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Abstract: Convolutional neural network (CNN) has great potentials in holographic recon-
struction. Although excellent results can be achieved by using this technique, the number
of training and label data must be the same and strict paired relationship is required. Here,
we present a new end-to-end learning-based framework to reconstruct noise-free images
in absence of any paired training data and prior knowledge of object real distribution. The
algorithm uses the cycle consistency loss and generative adversarial network to implement
unpaired training method. It is demonstrated by the experiments that high accuracy recon-
struction images can be obtained by using unpaired training and label data. Moreover, the
unpaired feature of the algorithm makes the system robust to displacement aberration and
defocusing effect.

Index Terms: Holography, deep learning, phase recovery, aberration.

1. Introduction
Digital holography (DH) is a non-contact, high-resolution and highly sensitive technique for biomed-
ical imaging [1]–[3], inspection [4], and metrology [5]. DH often uses electronic camera to record
the interference pattern and calculate both amplitude and phase information of the reconstructed
object wavefront [6], [7]. However, DH suffers from challenges in reconstruction process. The phase
distribution is vulnerable to the wrapped phase and system aberration. To solve these problems, a
large amount of unwrapping algorithms [8]–[11] and the compensation methods for distorted phase
have been studied.

In recent years, deep learning with CNN becomes a powerful tool to solve inverse problem in
various optical imaging fields, including scattered image recovery [12], [13], wavefront sensing [14],
[15], super-resolution [16], [17], fluorescence microscopy [18], [19], noise reduction [20]–[22] and
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phase recovery [23]. Since the reconstruction of DH can be also regarded as an inverse problem,
the deep learning has been introduced into DH. Many problems of DH that were difficult to solve in
the past now can be solved by CNN, such as classification [24], [25], aberration compensation [26],
adaptive spatial filtering [27] and focus prediction [28]. There are many algorithms based on CNN
for the reconstruction of DH [29], [30], which use the CNN to eliminate the twin image term and get
the accurate focusing distance. In order to achieve one-step reconstruction of the hologram, the
end-to-end framework is introduced into the algorithm [31], [32]. After learning the relationship
between holograms and corresponding complex distribution, the wavefront information can be
directly recovered from a single-shot hologram. In this process, the twin image, the zero-order
image and the aberration components are simultaneously eliminated. Most of these algorithms are
based on UNet model [33], which is a classical paired training method, and has been widely used
in holographic field [34], [35]. However, the hologram and the corresponding object real distribution
need to be strictly paired in the training process. The prior knowledge of the object distribution
determines the accuracy of reconstruction result. In fact, the object distribution is difficult to obtain
in the experiment. At the same time, the displacement caused by the instability system during the
recording process is likely to reduce the learning accuracy of pairing requirement algorithm. The
accuracy of reconstruction ought to be high theoretically but it will not, since the above reasons.

In this paper, we propose a new end-to-end deep learning framework to solve the problems in
one-step approach, which employs unpaired and less images for training. The special feature of our
proposed network is that the real distribution of the object is not required. The holograms used in
training process and even their amounts can be irrelevant to their labels, which is called unpaired.
The strict relationship between hologram and label set in traditional end-to-end framework is
replaced by three loss functions in the proposed framework. It is meaningful for reconstructing
dynamic phase-contrast objects, like biological cells, since the paired object phase distribution
and its hologram need to be strictly aligned. With our algorithm, we can learn the reconstruction
mechanism through similar static cells and unpaired holograms. The experimental results prove
that the proposed network can reconstruct the hologram well even when the number of label set
can be a half of the training image. This greatly reduces the difficulty of getting the data set. When
displacement occurs, the proposed algorithm is of higher accuracy than traditional algorithm. More-
over, it has strong robustness to the aberration of the imaging system and the defocus astigmatism.

2. Principle of the Technique
2.1 Architecture of CNN

Our deep convolutional neural network is built on a cycle-generative adversarial network (cycle-
GAN) architectural design [36], which has been used in medical image segmentation [37] and
coherent noise reduction [22]. Our CNN is a cycle network, which contains two mirror symmetric
generative adversarial networks (GAN). We define X as a training set consisting of holograms and
Y as label set consisting of object real distributions. However, the data in Y does not match any
holograms in X, where the relationship is shown in Fig. 1(a). We can use a number of letters as the
label set and the holograms of Arabic numerals as the training set. Therefore, the data in X and Y
do not overlap at all.

Partial recording system is sketched in Fig. 1(b), which is a modified Mach-Zehnder interferom-
eter. A He-Ne laser (with the wavelength = 632.8 nm) is used as a light source, which is divided
into reference and object beams. The real object information is loaded by the phase-only spatial
light modulator (SLM). A 4f system consisting of lens L1 (f = 250 mm) and lens L2 (f = 75 mm)
is used to zoom the object. The charge-coupled device (CCD) is fixed on a translation stage to
control the diffraction distance. The hologram that is formed by the interference of reference beam
and object beam is captured by the CCD. The recorded holograms are used as the training set, but
its corresponding label doesn’t require to be known with our method.

As shown in Fig. 1(c), the holograms (the training set) and the uncorrelated label data simulta-
neously input into two respective networks. Two generator functions, G: X → Y and F: Y → X in
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Fig. 1. Simplified view of network architecture. (a) Training and label set prepared for the network.
Xi ∈ X : holograms and Yi ∈ Y : labels. (b) Partial recording system. (c) Overview of training process.
Generator function: G and F. DY : images generated by G indistinguishable from real images. DX : images
generated by F indistinguishable from Holograms. Lcyc (D, F ): cycle consistency loss. LY (G, DY , X, Y ):
Adversarial loss between DY and G. LX (F, DX , Y, X ): Adversarial loss between DX and F.

each network and two associated discriminators (DY and DX ) are used to generate the adversarial
data. The role of DY is to measure the difference between the real phase distribution and the fake
image generated by G, and vice versa for DX . This constitutes a complete cycle-GAN framework.

Each generator consists of 9 residual blocks [38] to learn the relationship between domain X and
domain Y. We use an encoder-decoder network to design the generator architecture including
down-sampling encoder and corresponding up-sampling decoder, which is shown in Fig. 2(a).
In order to increase the universality of the network, we designed the input as three channels,
which can input color images, and for grayscale images, we convert the input training data into
a three-channel tensor to facilitate the design of the network. The input hologram is first sent to
a 7 × 7 convolutional block with 64 filters and stride 1, which yields 64 feature maps. In order to
accelerate model convergence and increase training speed, each feature map has been processed
by an instance normalization block [39] and rectified linear unit (ReLU) block [40]. The next two
convolutional blocks are designed by 3 × 3 convolution kernels and stride 2. Hence, the numbers
of features increase from 64 to 256. A set of 9 identical residual blocks are sent after the end
of down-sampling layer. The residual blocks consist of two 3 × 3 convolutional layers with the
same number of filters on both layer and a ReLU block is set after the shortcut connection with
two convolution layers. The remaining part is an up-sampling decoder, which aims to sample the
obtained features to generate a single image. There are two corresponding 3 × 3 deconvolutional
layers after the residual blocks with 128 and 64 filters, respectively. In order to ensure the output
image with the same dimension as the input image, the last 7 × 7 deconvolutional layers with 3
filters and stride 1. This architecture can generate either fake hologram or fake label, which depends
on the composition of input and output data and its respective training.

We design the discriminator as the architecture of PatchGAN [41], which is shown in Fig. 2(b).
The 4 × 4 convolutional block with 64 filters and stride 2 is followed by non-linear leaky rectifier unit
(LeakyReLU) [42]. The next part is the combination of a convolutional block, an instancenorm
block and a LeakyReLU block which is repeated 3 times. The PatchGAN splits the input into
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Fig. 2. The architecture of CNN. (a) Architecture of generator. The part of dotted line is represented as
the architecture of residual block, which consists of the shortcut connection with two same convolution
layers. (b) Architecture of discriminator.

overlapping patches, which run a regular discriminator over each patch, and average the result. By
designing PatchGAN to discriminate the local area of the image, the ability to model high-frequency
components is improved, so that a more detailed image than the original GAN discriminator can be
generated.

2.2 Loss Function

The purpose of discriminator network DY is to make the outputs generated by G difficult to be
distinguished. For the generator G and discriminator DY , we define the loss function as follows [43]:

min
G

max
DY

LY (G, DY , X,Y ) = Ey→Pdat a(y ) [(DY (y ) − 1)2] + Ex→Pdat a(x ) [(1 − DY (G(x )))2] (1)

where E[·] represents the expectation of random variable. Generator G is used to generate an
output that cannot be identified, while the DY is used to estimate the probability that a sample comes
from the real data. Therefore, the two form an adversarial relationship. The model G and DY are
simultaneously trained: fixed discriminator DY , adjusting the parameters of generator G to minimize
the expectation of (1 − DY (G(x )))2; fixed generator G, adjusting the parameters of discriminator DY

to maximize the expectation of (DY (y ) − 1)2 + (1 − DY (G(x )))2. This optimization process can be
summarized as a “minimax two-player game” problem. Similarly, for generator F and DY , the loss
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function can be expressed as follows:

min
F

max
DX

LX (F, DX ,Y, X ) = Ex→Pdat a(x ) [(DX (x ) − 1)2] + Ey→Pdat a(y ) [(1 − DX (F (y )))2] (2)

Next, the cycle consistency loss is introduced to further optimize the model. As shown in Fig. 1,
for each hologram xi from domain X, the output F (G(xi )) by generator G and F should be the same
as itself. Similarly, for each label yi from domain Y, the output G(F (yi )) by generators F and G should
be same. They are forward cycle consistency and backward cycle consistency, respectively. Hence,
we express the cycle consistency loss as:

Lcyc (G, F ) = Ex→Pdat a(x ) [||F (G(x )) − x||1] + Ey→Pdat a(y ) [||G(F (y )) − y||1] (3)

where the symbol || ||1 represents the L1 norm. Finally, the full loss function including three terms
can be expressed as

L(G, F, DY , DX ) = LY (G, DY , X,Y ) + LX (F, DX ,Y, X ) + λLcyc (G, F ) (4)

where λ is the cycle consistency loss coefficient, which controls the relative importance between
Lcyc (G, F ) and LY (G, DY , X, Y ) + LX (F, Dx , Y, X ). If the value of λ is large, the generated image can
better preserve the contour of the training data. If the value of λ is small, the generated image can
better approximate the label set distribution. In other words, a lower λ should be used for data with
simple textures, and a higher λ should be used for data with complex textures. According to this
feature, we usually set λ to 10 by default [44]. We solve the following “minimax two-player game”
problem:

G∗, F ∗ = min
G,F

max
DY ,DX

L(G, F, DY , DX ) (5)

The weights of our network are optimized by Adaptive Moment Estimation (Adam) based
optimization and the learning rate is set as 0.0002. Our proposed network is implemented using
TensorFlow and all data processing is done in ubuntu 18.04.1 environment with Tesla T4 (14115
MB memory).

3. Results and Discussion
3.1 Data Preparation

For experimental data, we employ processed images loaded onto the phase-only SLM
(1080 × 1920 pixel, pixel size: 6.4 × 6.4 um) interfered with the reference beam and the holograms
are captured by CCD (960 × 1280 pixel, pixel size: 3.75 × 3.75 um). We set the phase-only SLM
to change the loaded image every second and configure the CCD to synchronize with it. Then we
cut the central 384 × 384 pixel of the captured holograms, forming the holographic images input to
our proposed network. We select 100 images as the test sets.

We use the EMNIST dataset [45] and Faces-LFW [46] as the experimental data for our CNN,
which are character dataset and face dataset, respectively. EMNIST dataset is a set of handwritten
character digits derived from the NIST Special Database 19, which contains handwritten character
of numbers, uppercase and lowercase letters. In order to test more complicated situations, we
employ the open source facial images from the Faces-LFW dataset. The details of the face images
are more abundant, and the grayscale changes are rich.

3.2 Experimental Results Analysis

Fig. 3(a) and Fig. 3(b) represent the results from EMNIST and Faces-LFW, respectively. The
holograms from EMNIST and Faces-LFW are captured by CCD at 1mm from the focal plane of
4f system, which are shown in Fig. 3(I). The reconstructed phase images as shown in Fig. 3(II)
are obtained through traditional aberration compensation algorithm based on PCA [47]. The phase
distribution free of aberration is retrieved from the largest principal component in decomposed
orthogonal components. It can be obviously seen from the Fig. 3(II) that the recovered phase
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Fig. 3. Reconstruction results using proposed convolutional neural network. (I) Untrained test holo-
grams. (II), (III) Reconstruction images through traditional method and our proposed algorithm. (IV)
Ground truths of the proposed test set. (a)-(b): The test images are drawn from: (a) EMNIST [45] and
(b) Faces-LFW [46], respectively.

images are still disturbed by aberration and background noise. We can get the images as shown
in Fig. 3(III) through the network we have proposed and the images as shown in Fig. 3(IV) are
the ground truths in Fig. 3(I). For EMNIST dataset, we select 2400 images of handwritten number
as training set, 2000 images of handwritten uppercase letters as label set and 100 images of
handwritten lowercase letters as test set. Therefore, there is no overlap between the training set,
the label set and the test set, which reflects the unpaired features of the proposed network. We
perform a similar operation on the Faces-LFW dataset.

In order to verify the accuracy of reconstruction results, we use the complex wavelet structural
similarity (CW-SSIM) index [48] to quantify the degree of similarity between the reconstruction
results and the ground truths. CW-SSIM compares images in the complex wavelet transform
domain, regardless of the spatial position of the image. CW-SSIM as well as Peak Signal to Noise
Ratio (PSNR) and structural similarity index (SSIM) are always adopted as the accuracy metric.
Since the positions and sizes of the reconstructed images are hard to match the label images in
the spatial domain, CW-SSIM is more suitable to calibrate the accuracy. It is found that CW-SSIM
is not only suitable with the human’s judgment on image quality than PSNR, but also CW-SSIM
can still run well than SSIM in the case of image displacement, scaling and other non-structural
distortion. In the complex wavelet transform domain, we define that Cx = {Cx,I | i = 1, . . . , N} and
Cy = {Cy,I | i = 1, . . . , N} as two sets of coefficients extracted at the same spatial location in the
same wavelet subbands between the reconstruction results and the ground truths. Therefore, the
CW-SSIM can be expressed as:

CW −SSIM =
2| ∑N

i=1 Cx,iC∗
y,i | + K

∑N
i=1 |Cx,i |2

∑N
i=1 |Cy,i |2 + K

(6)

where the symbol ∗ indicates the complex conjugate. K is a small positive constant, which is used
to improve the robustness of CW-SSIM in the case of low local signal-to-noise ratio of images.

The value of CW-SSIM lies between 0 and 1, the larger the value of CW-SSIM the smaller the
difference between the reconstruction results and the ground truths, that is, the better the image
quality. When the two images are identical, CW-SSIM is 1. We calculate the CW-SSIM averaging
over the all test images as the metric values. The two CW-SSIM of reconstruction results from
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Fig. 4. (a), (b) The reconstructed results with different number of labels from EMNIST [45] and Faces-
LFW [46].

EMNIST and LFW are 0.98 and 0.85. However, the CW-SSIM for the reconstruction results of
EMNIST and Faces-LFW obtained by the conventional DH algorithm with PCA are 0.71 and 0.78,
respectively, which are lower than the CW-SSIM index obtained by using CNN. The reason is that
image factors such as aberration and background noise are difficult to be completely eliminated
by the conventional DH reconstruction algorithm. However, our proposed algorithm can eliminate
these adverse effects, thus the imaging quality is greatly improved. In the experiment, we try to use
the binary EMNIST dataset for training and the gray Faces-LFW dataset for test. It can be found
that the test reconstructed image is casted to the binary one, although the outlines of object can be
roughly reconstructed. Conversely, the gray training data will bring background noise to the binary
test data. Therefore, the similar kind of training data and test data are preferred to guarantee the
high accuracy.

3.3 Different Number of Labels During Training

In the past experiments using CNN to recover holograms, the same number of one to one paired
label set as the training set are needed. Since the real images are difficult to obtain, our goal is to
use our CNN to obtain excellent holographic recovery images with fewer labels. This will greatly
reduce the difficulty of obtaining the real distribution of objects. The 2400 holograms of handwritten
numbers are captured by CCD which are used as the training set and smaller number of labels
with handwritten uppercase letters are used as the labels set. We train the network with 200, 500,
1000, 1500 and 2000 labels respectively, which is shown in Fig. 4. The results in Fig. 4(a) and (b)
are from EMNIST and Faces-LFW datasets, respectively.
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Fig. 5. (a) Raw holograms. (b), (c), (d) are the reconstructed results without any shifting and rotation of
the label, with shifting 20 pixels of the label, with random shifting 0–25 pixels and random rotation 0–25
degrees, respectively. (e) The experimental results from our proposed network. (f) The ground truths of
(a).

The above experimental results show that the holograms can be reconstructed with fewer labels
by using our proposed neural network. We use 100 test images for reconstruction and calculate
their CW-SSIM index. The averaged CW-SSIM index of the reconstruction results under different
number of labels is shown on the right side of Fig. 4(a) and (b). As can be seen from the Fig. 4, as
the number of labels is decreasing, the average CW-SSIM index of the reconstruction results does
not decrease much. Therefore, with different numbers of labels, both simple datasets and complex
datasets can use less real distribution of objects to train the network, which greatly reduces the
difficulty of data acquisition. However, when the number of trained labels is less than 200, the
CW-SSIM index of reconstruction is greatly reduced. This is because when the number of labels is
reduced to a certain extent, the neural network learns too few features, so that holograms can’t be
reconstructed very well.

3.4 Comparison Between Two Training Methods

In order to compare with the paired training method, we reconstructed the holograms using the
classic UNet model and proposed hologram, respectively. The test holograms and true phase
distribution are shown in Fig. 5(a) and (f), respectively. We simulated three cases: strict pair
between the label and the hologram, the label and the hologram with 20 pixels dislocation, the label
and the hologram with random shifting within [0, 25] pixels and the random rotation within [0, 25]
degrees, which are respectively shown in Fig. 5(b), (c), and (d). It can be seen from the Fig. 5 that as
the displacement becomes more and more complicated, details of the reconstructed image become
blurred. The black spots represent the lost information. We calculate the CW-SSIM of Fig. 5(b), (c),
(d) respectively, which are 0.99, 0.95 and 0.65, respectively. However, the reconstruction results
obtained using our method as shown in Fig. 5(e) still maintain good reconstruction qualities, and
their CW-SSIM values remain at 0.98. This shows that the network proposed by us is robust to
displacement and rotation problems.
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Fig. 6. (a) The raw holograms of reconstructed images. (b) Reconstructed holograms with aberrations
randomly selected. (c) Reconstructed results from (a) with our proposed method. (d) The ground-truth
image of (a). The ground truths come from EMNIST [45] and Faces-LFW [46].

3.5 Robustness of Aberration

In traditional DH reconstruction methods, it is often necessary to compensate for aberrations using
physical [49] or numerical [50] methods. Physical methods require accurate alignment of optical
elements, which is impractical. In numerical methods, it is necessary to manually select the region
without object or to require the object to be very thin, and it is often impossible to fully compensate
for the aberration. It is known that our method takes a lot of time to collect holograms. In this
process, the optical system inevitably changes more or less. It can be said that the training data
are actually obtained under different circumstances. Therefore, the aberration in each hologram
is different from each other. Fig. 6(b) shows several reconstructed holograms with aberration
randomly selected. To show the phase aberration compensation ability of our algorithm, PCA
algorithms are not used to deal with the aberrations in Fig. 6(b). They show several reconstructed
holograms with aberration randomly selected from data. It is apparent from the Fig. 6(b) that the
aberration of the imaging system is variable and is difficult to completely eliminate by physical or
numerical methods. In our method, we can completely compensate the aberration, which is shown
in Fig. 6(c). Fig. 6(a) shows the raw holograms and the Fig. 6(d) is the ground truths of Fig. 6(a).
The experimental results show that our method is not too strict for the stability of optical system,
which can completely eliminate the aberration of the optical system under different conditions.

3.6 Different Axial Locations

To further study the ability of the aberration compensation, we analyze the ability to deal with
defocus distortion. The distance between the test object and CCD should be exactly the same
with that used in the training process. But in practice, it is difficult to satisfy the requirement. This
process can be seen as defocusing. The defocused image reconstructed from the hologram is an
additional quadratic phase attached to the optical system. Then the phase deviation of the defocus
hologram can be written as:

exp[ j kW (x, y )] = exp
{

− j
k
2z

(x2 + y2) −
[

− j
k

2(z + �z)
(x2 + y2)

]}

= exp
[

j
kε

2
(x2 + y2)

]

(7)
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Fig. 7. The effects of recovered images in different axial locations. (I) Holograms. (II) Results. (a), (b)
Data from EMNIST [45] and Faces-LFW [46].

Fig. 8. CW-SSIM curve with different axis locations. The blue line is the CW-SSIM curve of EMNIST.
The green line is the CW-SSIM curve of Faces-LFW. All the CW-SSIM has been marked on it.

where �z represents the distance from original position, ε represents the degree of defocus, and
ε = 1

z+�z − 1
z ≈ �z

z2 . To study it, we shift the CCD away from the original position to capture test
holograms with different axial locations. The captured holograms for test are shown in the (I) column
of Fig. 7(a) and Fig. 7(b), where the focus to defocus process can be observed. The corresponding
shifting distance is denoted on the left side of column (I). The reconstructed results are shown in
Fig. 7(II). We place the ground truth images in the right of the column (II). As shown in Fig. 7, our
method learns the features of the hologram, which can eliminate the defocusing aberration, so it
can restore the hologram at different distances to a certain extent. However, with the increase of
defocusing distance, the quality of reconstructed results decreases.
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In order to compare the reconstruction results of holograms at different axial distances, the CW-
SSIM curves of two datasets are plotted in Fig. 8. The data circled by the red circle in the Fig. 8 is the
CW-SSIM index obtained at the position of the trained holograms. This experiment demonstrates
that although the network is only trained in one particular location, the holograms recorded in a
nearby location can still be recovered well through the CNN. However, when the recording position
of the hologram is too far from the position of the hologram during training, the CW-SSIM index
will drop significantly. This phenomenon indicates that CNN has learned the features of holograms
during the experiment, so the proposed method is robust to the slight movement of holograms.

4. Conclusion
In a summary, we have proposed an end-to-end deep learning framework for holographic recon-
struction. Our proposed algorithm has strong robustness with the aberration of imaging system
and the defocus distortion, and is more capable of compensating for aberration than traditional
methods. The wavefront information of the object can be directly extracted from a single hologram
in the absence of paired training examples. It reduces the difficulty of data acquisition. Moreover,
our method shows great advantages, when real label data are lack in practice. For example, in
experiments such as living cell, the label data which are regarded as phase-contrast images and
their corresponding holograms cannot be obtained simultaneously. Traditional methods based on
CNN are not up to the tasks mentioned above. However, using our approach, we can train the
known and similar label set instead the real one to make CNN work.
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