\ . N
x: IEEE Photonics Journal y
v —-— An IEEE Photonics Society Publication & \

8 Open Access

Restoration of Out-of-Focus Fluorescence
Microscopy Images Using Learning-Based

Depth-Variant Deconvolution
Volume 12, Number 2, April 2020

Da He

De Cai

Jiasheng Zhou
Jiajia Luo
Sung-Liang Chen

) Cropped patches

‘ DelpNet J

* Prediction

Defocus levels
(Depth-variant PSFs)

Patch-wise
deconvolution

\

Montage with

overlapping weight
function

DOI: 10.1109/JPHOT.2020.2974766

< IEEE




IEEE Photonics Journal  Restoration of Out-of-Focus Fluorescence Microscopy Images

Restoration of Out-of-Focus
Fluorescence Microscopy Images Using
Learning-Based Depth-Variant
Deconvolution

Da He ©," De Cai,' Jiasheng Zhou,' Jiajia Luo © 2
and Sung-Liang Chen

"University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong
University, Shanghai 200240, China
2Biomedical Engineering Department, Peking University, Beijing 100191, China

DOI:10.1109/JPHOT.2020.2974766
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
http.//creativecommons.org/licenses/by/4.0/

Manuscript received February 11, 2020; accepted February 13, 2020. Date of publication February 17,
2020; date of current version March 9, 2020. This work was supported by the National Natural Science
Foundation of China under Grants 31870942 and 61775134. (Da He and De Cai contributed equally
to this work.) Corresponding authors: Jiajia Luo; Sung-Liang Chen (e-mail: jiajia.luo@pku.edu.cn;
sungliang.chen@sjtu.edu.cn).

Abstract: Image quality is degraded in the out-of-focus region because of the depth-variant
(DV) point spread function (DV-PSF) of a fluorescence microscope. Either non-blind or blind
deconvolution for restoration results in limited improvement. In this work, we propose a
two-step learning-based DV deconvolution (LB-DVD) to restore the out-of-focus image. In
the first step, DV-PSF is predicted by a defocus level prediction convolutional neural network
(DelpNet). In the second step, the extracted DV-PSF is used for DV deconvolution. To our
knowledge, LB-DVD is proposed and demonstrated for the first time. DelpNet achieves an
accuracy of 98.2% for predicting defocus levels of image patches (84 x 84 pixels). The
subsequent DV deconvolution gives rise to good performance in peak signal-to-noise ratios
and structural similarity index, which are improved by up to 6.6 dB and 11%, respectively,
before and after the deconvolution. As for a wide-field image, there exist different DV-PSFs
within the two-dimensional fluorescence image due to the surface undulation. An overlap-
ping weighting patch-wise LB-DVD is used in image montage to eliminate patch boundary
artifacts. As a result, our LB-DVD shows the feasibility and promise to be applied to typical
fluorescence microscopy in practical applications.

Index Terms: Fluorescence microscopy, convolutional neural network, deconvolution.

1. Introduction

Fluorescence microscopy is widely used in biomedical applications such as visualizing structures of
cells and tissues [1]. However, the depth-variant (DV) point spread function (PSF) (DV-PSF) of the
microscope and noise degrade the image quality of the two-dimensional (2D) microscopy images.
The former, DV-PSF, indicates different 2D PSFs when samples are placed at various depths, and
is a result of the limited depth of field in a fluorescence microscope, causing low-quality images
in the out-of-focus region [2]. For example, Fig. 1 shows representative examples of in-focus and
out-of-focus (or defocused) images, the latter obviously showing much-blurred patterns. Although
some samples can be re-aligned at the focus of the microscope to restore the blurred image, some
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Fig. 1. Representative examples of fluorescence microscopy images. (a) An in-focus image. (b) An
out-of-focus image.

particular samples such as those with non-flat surface suffer from regional blurs within a wide-field
image and thus cannot be retrieved by focus re-alignment.

Since the defocused image can be modeled as the convolution between the latent clear image
and a PSF, clear images may be obtained if the convolution process can be reversed (i.e., deconvo-
lution). Therefore, DV deconvolution has been intensively studied to restore the out-of-focus images
through non-blind and blind ways, depending on how much the system’s PSF is known. Non-blind
deconvolution requires the known PSF typically from experimental measurement [3], [4]. However,
experimental measurement of PSF is usually inconvenient and time consuming, which may result
in restrictions in biomedical applications. On the other hand, blind deconvolution sidesteps the
acquirement of PSF by using only the blurred image [5], yet the performance is usually impeded
due to a lack of system’s prior knowledge.

Recently convolutional neural network (CNN) has shown its great potential for image processing,
which implements various computer vision tasks such as image classification by ResNet [6], object
detection by YOLO [7], and instance segmentation by Mask R-CNN [8]. CNN is a learning-based
method and has the power to work for a variety of input images including medical and biological
images. It has been shown that CNN can be used to predict defocus level and thus DV-PSF [9].
CNN-based methods have also been employed to deblur images and remove artifacts. For exam-
ple, some large convolution kernels as well as traditional deconvolution schemes can be combined
for efficient image restoration [10]. Another example is that direct mapping from blurred images to
clear images is able to be learned by CNN to handle adaptive optics retinal images [11].

As a matter of fact, semi-blind deconvolution is a promising method to restore image quality.
Unlike blind deconvolution without knowing PSF, the semi-blind method estimates some pa-
rameters of a given PSF model, followed by the deconvolution using this estimated PSF. The
estimation is learned from the relation between the PSF parameters and blurred images. It has
been shown that semi-blind deconvolution can increase the overall robustness and generality in
image restoration [12], [13]. For example, a learning-based spatially-variant (SV) deconvolution
was demonstrated to deal with the regional blurs within a wide-field image [12], i.e., SV image
blurs in 2D. However, although promising, the semi-blind deconvolution has not been investigated
to recover DV image blurs.

In this paper, aiming at restoring images blurred by DV-PSF, we therefore propose learning-based
DV deconvolution (LB-DVD) to restore the out-of-focus images in fluorescence microscopy. To our
knowledge, this is the first study to utilize learning-based DV-PSF to handle out-of-focus microscopy
images. As mentioned previously, CNN can be used to estimate DV-PSF [9], and thus, semi-blind
deconvolution to deal with DV image blurs is feasible. Compared with existing DV deconvolution
using non-blind and blind approaches, as illustrated above, the semi-blind LB-DVD circumvents
the challenges of acquiring DV-PSF in the experiment encountered by the non-blind approach
and also enjoys more accurate DV-PSF than the blind approach. Specifically, DV-PSF is predicted
by defocus level prediction CNN (DelpNet) and is then used for DV deconvolution. The DelpNet
achieves an extremely high accuracy of 98.2% for classifying the defocus levels of image patches
(84 x 84 pixels). On the other hand, in part by virtue of highly accurate DV-PSF, the subsequent DV
deconvolution gives rise to good performance in peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM) [14] of the DV-deconvolved images, which are improved by up to 6.6 dB and
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Fig. 2. The overview of the method. (a) The process of generating synthetic datasets. (b) The archi-
tecture of DelpNet. (c) An example of the patch-wise defocus level prediction process. The prediction
results are expressed in different colors, and the “bg” here indicates a background patch. (d) The
patch-wise DV deconvolution for two cases: (i) the stride is the same as the patch size and it is just the
non-overlapping patch-wise deconvolution with rectangular weight function and (i) the stride is smaller
than the patch size and triangular function is used as the weights.

11%, respectively, better than those of the depth-invariant (DI) deconvolved counterparts. Further,
“patch-wise” LB-DVD is explored to restore the image quality of a wide-field image, which better
recovers local image characteristics. A weighting technique is adopted in image montage to remove
patch boundary artifacts. The results suggest that LB-DVD is an effective way to restore the out-of-
focus microscopy images and is applicable to wide-field images in practical applications.

2. Methods

Firstly, we classified the defocus levels of patches in fluorescence microscopy images by DelpNet.
The DV-PSF can then be recognized and used in deconvolution for image restoration. For wide-
field image processing, patch-wise deconvolution with an overlapping weighting technique was
employed. The overview of our pipeline is shown in Fig. 2.

2.1 Fluorescence Microscopy Images

As mentioned previously, out-of-focus blurred fluorescence microscopy images of cells are shown
in Fig. 1(b). This imaging process can be modeled as follows. The fluorescence microscopy image
i(x, y; Z) can be represented as:

i(x.y:2) =p(0@ h)(x. y; 2) (1)

where (x, y; z) represents a 2D function over x, y with a variable z showing the depth of objects
along the optical axis, g is the Poisson noise model, ® stands for the convolution operator, o(x, y; z)
is the imaged object and h(x, y; z) is DV-PSF.

Note that in Eqg. (1), the 2D image (or image patch) i(x, y; z) lying on the same 2D plane is
assumed, and the 2D DV-PSF h(x, y; z) is used, which is valid for a small image patch. For a large
image or a three-dimensional (3D) object that can lie in multiple 2D planes, a more complicated
integral equation using 3D DV-PSFs to model the DV imaging problem should be used [15], [16].

If DV-PSF h(x, y; z) can be estimated and used for deconvolution, one can recover clear 2D
images o(x, y; z) at different depth z. For an optical or fluorescence microscope, the information
of the depth z of the PSF h(x, y; z) varies depending on the depth where the object is placed.
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That is, the depth z is a parameter that cannot be determined from the specification of the
microscope. Fortunately, the depth z can be inferred from the captured image i(x, y; z), as indicated
in Eq. (1). This lays a foundation to estimate depth information of an image, i.e., DV-PSF, by DelpNet
(details described later). Note that instead of a regression problem, we handle DV-PSF as a classi-
fication problem, in part because accurately measuring and labeling DV-PSF is not easy. Moreover,
the approach to classify DV-PSF into several depth ranges can be more robust and practical.

We generated synthetic images with 11 defocus levels from realistic (i.e., experimental) focal
images for training (Fig. 2(a)), and applied the trained model to realistic images with unknown
defocus level for application (Fig. 2(c)). For the training dataset, instead of using realistic defocused
images, synthetic ones were used because of more accurate defocus level labels in the synthetic
defocused images.

We used fluorescence images of U20S cells with Hoechst stain in the BBBC006 dataset [17]
in this study. The dataset acquired by an ImageXpress Micro automated cellular imaging system
(Molecular Devices, CA) consists of image stacks, each stack having images of a specimen at
different depths. The 381 in-focus images of size 696 x 520 were first selected based on the
maximum standard deviation of image intensity from 381 image stacks. They are regarded as the
reference in-focus images. Synthetic defocused image dataset was then obtained by convolving
the selected in-focus images with the following DV-PSF with 11 defocus levels [9], [18]:

2
1 NA 1 NA?
L) — 2 2 — —jkp?
h(x,y,z)—‘/o Jo<kn,/x +yp>exp( 2jkpzn2)pdp

where Jy is the Bessel function of the first kind, order zero, k = 27 /A is the wavenumber with
the wavelength 1 of 451 nm, NA is the numerical aperture of 0.5, and n is the refractive index
of 1.0 in air. The defocus level has an increment of 2 um along the z optical axis, and level
0 corresponds to the in-focus images (i.e., no synthetic degradation). As mentioned above, the
synthetic defocused image dataset with 11 defocus levels (from 0 to 10) was obtained by convolving
the 381 in-focus images. This resulted in 4191 [= 381 x 11] synthetic images, which were randomly
split into training, validation, and test sets with a ratio of 0.75 : 0.15 : 0.1. Each of the 4191 images
(size 696 x 520) was randomly cropped for 20 times to generate image patches of size 84 x 84.
As a result, the total number of images used for training DelpNet was 62865 [= 4191 x 20 x 0.75].
We assigned some patches the label “bg,” whose maximum pixel values are smaller than 230
and the maximum difference among pixel values is smaller than 30 considering 16-bit images,
indicating that the patch is almost full of background noise. This special augmentation is helpful
because it can partially avoid providing DelpNet with meaningless interference. Hence, after the
“bg” augmentation, we had 12 labels of image patches. Linear normalization was applied to all
image patches to scale their value ranges to 0—1, which means every pixel value was divided by
65535. The labeled image patches were then used for training DelpNet as well as further analysis.

()

2.2 DelpNet

As shown in Fig. 2(b), DelpNet includes 7 convolutional layers. The shape of the input layer was
set to match the input patch size. Dropout [19] and BatchNormalization [20] layers were added
to avoid overfitting. Every BatchNormalization layer was followed by a ReLU activation function.
GlobalMaxPooling layer [21] was utilized to transform the convolutional feature maps to a feature
vector before the output layer. As mentioned above, we had 12-label outputs consisting of 11
defocus levels together with the extra “bg” label.

There are some special settings in DelpNet. Firstly, we chose a relatively plain CNN architecture
instead of residual learning style like ResNet [6] or multi-scale feature fusion design like Inception
network [22], as plain architectures surprisingly performed better in our results. Secondly, it is
uncommon to put Batch Normalization layers and Dropout layers together densely, but we found
this strategy useful for improving the performance and reducing overfitting. In addition, we modified
the default momentum value of Batch Normalization [20] layers in Tensroflow from 0.99 to 0.60,
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which is also unusual but helpful for convergence for our dataset. All these strategies and results
will be described later in Section 3.

As for implementation, DelpNet was built using Keras framework with Tensorflow [23] backend.
We set Adam optimizer [24] learning rate of 6e — 5 and decay of 5e — 6. With a batch size of 128,
it was then trained and evaluated on a single Nvidia Titan Xp GPU. Categorical Cross-entropy loss
was applied to this multiclassification problem.

2.3 Patch-Wise DVD
Assuming Poisson noise for the imaging model, Richardson-Lucy (RL) deconvolution [25], [26] is a
widely-used iterative algorithm to restore blurred images with known PSF:

i(x,y; 2)
(x,y:2) ® 0/(x, y: 2)

Oftrri2) = ; © h(—x, s ~2) ojtx. 1:2) @)
where t represents the iterative index, o/(x, y; z) is the deblurred image in each iteration, and
i(x, y: z) is the initial guess of 0}(x, y: z).

For image patches, the iterative times of 15 were applied. The DV-PSF based on the predicted
defocus level by DelpNet was used for deconvolution. No deconvolution was applied to image
patches with labels of “bg” and defocus level 0. In our implementation, to avoid edge artifacts
due to deconvolution in an image patch, patch size of 84 x 84 was padded to a larger patch size
of 110 x 110 before deconvolution, and the padded part was removed after deconvolution. The
padding values were neighbor pixels in the whole image or just 0 if there are not enough neighbors.

Note that DV-PSF can also be spatially variant in a wide-field image. In other words, there exists
different DV-PSF within the wide-field image, e.g., due to the surface undulation of a sample. There-
fore, it is preferred to apply “patch-wise” LB-DVD to the wide-field image, which better restores the
image quality of the wide-field image because local image characteristics are taken into account.
Specifically, the two-step LB-DVD was applied to all image patches, as detailed above, and then an
overlapping weighting technique was used for image montage to obtain the deconvolved wide-field
image. Similar strategies termed as adaptive deconvolution to restore images according to local
image characteristics were reported [27]-[29]. The weight function has two types, non-overlapping
patch wise and overlapping patch wise, as shown in Fig. 2(d). For the former, the weight function
is a rectangular function with the patch stride set the same as the image patch size. This causes
severe patch boundary artifacts (demonstrated later). On the other hand, for the latter, the weight
function is a triangular function with base width set the same as the image patch size and the
patch stride set as half of the image patch size. To be specific, patch-wise LB-DVD was applied
to overlapped image patches (as shown in (ii) of Fig. 2(d)), and then, image montage was done
by stitching the overlapped deconvolved image patches using the triangular weight function. It can
also be regarded as bilinear interpolation of adjacent image patches [30]. As can be seen later in
Section 3, patch boundary artifacts can be effectively removed.

3. Results and Analyses

We used the held-out test set to evaluate the defocus level prediction performance and compare
strategies in the following Subsection 3.1-3.3. The overall results sequentially combining DelpNet
and DV deconvolution were analyzed in Subsection 3.4.

3.1 Results of DelpNet

After 1000 epochs of training, the evaluation results of DelpNet on the test set are shown in Fig. 3,
which shows the distribution of prediction results using a confusion matrix.

Generally, our DelpNet method can identify the defocus levels with an accuracy of 98.2%, and
the precision, recall as well as f1-score are all above 98%. Besides, from the confusion matrix in
Fig. 3, we can easily find that the wrong predictions mostly locate in the neighbors of the ground
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Fig. 3. The evaluation result of DelpNet. The confusion matrix shows the distribution of prediction results
of DelpNet on the held-out test set.

TABLE 1
Evaluation Results of the Existence of “bg” Label

Setting Accuracy Precision Recall F1-score
Without “bg” 96.8% 96.6% 96.9% 96.7%
With “bg” 98.2% 98.2% 98.3% 98.3%

truth, which means that most wrong predictions differ from the ground truth slightly, and thus, the
subsequent deconvolution with these wrong predictions can still contribute to image restoration to
some extent.

3.2 Analysis of Special Settings in DelpNet

As mentioned previously, we set an extra-label “bg” to splitimage patches full of almost background
from normal defocused image patches. To evaluate the value of this strategy, we trained almost the
same DelpNet with two settings: with “bg” label and without “bg” label. The only difference is the
final dense layer, which has 12 neurons and 11 neurons for cases with “bg” label and without “bg”
label, respectively. The evaluation results are listed in Table 1.

As shown in Table 1, the “bg” label strategy worked well with accuracy improvement from 96.8%
to 98.2%, which is equivalent to the decrease of top-1 error from 3.2% to 1.8%. In the DelpNet
without “bg” label, we found that the image patches full of almost background can be mistakenly
predicted to be various defocus levels, which is not desired. We think using “bg” label is very
important to prevent CNN from excessively fitting the background. Compared with the DelpNet
without “bg” label, that with “bg” label is expected to avoid learning the mapping from image patches
full of noise to 11 defocus levels and thus enables better identification of meaningful cell signals,
which leads to the enhanced performance.

Different from most works that apply Batch Normalization with the momentum parameter of a
relatively large value (e.g., default 0.99 [23]), we assigned this parameter 0.60 because we found
large Batch Normalization momentum parameter easily leads to a severe oscillation on the loss
curve for validation, as shown in Fig. 4. In contrast, relatively small momentum values (e.g., 0.40
and 0.60) would not ruin the performance and help the steady convergence on the loss curve.

Besides the above two strategies, we also densely used Batch Normalization layers with Dropout
layers. For fluorescence microscopy images of cells, there exists much more background noise than
meaningful cell signals. As a result, more strategies to mitigate overfitting of the cell images used in
this study are needed, compared with processing natural photos. The combination of the strategies
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Fig. 4. The loss curves for validation with Batch Normalization momentum parameters of 0.99, 0.60
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1.000 - <& ——0—0—>
0.995
0.990
30.985
©
5
O 0.980
<
0.975
—e— DelpNet
0.970 DelpNet-without-Dropout
0.965 —e— DelpNet-without-BatchNorm
' —&— DelpNet-without-'bg'

6 8 10 12
Top - k

Fig. 5. Cumulative match curves of different settings. Each node represents the corresponding top-k
accuracy of a specified training strategy (e.g., the most left blue node indicates the top-1 accuracy on
the test set of 96.8% for the DelpNet model trained without “bg” label.). The variable k is in the range
of 1—11 for the blue curve and the range of 1-12 for other curves.

to avoid overfitting would be helpful. We thus checked the cumulative match characteristic curves
of DelpNet with the combined strategies of using Dropout layers, Batch Normalization layers, and
the “bg” label. As a comparison, the curves of DelpNet without each of the above strategies were
also studied, as shown in Fig. 5. The results in Fig. 5 indicate that each strategy to avoid overfitting
is instrumental in improving performance.

Actually, we compared various image patch sizes as well. We found that larger image patch
sizes easily led to higher accuracy. However, too large image patch size is against acquiring local
DV-PSF, losing local image characteristics. Thus, we applied a relatively moderate image patch
size of 84 x 84, which was also adopted in another work [9].

3.3 Comparison Among Architectures

To manifest the advantage of the developed DelpNet for fluorescence microscopy images of
cells, we also compared the performance of DelpNet with various well-known representative
CNN architectures in Fig. 6 and Table 2. Specifically, VGG16 [31] represents the plain CNN
architectures without any concatenations or additions between feature maps. Inception_v3 [22]
simultaneously applies different convolutional kernels and concatenates the feature maps together
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Fig. 6. Cumulative match curves of trained DelpNet and other 4 representative CNNs. Each node
represents the corresponding top-k accuracy of a CNN architecture (e.g., the most left blue node
indicates the top-1 accuracy on the test set of 88.7% for the trained ResNet18 model.). Only the input
and output formats of the 4 evaluated CNNs were adjusted.

TABLE 2
Evaluation Results of Various CNN Architectures

Net #params Accuracy Recall F1-score
VGG16 39.9M 96.9% 97.0% 96.9%
Inception_v3 21.8M 91.5% 91.7% 91.6%
ResNet18 12.6M 88.7% 89.1% 88.8%
MobileNet_v2 2.3M 78.7% 79.6% 79.1%
DelpNet 2.3M 98.2% 98.3% 98.3%

for multi-scale fusion. ResNet18 [6] is a typical residual learning network with relatively fair layer
numbers compared with its deep versions. Finally, MobelNet_v2 [32] is a light work proposed to
implement CNN applications on mobile devices. Compared with their original architectures, we only
adjusted the input and output formats to fit our dataset.

According to Fig. 6 and Table 2, DelpNet outperforms all the other evaluated CNN architectures.
This may be explained as follows. In this study, the features of cells for estimating defocus levels are
relatively sparse and homogeneous. The 4 evaluated CNNs employ more complicated networks
and may not be suitable for cell images. For example, functions such as feature fusion and residual
learning easily bring more but noisy features. The results also justify the necessity to design and
develop a suitable CNN for cell images, rather than directly adopting an existing well-known CNN
architecture. Besides, according to Table 2, there are only 2.3 M parameters in DelpNet, which is
helpful for integrating DelpNet into embedded systems like an intelligent microscope.

In addition, we tried transfer learning by using the CNN architectures (VGG16, ResNet, Incep-
tionNet, and MobileNet) pretrained on the ImageNet dataset [33]. The results show that transfer
learning does not perform better than training from scratch.

3.4 Results and Comparisons of Patch-Wise LB-DVD

The trained DelpNet was then used for defocus level prediction and the subsequent deconvolution.
The results are shown in Fig. 7. To show the applicability of the DV deconvolution based on
the trained DelpNet (using the dataset mentioned in Subsection 2.1) to more shapes, created
phantoms including beads (denoted as O1) and a ring (denoted as O2) were tested first. Then, a
realistic image patch with 3 adjacent U20S cells (denoted as O3) was used. Each cell was about
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Fig. 7. Image restoration of created phantoms (O1 for beads and O2 for a ring) and realistic image
(03). (a) original in-focus images, (b) noisy defocused images, (c) DV deconvolved images, (d) DI
deconvolved images, and (e) BD deconvolved images. (f) The SSIM and PSNR values of the above
images. The PSNR values of (a) are infinite. (g) The 1D profiles of the (a3)—(e3) images along the red
arrow direction.

10 um in diameter. The scale bar was not shown as it is not provided in the public dataset. The
original in-focus images are shown in Fig. 7(a). The DV-PSF with a random defocus level blurred
the in-focus images, resulting in defocused images. Note that for a fair comparison, the same
defocus level was applied to O1-03. Poisson noise was then added to the defocused images,
named as noisy defocused images, as shown in Fig. 7(b). Then, the noisy defocused images were
DV deconvolved using the DV-PSF of the predicted defocus level (e.g., defocus level 4 for O3) and
DI deconvolved using the DI PSF of defocus level O (i.e., in-focus PSF), as shown in Figs. 7(c) and
7(d), respectively. Besides, the noisy defocused images were deconvolved using the Matlab built-in
function “deconvblind” (denoted as BD deconvolution hereinafter) [34] for further comparison, as
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Fig. 8. (a) PSNR improvement for DV and DI deconvolved images. In the curves, the circles or diamonds
represent mean values, and the vertical bars indicate the range between the 25th and 75th percentiles.
(b) SSIM of the noisy defocused, DV deconvolved, and DI deconvolved images; the SSIM ratio (the
orange curve and text). In the SSIM curve of the DV deconvolution, the stars represent mean values,
and the vertical bars indicate the range between the 25th and 75th percentiles.

shown in Fig. 7(e). For quantitative comparison, the PSNR and SSIM [14] were plotted in Fig. 7(f)
for O1-083. In Fig. 7(g), we compared the one-dimensional (1D) profiles along with the red arrows
(the whole 84 pixels) in Figs. 7(a)-7(e) for O3. Overall, the proposed LB-DVD performs better than
the DI and BD deconvolution methods in terms of both visual effects (Figs. 7(c)—7(e) and 7(g))
and quantitative metrics (Fig. 7(f)) for O1-0O3. In Fig. 7(f) for O3, the PSNR (SSIM) in the DV
deconvolved image is improved to 63.8 dB (0.86) from about 59.0 dB (0.83) in the noisy defocused
and DI deconvolved images. Also, in Fig. 7(g), the 1D profile by DV deconvolution can restore
the original fine structure much better than those by DI and BD deconvolution. Besides, by using
DV deconvolution, the contrast is improved compared with the noisy defocused 1D profile, and
the edge is sharpened, as indicated by the arrow in Fig. 7(g). Note that in Fig. 7(d) and 7(e), BD
deconvolution performs better than DI deconvolution for O1 and O2, while it is not the case for
08. This can also be observed in Fig. 7(f) for O1-O3, where BD deconvolution presents higher
PSNRs and SSIMs than DI deconvolution for O1 and O2, but not for O3. This might be because
the performance of the BD deconvolution method highly depends on the choice of the initial PSF
used in the iteration algorithm.

To validate the efficiency of DV deconvolution on image patches, the PSNR and SSIM improve-
ments were calculated for each of the 11 defocus levels using about 45 image patches for each
defocus level for statistical purposes. The results are shown in Fig. 8(a) and 8(b) for the PSNR
and SSIM, respectively. The PSNR improvement was compared with the noisy defocused images.
The DV deconvolution and DI deconvolution attained PSNR improvement of 0.3-6.6 dB and
0-1.5 dB, respectively. That is, the DV deconvolution performs much better in PSNR improvement.
As the defocus level grows, the PSNR improvements show a decreasing trend for both DV and DI
deconvolution, which can be explained as follows. The larger the defocus level, the lower the SNR,
leading to more difficulty for image recovery. The SSIM was calculated by choosing the original
in-focus image patches as reference. The SSIM of the DV deconvolution ranged from 0.66 to 1.0,
which is higher than that of the noisy defocused and DI deconvolution, especially for larger defocus
level. Interestingly, the SSIM curves of the noisy defocused and the DI deconvolution are almost the
same (Fig. 8(b)), which means DI deconvolution contributes little to restoring out-of-focus images.
The SSIM of all three cases decreases as the defocus level increases, which is due to reduced
SNR and thus leads to more difficulty for image restoration, as also explained above in the case of
PSNR improvement. Furthermore, SSIM improvement was evaluated by checking the SSIM ratio,
which is defined as the SSIM of the DV deconvolved image over that of the noisy defocused one.
Overall, the SSIM ratio increases with the defocus level, achieving an improvement of 0—11%.

Fig. 9 shows two realistic wide-field images from the BBBC006 dataset, which were processed
by patch-wise LB-DVD with two different weight functions (i) and (ii), as illustrated in Fig. 2(d).
The three rows in Fig. 9 show the realistic image, the image by LB-DVD with weight function (i),
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(a) (d)

Fig. 9. Wide-field image results for (a, d) realistic image, (b, €) LB-DVD with weight function (i), and
(c, f) LB-DVD with weight function (ii). The zoom-in images corresponding to the dashed boxes are also
displayed.

and that by LB-DVD with weight function (ii), respectively. As can be seen in Fig. 9(b) and 9(e),
non-overlapping patch-wise LB-DVD suffers from severe patch boundary artifacts. In contrast, in
Fig. 9(c) and 9(f), patch boundary artifacts are almost disappeared. The zoom-in images indicated
by the dashed boxes were also plotted for close comparison. Note that an alternative method using
PSF interpolation would also be useful to remove patch boundary artifacts [35].

4. Discussion

Compared with [9], although part of our work (specifically, DelpNet) and [9] are similar, both aiming
at predicting defocus level, our work has two further advances. Firstly, as for DelpNet, we newly
adopted the special strategies (e.g., splitting “bg” label; densely using Batch Normalization layers
and Dropout layers) to improve the performance of predicting defocus level. The strategies may be
useful for dealing with similar sparse images in the future. Secondly, we took a further step rather
than just investigating DelpNet for estimating DV-PSF. In our work, the DV deconvolution using the
estimated DV-PSF was conducted to restore out-of-focus microscopy images.

As mentioned previously, a learning-based SV deconvolution was demonstrated to remove SV
image blurs within a wide-field image [12]. On the other hand, the goal of our LB-DVD is to remove
DV image blurs, which were not in the scope of the work in [12]. That is, images blurred by DV-PSF
cannot be restored by the method in [12]. Moreover, for image montage, our study utilizes the
overlapping weighting technique, as detailed previously, which performs better in eliminating patch
boundary artifacts than the simple median filtering used in [12]. Even by setting the patch stride as
smaller values, e.g., 1, our weighting technique has the potential to realize pixel-wise LB-DVD to
extract pixel-wise DV-PSF, like some biomedical segmentation methods [36]-[38]. This is another
interesting future work.

Compared with model-based methods for DV deconvolution [15], [16], one advantage of the
proposed LB-DVD may lie in simplicity. The former requires complex mathematical modeling, while
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the latter adopts common deconvolution once the DV-PSF can be accurately predicted by the
DelpNet, which relies more on the collection of a sufficient dataset. Although it requires high
computational power for training the DelpNet, once the training is done, the prediction process
can be speedy. In our case, the defocus level prediction of 500 image patches (size 84 x 84) is
within a second using a cheap Nvidia 1060 GPU.

In this work, for simplicity, the DV-PSF model in Eq. (2) was used to obtain the synthetic defocus
image dataset. The model was also used in another work [9]. An improved model of the DV-PSF
for producing synthetic datasets may be tested in the future [39]. Besides, in this work, without loss
of generality, the DV-PSF with fixed values of parameters such as the wavelength A, the numerical
aperture NA, and the refractive index n were used. For practical applications, one needs to use
proper values of parameters depending on the specific microscope (e.g., n = 1.33 for a water
immersion objective).

There are some limitations of the used dataset [17]. In this study, we took the image with the
maximum standard deviation among a realistic image stack as the in-focus image, which was then
used to generate synthetic defocused images. However, there are still some out-of-focus cells in
the reference in-focus image in part because of the wide field. As a result, the performance of
DelpNet for estimating DV-PSF would be impaired. If more accurate reference in-focus image (i.e.,
the patterns in focus over the whole image) can be obtained (e.g., more accurate dataset available),
the performance could be further enhanced.

As can be seen in Fig. 8, images with relatively large defocus levels can hardly be recovered
to high-quality ones (i.e., low PSNR improvement and low SSIM), which shows the limit of the
proposed DV deconvolution (based on RL deconvolution). Therefore, it seems not to make much
sense to account for the samples that are beyond the largest defocus level (i.e., defocus level
10 in this study). On the other hand, to account for the samples beyond the largest defocus level
for selected applications, one may consider the implementation of the DelpNet using more defocus
levels or a larger increment for defocus levels. Alternatively, the samples beyond the largest defocus
level can be classified as the largest defocus level, which can also contribute to image quality
improvement to some extent.

5. Conclusion

In this paper, we proposed a semi-blind LB-DVD to handle out-of-focus fluorescence microscopy
images. To our knowledge, this is the first attempt to deal with DV image blurs using a learning-
based approach. DelpNet was developed to estimate DV-PSF, whose performance was optimized
by exploring several special strategies such as splitting “bg” label, etc. The strategies used in this
work to avoid overfitting may also be useful for processing the images with similar sparse and
homogeneous characteristics. Further, our study suggested that plain CNN is more suitable for a
specific dataset. The DelpNet achieved high accuracy of 98.2%. Then, DV deconvolution based on
the estimated DV-PSF achieved maximum PSNR improvement of 6.6 dB and SSIM improvement
of 11%, which performed better than DI deconvolution overall. Overlapping patch-wise LB-DVD
applied to wide-field images with good image quality was also demonstrated. The results show that
our LB-DVD is promising in restoring out-of-focus fluorescence microscopy images.
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