂t Dh,�h )− (Hh,∇ ×�h) = (Jh,�h) ∀�h ∈ U0 h, (12)

(∂t Dh,�) = (ε0(1+ χ (1))∂t Eh,�h)+
(
ε0χ

(3) (|Eh|2 ∂t Eh
)
,�h

)

+ 2
(
ε0χ

(3) ([EhET
h ] ∂t Eh

)
,�h

)
∀�h ∈ U0 h, (13)

(μ0∂t Hh,�h)+ (∇ × Eh,�h ) = 0 ∀�h ∈ Vh. (14)

The initial conditions read formally as

Eh(x, 0) = E0 h(x) and Hh(x, 0) = H0 h(x), x ∈ �,

where E0 h ∈ U0 h, H0 h ∈ Vh are approximations to E0, H0.
The nonlinear electromagnetic energy at the semi-discrete level of the system (12)–(14) at time

t is defined by

Energyh := ‖Eh‖2ε0(1+χ (1) ) +
3
2
‖E2

h‖2ε0χ (3) + ‖Hh‖2μ0
.

Similar to the situation in Section 2 it is possible to show that the nonlinear electromagnetic energy
at the semi-discrete level of the system (12)–(14) at time t is bounded, and an exact energy
conservation law is satisfied if J = 0.

Hence the semi-discrete solution has analogous energy-conserving properties as the exact
solution.
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4. Time Discretization
In this section, we present novel fully discrete schemes for the nonlinear Maxwell’s equations.
Our particular interest is to demonstrate that the time discretizations by means of the classical
backward Euler-type and singly diagonally implicit Runge-Kutta methods satisfy a discrete energy
estimate, are unconditionally stable and convergent even in the presence of cubic nonlinearities.
Analogous investigations for the linear case (that is χ (3) = 0) have already been presented in [50].
The time discretization considered here can be used not only in conjunction with the Nédeléc
and Raviart-Thomas spatial discretizations, but also with other types of spatial discretizations. The
Newton’s method is often employed to obtain the unknown values En

h and Hn
h from the nonlinear

equations (15)–(17).
We divide the time interval (0, T ) into N ∈ N equally spaced subintervals by using the nodal

points

0 =: t 0 < t 1 < t 2 < . . . < t N := T,

with t n = n�t , n = 0, 1, 2, . . . , N.

4.1 The Fully Discrete Scheme for the Nédeléc and Raviart-Thomas Formulation

Here we prescribe initial values (E0
h , H0

h ) ∈ U0 h × Vh of the approximate electric and magnetic field
intensities and determine the fully discrete electric and magnetic field intensities (En

h, Hn
h ) ∈ U0 h ×

Vh, n = 1, 2, . . . , N, such that the following system is satisfied:
(

Dn
h − Dn−1

h

�t
,�h

)
− (Hn

h,∇ ×�h) = (Jn
h,�h ) ∀�h ∈ U0 h, (15)

(
Dn

h − Dn−1
h ,�h

) = (ε0(1+ χ (1))
(
En

h − En−1
h

)
,�h)

+ 1
2

ε0χ
(3)(((En

h)2 + (En−1
h )2)

(
En

h − En−1
h

)
,�h)

+
(
ε0χ

(3)
[
En

h

[
En

h

]T + En−1
h

[
En−1

h

]T
] (

En
h − En−1

h

)
,�h

) ∀�h ∈ U0 h, (16)
(

μ0
Hn

h − Hn−1
h

�t
,�h

)
+ (∇ × En

h,�h) = 0 ∀�h ∈ Vh. (17)

The differences Dn
h − Dn−1

h play the role of auxiliary variables. In addition, the fully discrete formula-
tion is not subject to any size limit w.r.t. �t/h.

Remark 1: (i) If μ is variable, in particular jumps, it makes more sense to use the (E, B)
formulation instead of (E, H).

(ii) A full discretization can be defined similar by employing the SDIRK23 method (singly diago-
nally implicit Runge-Kutta method) for the nonlinear problem (12)–(14), the difference of auxiliary
variable Dn

h − Dn−1
h is indeed same.

The nonlinear electromagnetic energy for the fully discrete approximation (i.e. both in space and
time) of the system (15)–(17) at t n, n = 0, 1, 2, . . . , N, is defined by

Energyn
h := ‖En

h‖2ε0(1+χ (1) ) +
3
2
‖(En

h)2‖2
ε0χ (3) + ‖Hn

h‖2μ0
. (18)

In analogy to the boundedness results for the continuous and semi-discrete nonlinear electro-
magnetic energy, it can be seen that the fully discrete nonlinear electromagnetic energy of the
system (15)–(17) at the final time step N is bounded and conserved, too. Furthermore, the fully
discrete solution has similar energy-conserving properties as the exact solution. Similar energy
conservation properties can be obtained numerically for high-order time domain methods e.g.
leapfrog, SDIRK23 and symplectic schemes coupled with semi-discrete scheme from Section 3.
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5. Numerical Results, Validations and Discussion
The nonlinear electromagnetic energy (18) for the fully discretized problem (15)–(17) will be verified
by a number of computational experiments for different material values. Furthermore, our proposed
semi-discretization is tested by the two-stage SDIRK23 method [57], [58] (singly diagonally implicit
Runge-Kutta method). SDIRK23 is an L-stable and second order method.

The full discretization of the system of nonlinear partial differential equations (5)–(7) leads to the
nonlinear system of difference equations (15)–(17), which is solved by means of Newton’s method.
It is very important to reduce the computational costs associated with nonlinear iterations required
to achieve the convergence. The computational costs connected with nonlinear iterations are min-
imized by our proposed time discretization. Thanks to the special structure of the time-discretized
nonlinearity, at each time step the Newton iterations reduce to a single Euler-like backward step,
making the whole procedure competitive. Let en and hn be the algebraic representation vectors of
En

h and Hn
h, respectively. The vector jn denotes the discrete current source density. First we compute

the representation vector dn − dn−1 of the auxiliary variable Dn
h − Dn−1

h that is defined in the fully
discrete formulation (16). It can be simplified as:

dn − dn−1 = Mε0(1+χ (1) )(e
n − en−1)+Mε0χ (3)‖e‖2 (en − en−1)+Mε0χ (3)eeT (en − en−1)

= Mupdate(en − en−1),

where Mupdate = Mε0(1+χ (1) ) +Mε0χ (3)‖e‖2 +Mε0χ (3)eeT and the matrices on the right-hand side are
the mass matrices corresponding to weighted L2 inner products. The matrix Mupdate depends
on the material parameters ε0 (permittivity), χ (1), χ (3), ‖e‖2 and eeT . Since the matrix Mupdate

depends on the electric field intensity, it has to be updated at each time step, i.e. the mass
matrix Mupdate is obtained at the time step n by the approximated value of the electric vector
en−1 at the time step n − 1. Mupdate is a positively definite mass matrix with size dimU0h ×
dimU0h. Therefore, the general Newton step for the equations (15)–(17) can be written as
follows:

dn − dn−1

�t
= (K)T hn + jn, (19)

dn − dn−1 = Mupdate(en − en−1), (20)

Mμ0

hn − hn−1

�t
= −Ken. (21)

The size of Mμ0 is dim Vh × dim Vh, it is also symmetric and positively definite. In general, the vectors
en and hn have different dimensions dim U0h and dim Vh, respectively. The matrix K represents a
discrete representation of −curl and has the size dim Vh × dim U0h. Therefore, K is a rectangular
matrix.

5.1 Implementation of the Energy Conserving Backward Euler-Type Method

The implementation of the energy conserving backward Euler-type method for the nonlinear
equations (19)–(21) reads as follows:

Calculate the total number of time steps:

nst ep := T − t0
�t

Compute the matrices K, Mμ0 and the initial values of the electric and magnetic fields:

e0 ← E0

h0 ← H0
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Loop over the time steps:
for n = 1 to nst ep do:
Begin integration method update:

einit ← en−1

hinit ← hn−1

Compute the matrix Mupdate and the right-hand side:
(

fe,init

fh,init

)
←

(
Mupdateeinit +�t jn)

Mμ0hinit

)

Solve the linear system of equations w.r.t. eout , hout :(
Mupdate −�tMμ0

�tK Mμ0

)(
eout

hout

)
=

(
fe,init

fh,init

)

Update the electric and magnetic fields values for this time step and compute the energy for given
χ (1) and χ (3):

en ← eout

hn ← hout

En ← ‖en‖2
ε0(1+χ (1) ) +

3
2
‖(en)2‖2

ε0χ (3) + ‖hn‖2μ0

end for
Completion:

eN ← enst ep

hN ← hnst ep

Example 1: The permittivity, conductivity and the permeability are chosen as ε = 1.0, σ = 0.0
and μ = 2.0. The susceptibilities χ (1) and χ (3) also assume constant values, but may be different in
different tests. The electric and magnetic fields are initialized by taking the projections [50, equation
(31)] of the exact electric and magnetic fields, where the exact fields given by [59]

E= (−2t−2x,−2t − 2y,−2t − 2z)T
, B= (2y−2z, 2z − 2x, 2x − 2y )T

, J = (t+x, t + y, t + z)T
.

Example 2: This test example is characterized by the following parameters. The permittivity and
the permeability are chosen as the constant vacuum values ε = ε0 and μ = μ0. The susceptibilities
χ (1) and χ (3) also assume constant values, but may be different in different tests. The angular
frequency is ω = 2π f (rad·s−1) with f =

√
3

2 c0 Hz. The exact electric and magnetic fields are given
as in [50]:

E = (−cos(πx )sin(πy )sin(πz)cos(ωt ), 0 , sin(πx )sin(πy )cos(πz)cos(ωt ))T
,

B =
(
−π

ω
sin(πx )cos(πy )cos(πz)sin(ωt ),

2π

ω
cos(πx )sin(πy )cos(πz)sin(ωt ),

−π

ω
cos(πx )cos(πy )sin(πz)sin(ωt )

)T
.

If χ (3) = 0 in the system of equations (1)–(4), the problem becomes linear. For this case, error
estimates both at semi-discrete and fully discrete levels, energy conservation and simulations have
already been demonstrated in [47]–[50]. Here, the efficiency, unconditionally stability with respect
to time step, energy stability, robustness of semi-discrete and fully discrete formulation for the
nonlinear 3D problem, are presented and discussed by several computational experiments.

A number of numerical experiments are performed to validate the energy conserving properties
of the proposed methods, by employing the backward Euler-type and SDIRK23 methods. In
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Fig. 1. The energy (18) from t0 = 0.0001 to the final time T = 0.001 computed by the backward Euler-
type and SDIRK23 methods with time step size �t = 0.0001 [Fig. (1a)]. The energy (18) from t0 =
0.00001 to the final time T = 0.0003 computed by the backward Euler-type and SDIRK23 methods
with time step size �t = 0.00001 [Fig. (1b)]. In both figures, the parameters are: χ (1) = 3.2222 and
χ (3) = 1.5× 10−19.

Fig. 2. The energy (18) from t0 = 0.00001 to the final time T = 0.0003 computed by the backward Euler-
type and SDIRK23 methods with the parameters �t = 0.00001, χ (1) = 2.2, and χ (3) = 4.1 [Fig. (2a)].
The energy (18) in Fig. (2b) from t0 = 0.000001 to the final time T = 0.00003 computed by the backward
Euler-type and SDIRK23 methods with the parameters �t = 0.000001, χ (1) = 3.2222, and χ (3) = 1.5×
10−19 [Fig. (2b)].

Figs. 1–3, the permittivity, permeability, susceptibilities χ (1), and χ (3) also assume constant values
to determine the energy (18). The projections [50, equation (31)] of the exact quantities from
Example 2 are used to initialize the electric field and magnetic induction, in 1–3. In Fig. 1a, the
energy (18) from t0 = 0.0001 to the final time T = 0.001 is presented by employing the backward
Euler-type and SDIRK23 methods. The time step size is �t = 0.0001 in Fig. 1a. Furthermore,
in Fig. 1b the energy (18) for the time step size �t = 0.00001, from t0 = 0.00001 to the final
time T = 0.0003, is depicted by employing the backward Euler-type and SDIRK23 methods. The
parameters are χ (1) = 3.2222 and χ (3) = 1.5× 10−19 in Fig. 1a–b. In Fig. 2a, the susceptibilities
χ (1) = 2.2 and χ (3) = 4.1 are chosen, where the time set size is �t = 0.00001. The Fig. 2a shows
the energy (18) from t0 = 0.00001 to the final time T = 0.0003 by using the backward Euler-type
and SDIRK23 methods. The energy (18) obtained by the backward Euler-type and SDIRK23
methods from t0 = 0.000001 to the final time T = 0.00003 is presented in Fig. 2b; the parameters
are �t = 0.000001, χ (1) = 3.2222 and χ (3) = 1.5× 10−19. The Fig. 3 demonstrates the energy
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Fig. 3. The energy (18) from t0 = 10−9 to the final time T = 3× 10−8 computed by the backward
Euler-type and SDIRK23 methods. Tthe parameters are: χ (1) = 3.2222, χ (3) = 1.5× 10−19 [Fig. (3a)],
χ (1) = 2.2, and χ (3) = 4.1 [Fig. (3b)]. In both figures, the time step is �t = 10−9.

Fig. 4. A snapshot of the electric field (a) and magnetic induction (b) are taken at the final time T = 10−7

(number of steps N = 100) using the backward Euler-type method for a beam mesh. The parameters
are: time step size �t = 10−9, χ (1) = 2.2, and χ (3) = 4.1.

(18) from t0 = 10−9 to the final time T = 3× 10−8 obtained by using the backward Euler-type
and SDIRK23 methods with the time step size �t = 10−9, where the susceptibility parameters
are chosen as χ (1) = 3.2222, χ (3) = 1.5× 10−19 (Fig. 3a) and χ (1) = 2.2, χ (3) = 4.1 (Fig. 3b).

Fig. 3 shows that the nonlinear electromagnetic energy computed by backward Euler-type
and SDIRK23 methods has the same value for the time step �t = 10−9 and different nonlinear
parameters. However, it should be noted that the SDIRK23 method, unlike the Euler-type method,
is computationally more expensive.

The electric field and magnetic induction are visualized for various 3D meshes (beam, Fichera
and Escher). In Figs. 4–7, the electric field and magnetic induction are initialized by taking the
projections [50, equation (31)] of the exact quantities from Example 1. The snapshots of the electric
field and magnetic induction in Figs. 4–7 present the results obtained using the backward Euler-type
method at the time T = 10−7, where the time step size is �t = 10−9, and the susceptibilities
parameters are χ (1) = 3.2 and χ (3) = 1.2. Fig. 4 shows the electric field and magnetic induction
values for the beam mesh at the final time. In Fig 5, different orientations of the electric field
(Fichera mesh 3D L-shaped domain) at the final time T = 10−7 are depicted. Similarly the magnetic
induction is presented in Fig. 6 at the final time. Snapshots of the electric field and magnetic
induction taken at the final time T = 10−7 are presented in Fig. 7 for the Escher meshes.
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Fig. 5. The snapshots of the electric field are taken at the final time T = 10−7 (number of step N = 100)
using the backward Euler-type method for the Fichera mesh. The parameters are: time step size �t =
10−9, χ (1) = 2.2, and χ (3) = 4.1.

In Figs. 8–9, the projections [50, equation (31)] of the exact quantities from Example 2 are used to
initialize the electric field and magnetic induction. Figs. 8 and 9 depict the electric field and magnetic
induction for a Fichera mesh at the time T = 0.001, where the time step size is �t = 0.00001, and
the susceptibilities parameters are χ (1) = 2.2 and χ (3) = 1.5× 10−19.

The Figs. 1–3 illustrate the conservation property of the energy (18) for the nonlinear problem
in 3D. We showed that the semi-discretization (12)–(14) along with the backward Euler-type
and SDIRK23 methods conserve the energy. The proposed time discretization methods are not
restricted to small values of �t/h (Courant-Friedrichs-Lewy condition). Therefore, the proposed
methods are unconditionally stable in contrast to many existing methods [13], [26], [43]. Moreover,
in the proposed Euler-type time discretization scheme the Newton iterations reduce to a single
step at each time step while many existing methods require several Newton iterations at each time
step [37]–[39], [42], [43], [45], [46]. Therefore our scheme is computationally more efficient than
the a lot of existing methods.

Our proposed methods solve numerically the full system of Maxwell’s equations with cubic
nonlinearities in 3D directly, whereas many existing methods (SVEA, BPM, the electric field
formulation, the magnetic field formulation, A− φ method, operator form, magnetic vector potential,
decoupled schemes and A-Formulation) do not solve the nonlinear problem in Optics and Photonics
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Fig. 6. The snapshots of the magnetic induction are taken at the final time T = 10−7 (number of step
N = 100) using the backward Euler-type method for the Fichera mesh. The parameters are: time step
size �t = 10−9, χ (1) = 2.2, and χ (3) = 4.1.

Fig. 7. A snapshot of the electric field and magnetic induction at the final time T = 10−7 (number of
steps N = 100) using the backward Euler-type method for an Escher mesh is taken. The parameters
are: time step size �t = 10−9, χ (1) = 2.2, and χ (3) = 4.1.
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Fig. 8. The snapshots of the electric field are taken at the final time T = 0.001 (number of steps N =
100) using the backward Euler-type method for the Fichera mesh. The parameters are: time step size
�t = 0.00001, χ (1) = 2.2, and χ (3) = 1.5× 10−19.

directly [15], [18]–[25], [28], [29], [60] or solve the problem only in 1D and 2D, e.g. [26], [37]–[46].
Those methods do not solve the system of nonlinear Maxwell’s equations in Optics and Photonics
directly and may cause spurious solutions [26], [50]. In addition, the fully discrete formulations pro-
posed in [43] are only conditionally stable. The TDFEM for nonlinear problems in Electromagnetics
proposed in [37]–[39], [42], [45], [46] may also fail to satisfy an energy stability property.

We conclude from the computational experiments presented in this paper that the proposed
novel TDFEMs for the full system of nonlinear Maxwell’s equation in 3D conserve the energy
(at semi-discrete and fully discrete levels), are unconditionally stable (no Courant-Friedrichs-Lewy
condition), computationally efficient (one Newton iteration per time step) and figure out the fields
(quantities) directly, in contrast to many existing methods (SVEA, BPM, the electric field formulation,
the magnetic field formulation, A− φ method, operator form, magnetic vector potential, decoupled
schemes and A-Formulation). In particular, our proposed semi-discrete and fully discrete methods
could replace the existing 1D [43] and 2D [45], [46] schemes to 3D, and [39], [42]. Moreover our
proposed methods are intermediate results for the theoretical and computational development of
energy conserving time-domain discontinuous methods for 3D nonlinear problems in Optics and
Photonics. The semi-discrete scheme is also suitable for the application of other higher-order time
domain methods e.g. leapfrog, SDIRK34 and symplectic methods.
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Fig. 9. The snapshots of the magnetic induction are taken at the final time T = 0.001 (number of steps
N = 100) using the backward Euler-type method for the Fichera mesh. The parameters are: time step
size �t = 0.00001, χ (1) = 2.2, and χ (3) = 1.5× 10−19.

6. Conclusion
For the first time, a new modeling approach has been developed that allows the direct simulation
of the full nonlinear Maxwell’s equations in Optics and Photonics in 3D. The new capabilities of
the proposed method permit that linear and nonlinear effects of the electric polarization in 3D are
modeled in an efficient manner that is unconditionally stable and conserves the energy. The novel
approach allows energy stability both at the semi-discrete and fully discrete levels, which were not
yet available using edge and face elements with the Euler and diagonally implicit Runge-Kutta time
discretization for the full system of nonlinear Maxwell’s equations in 3D. The approach is almost
completely general and could replace SVEA, BPM, the electric field formulation, the magnetic field
formulation, A− φ method, operator form, magnetic vector potential, A-Formulation and decoupled
schemes. Numerical results for the energy validate the theoretical findings, which prove that the
full discretization is unconditionally stable and conserves the energy.
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