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Abstract: Theoretical studies of ultra-thin silicon solar cells with cylindrical, conical and
parabolic surface nanostructures inherited from natural self-assembled anodic alumina
oxide (NSA-AAQO) were performed by finite-difference time-domain (FDTD) method. All
nanostructured solar cells obtained an optimized efficiency enhancement as high as more
than 33% comparing with that of the anti-reflective (AR) one. Numerical results reveal that
the range of efficient structural parameters for the nanostructured (e.g., cylindrical) solar
cell can be effectively enlarged as the period of the nanostructure changes from 0.1 um
to 0.5 um. Moreover, the improvements of absorption photocurrent density (Jph) in conical
and parabolic nanostructured solar cells are comparable with the cylindrical nanostructured
one but less sensitive to the fill factor and structural height in the whole simulation region
of 0.1-0.9 and 0-0.25 um, respectively. Equivalent refractive index models were used to
analysis the antireflection performance of surface nanostructures from the point of view of
sidewall profiles. Resonance modes induced through nanostructures have greatly improved
the absorptance of solar cells in broadening wavelength bands which consequently raised
the Jph. This study serves as a way for the practical design and application of AAO
nanostructure based high-efficiency ultra-thin solar cells.

Index Terms: Nanostructure, light trapping, solar cell.

1. Introduction

Due to the high cost and low efficiency of the traditional solar cells induced from thick absorption
layers, much attention has been paid to the continually developed ultra-thin solar cells [1]-{4].
However, the light absorption of the ultra-thin silicon solar cell is greatly restricted because of the
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limited layer thickness. To solve this problem, nanostructures are commonly used because of its
high anti-reflection and light trapping abilities [5]-[12]. Most recently, due to the requirement of low
cost and dimension controllable properties of the nanostructure, self-assembled nano-preparation
method has been proposed, and the commercial value outstands in the widespread use of photo-
voltaic devices [13]-{16] and light-emitting diodes [17], [18]. Moreover, some achieves have shown
that nanostructure with gradually changed sidewall profiles can effectively improve the optical
performance of the solar cells [19]-[22]. Guan Zisheng et al. made an inverted pyramid structured
c-Si solar cell by controlling the metal assisted chemical etching process, which improved the
Jsc by 0.22 mA/cm? when comparing with the best positive pyramid structured c-Si solar cell
[20]. Fan Zhiyong et al. used the pre-imprinting anodization AAO (PIA-AAQ) process to prepare
amorphous silicon solar cells on nano-cone plastic substrates, the light trapping efficiency reached
as high as two folds of the similar planar devices [21]. Gao Pingqi et al. proposed a high-throughput
nanosphere patterning method to form a periodic upright nanopyramid arrays on the silicon surface,
resulting a 1.35 mA/cm? Jsc improvement by comparing with the state-of-the-art random pyramids
textured one [22]. However, most of these studies are based on single morphology parameter
of the structures. During our previous study, we found that multiple structural parameters should
be considered together in order to optimize the efficiency of corresponding nano-structured solar
cells. In this article, the relationship between nanostructured parameters (period, fill factor (the
occupied area of the nanostructure divided by the whole surface area), height, etc.) of various
sidewall profiles and solar cell absorption are studied base on the NSA-AAO process. Which could
be of great help to the device design and the selection of fabrication process towards low cost high
throughput mass production area.

In this paper, we applied cylindrical nanostructure (CDN), conical nanostructure (CCN) and
parabolic nanostructure (PBN) inherited from the NSA-AAO to the surface of silicon-based solar
cells through FDTD Solutions of Lumerical optical module. The relationships between the Jph
(photocurrent density) and the fill factor, the period as well as the height of the nanostructured
solar cells were analyzed by FDTD method. In addition, the light capture ability and internal field
distribution of the corresponding nanostructured solar cells were studied. These results serve as a
way to optimize the light trapping efficiency of the AAO nanostructure based solar cells.

2. Methods

Since the AAO based replication method was proposed by Masuda and Fukuda in 1995 [23],
AAO has been widely used as a template to prepare various nanostructured metal, polymers, and
semiconductors due to its nanoscale feature size and pore dimension tunable properties [24]—
[26]. Fig. 1(a) shows a representative nanostructured array obtained from the AAO based bilayer
polydimethylsiloxane (PDMS) replication scheme [27]. The triangular distributed nanostructure is
totally inherited from the initial AAO template because of a 1 : 1 pattern transfer property, which
means the regularity of the transferred nanostructures are determined by the growth condition of
the initial AAO template [28]. To date, three representative sidewall profiles, cylinder, cone and
parabola, have been realized by commonly applied nanofabrication processes (nanoimprinting,
lithography, dry etching, etc.) [29]-{32], thus were chosen as the simulation models in this work as
shown in Fig. 1(b), (c), (d). In order to clearly describe the simulation area, Fig. 1(e) gives top and
cross-sectional views.

For the fabrication of large-pore NSA-AAO (>0.5 um), despite of the non-regularity of the AAO
nano-pore distribution, the burn-through issue must be overcomed because of a high-voltage
anodization [18], [35], [36]. While a better efficiency enhancement of the structured opto-electronic
device is usually obtained based on highly ordered nano-structures [22], [37]. Although by inviting
the PIA-AAO method, highly ordered AAO can be fabricated with large-pore dimension [21], the
method complexes the fabrication processes and improves the cost, which degrades the advan-
tages that the NSA-AAQ it deserves. Moreover, with respect to analysis methods, when feature size
Fq of the nanostructure satisfies Fq < A/n (where A is the light wavelength and n is the refractive
index of the material under consideration), the sub-wavelength structure (SWS) and equivalent
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Fig. 1. (a) Oblique view of the nanostructured array under atomic force microscopy, prepared by PDMS
replication method. Simulation models with (b) cylindrical sidewall profile, (c) conical sidewall profile
and (d) parabolic sidewall profile, (e) top view and cross-sectional view of simulation configuration for
cylindrical nanostructured solar cell, in which the green rectangle is the simulation area and the red one
is the monitor. Each model uses 1 um thick of c-si as the absorption layer and a 0.5 um thick real silver
as the back-reflector, the n-k-data of Si and Ag come from Handbook of Optical Constants of Solids
[33] and CRC handbook of Chemistry & Physics [34], respectively.

refractive index models can be used for the antireflection study of the nanostructured surface. While
for an even larger F4, the photonic crystal or geometrical optics effects will dominate, and numerous
studies regarding Fq4 > 0.5 um have been carried out based on various nanofabrication methods
[22], [38], [39]. Therefore, under all these considerations, the simulation period of the structure
ranges from 0.1 um to 0.5 um is chosen in this paper. The symmetrical two adjacent triangular
lattices are used as the smallest simulation area, as shown by the dashed lines of Fig. 1(b) [18].
The simulation area of Fig. 1(b), Fig. 1(c) and Fig. 1(d) are the same as Fig. 1(e). In the simulation,
Jph was separately calculated via the plane wave source ranging from 0.3 um to 1.1 um under
0-degree and 90-degree polarizations. The average of these two-polarization dependent Jph was
used to define the results of the unpolarized sunlight. To simplify the simulation, the asymmetric
and symmetric boundary conditions were respectively applied to the X and Y axes when the light
source was 0-polarized. When light source polarization was 90 degrees, the boundary conditions of
the X and Y axes were opposite to those of 0-polarized and the z-axis adopted perfectly matched
layer boundary conditions [40]. The calculation of Jph was used to quantitatively measure the
light trapping ability of nanostructured solar cell under solar illumination [41]. Reflectivity and
absorptance spectra of the simulation are available through the frequency-domain field and power
monitors in FDTD solutions. The grid accuracy of the simulations for x, y and z are 0.008 um,
0.008 um and 0.005 um respectively, which ensure the convergence and correctness of the results.
The Jph under the condition of solar radiation AM1.5 can be obtained by the following formula [42]:

1100 nm A
Jon = © /3 A (1) (1)
AG) =1-R(})-T() @)

where A(1) represents the absorption of solar energy by silicon, e is the electron charge, h is the
Planck constant, ¢ is the speed of light in vacuum, Iay1.5(2) is the incident light spectrum AM1.5.

3. Results and Discussions

To study the light trapping performance of CDN, CCN, and PBN, the relationships between
structural parameters and Jph was obtained by varying P (Period), H (Height) and F (Fill factor).
The results are shown in Fig. 2.
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Fig. 2. Relationships between nanostructured parameters and Jph of solar cell at different periods.
Height range is 0.05 um — 0.2 um and the step size is 12.5 nm. Fill factor ranges from 0.1 to 0.9 with
a step size of 0.04.

As shown in Fig. 2, the values of Jph show close dependency to the architecture parameters
of the nanostructure applied. When the period changes from 0.1 um to 0.5 um, one can easily
observe that for all these three models: (1) the maximum value of the Jph shows a positive
dependency as the structure period increases; (2) the enhancement domain area (EDA, red color
region in Fig. 2) goes bigger and shifts to the bottom-right direction (with a larger H and smaller F);
(3) the boundary of the EDA becomes much more rough as the period grows, which may be induced
from the enhanced scatter effect from a bigger nanostructured dimension. Besides, for a specific
nanostructured period (e.g., P = 0.2 um), the areas of the EDA for CCN and PBN ones have
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Fig. 3. The equivalent refractive index profile of (a) CDN arrays, (b) CCN arrays and (c) PBN arrays.
The refractive index of the c-Si was obtained at wavelength of 0.633 um, and the fill factors are defined
by the value at the starting point (0 «m) of each nanostructured array.

been enlarged, (which has been further confirmed by Fig. 4) indicating a less sensitive property
to structure height and fill factor when comparing to the CDN one. Actually, this result could be of
great importance for the design and fabrication of the nanostructure based solar cells, because it
is really hard to precisely control the structure dimension in the practical application when feature
size decreases down to nanometer scale. Under such consideration, the advantages by using CCN
and PBN can be fully exhibited. Due to the limitation of the calculation ability, only limited dimension
range is shown in Fig. 2, the detailed light trapping properties of these three nanostructures based
solar cells will be further discussed in the subsequent sections.

Equivalent refractive index provided by reasonable fill factor of nanostructure has good antire-
flection effect [39]. Therefore, the relationship between the height of nanostructure and Jph was
further studied based on fill factors. Take the period of 0.5 as an example, the equivalent refractive
indices of three nanostructures are plotted at different positional heights, as shown in Fig. 3. The
variation of the equivalent refractive index of the cylinder in Fig. 3(a) with the height position is
given by the following equation [43]:

nsi2 - r]air2 _ Nair

- ——>=
Ngi® — Ngff? Net

@)
where ng; is the refractive index of silicon, ny;; is the refractive index of air, nes and f are respectively
the equivalent refractive index and fill factor of the nanostructure at different positions. The variation
of equivalent refractive index with positional height h in Fig. 3(b) and (c) can be given by simply
putting functiony = (H—h)er/Hand r, = re \/1 — h/H (r; and r, are the radii of CCN and PBN at
h, respectively.) into the above equation:

_pa2
1_ 27[(%0 Nsi — Nair _ Nair )
i A Nsi — Neff  Neff
2
2;{( 1—5)r] e
1 _ s — Hair — ﬂ 5
A Nsi — Neff  Neff )

where h is the positional height, A is the area of the smallest repeating unit of the nanostructure,
H is the height of the nanostructure and r is the radius of the nanostructure at the bottom position.
The surface nanostructure can effectively improve the external quantum efficiency of LED and solar
cell because of an architecture with gradually changed refractive index from the bulk layer to the
nanostructured layer [44], [45]. Therefore, for the CCN and PBN, as shown in Fig. 3(b) and Fig. 3(c),
the bigger the fill factor is, the much smoother the equivalent refractive index along the positional
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Fig. 4. The relationship between Jph and the height of nanostructure for (a) cylindrical, (b) conical
and (c) parabolic nanostructure. (d), (e) and (f) are the corresponding relationship between Jph and fill
factor of (a), (b) and (c), respectively. The H in Fig. 4 (d) is the height of Jph peak from the range of
0.05 um to 0.2 um in Fig. 4 (a). In Fig. 4(e) and Fig. 4(f), the H is the height value that the point of
intersection belongs to. Take point A in Fig. 4(b) for example, the L1 is the linear variation of the Jph
at height ranges from 0.05 xm to 0.2 um and the L2 is the average value of Jph during the height of
0.25 um to 1 um as shown in Fig. 4(b). These two lines intersect at point A and finally defines the
height value under period of 0.5 um in Fig. 4(e).

height will be. Under such consideration, the optimum fill factor for CCN and PBN can be chosen
at 0.9, which corresponds to the situation when two adjacent nanostructures are close enough to
each other and about to overlap. As for the CDN arrays, the A/4 single film effect will dominate and
shows a strong height dependent tendency as shown in Fig. 2. The CDN array has the optimum
fill factor and height when Jph is the largest. Nevertheless, the optimum fill factor and height are
different under diverse periods. Hence, we selected different optimum fill factors for each perioded
CDN arrays in Fig. 4(a) as to study the height dependent properties.

When the H of the nanostructure is less than 0.2 um, the CDN has a Jph peak appears in every
period as shown in Fig. 4(a), which can be explained by thin film theory [46]. According to the thin
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TABLE 1
Maximum Jph of Nanostructured Solar Cells

Jph of maximum

Nanostructure-type Fill factor Height (um) Period(um) )
(mA/cm?)

Parabola 0.9 0.875 0.4 31.593

Cone 0.9 0.8 0.5 31.414

Cylinder 0.38 0.925 0.5 28.5
film theory, when nes = /NairNsi and the thickness h of the thin film satisfies:
A
neffh:(2m+1)Z(m:0,1,2...) (6)

the film has the best antireflection performance. With respect to Fig. 4(b) and Fig. 4(c), for CCN
and PBN with the gradient equivalent refractive index, the Jph increases approximately linearly
with the nanostructure height at a lower H range (e.g., H < 0.2 um for the CCN when P equals to
0.5 um, as shown by the dashed line L1 in Fig. 4(b)). When the His 0.2 umto 1 um, the Jph tend to
increase with H, and produce a distinct oscillation at the period more than 0.3 um, but the oscillation
trend of CCN and PBN is relatively stable because of a uniform change of equivalent refractive
index. The relationship between Jph and fill factor of these three nanostructures is illustrated in
Fig. 4(d)—(f). The CDN has a maximum Jph for each period in Fig. 4(d), since they can always
provide an equivalent refractive index that compliance with the 1/4 thin film theory at a reasonable
light wavelength. Fig. 4(e) and Fig. 4(f) show that with the increase of fill factor the Jph value
becomes bigger. In addition, because the CCN and PBN have more uniform gradient refractive
index, the Jph curve becomes much more stable and smoother along with the increase of fill factor,
and a maximum value is obtained near the fill factor of 0.9.

Throughout Fig. 4, the increase of the period and height of nanostructure results in high-order
diffraction and scattering enhancement [14], [22], which makes the Jph increase and produces
oscillation. Comparing Fig. 4(a), 4(b) and 4(c), it can be seen that they have better results under a
larger H because the equivalent absorption volume of silicon is increasing. The maximum values
of Fig. 4 are described in Table 1. Although when the H is less than 0.2 um, the CDN also has
a sharp peak of Jph, it has a strong dependence on H. Similarly, in Fig. 4(d), 4(e) and 4(f), the
Jph of CDN has a peak value with the change of fill factor, which indicates that Jph of CDN is
also much more sensitive to the fill factor than the other two structures. The above discussion is
consistent with the conclusion in Fig. 2 section. Furthermore, one cannot make the height of the
nanostructure as high as possible since the thickness of the ultra-thin solar cell has already limited
in real applications. For the same reason, the method mentioned in Fig. 4 was used to balance
the H value and the desired Jph for the CCN and PBN solar cells. Consequently, Table 2 lists the
optimized Jph of nanostructured and AR layered solar cells under the limited height of less than
0.26 um for the consideration of practical applications.

In Table 2, to reduce the absorption influence from unequal volume the material, the silicon
volume of the AR (anti-reflective) layered solar cell is set to be the same as that of the nanostruc-
tured one, the effective volume thickness of the silicon for AR layered solar cells corresponding to
cylindrical, conical and parabolic solar cells are 1.043 um, 1.076 xm and 1.09 um, respectively. The
AR layer is SizN4 with optimized thickness of 0.06 um [47]. As shown, all the three nanostructured
solar cells obtain an efficiency enhancement as high as more than 33% even with a limited structure
height less than 0.26 um around. Although the enhancements of these three nanostructures are
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TABLE 2
Optimized Jph of Nanostructured and AR Planar Solar Cells Under the Same Volume

. . Nanostructured AR layered Jph Enhancing
Nanostructure-type Fill factor Height (um) ) ) .
Jph (mA/cm?) (mA/cm®) efficiency
Parabola 0.9 0.191 28.04 20.9 34.2%
Cone 0.9 0.253 27.596 20.753 33%
Cylinder 0.38 0.1125 27.927 20.453 36.5%
(a) 1o (b) 10
0.8 - 0.8
g g
£ 0.6 £ 0.6 -
= =
] s
2 0.4 - 2 0.4
- -«
02 . (‘:\-Iinder 024 P=0.3um
Cone P=0.5um
— P.:nr:lbulu ) = Plane
0.0 . Y alylonloulch |I'mll . i . . 0.0 . . . . . . ;
0.3 04 05 06 07 08 09 1.0 11 0.3 04 05 06 07 08 09 1.0 L1
Wavelength(pm) Wavelength(pm)

Fig. 5. (a) Absorptance calculation results for a 1 um thick solar cell with and without nanostructure.
CDNatP =0.5um,f=0.38, H=1125nm; CCN atP = 0.5 um, f = 0.9, H = 253 nm; PBN at P =
0.5 um, f = 0.9, H = 191 nm. The absorptance of Yablonovitch light capture limit of 1 um thick c-Si is
used for reference. (b) The impact of period parameters to the spectral dependent absorbance (e.g.,
PBN, f=0.9, H= 191 nm).

comparable, Jph for the CCN and PBN ones have little dependence on H and F, which brings great
convenience to the real application of corresponding devices.

According to formula (1), the increase of Jph means a strong absorption. Fig. 5 displays
the absorptance of the nanostructured and planar ultra-thin ¢-Si with thickness of 1 um. The
Yablonovitch limit is expressed as [48]-[50]:

1
1+ 4n2ad

where n is the real part of the refractive index of the material, « is the absorption coefficient,
and d is the thickness of the absorption layer. Due to surface nanostructure introduced multiple
effects including destructive wave interference, total internal reflection and scattering [51], the
absorptance of solar cells can be greatly enhanced as shown in Fig. 5(a). In the wavelength range
of 0.3-0.471 um, the CCN has the best light capturing ability. While the absorption of CCN solar
cell decreases gradually, and begins to be smaller than that of the CDN one at the wavelength of
0.54 .m, which explains why the efficiency enhancement of Jph of the CCN one is slightly smaller
than that of the CDN one. Similar conclusion can be drawn for the PBN. For the same reason, the
resonances of the CCN and PBN solar cells start a little behind the CDN one because of a higher
absorption in shorter wavelength and thus less light will be reflected back and dedicated to the
interference at the top interfaces. It can be seen that when the wavelength is longer than 0.45 um,
a resonance of the spectrum can be easily observed. This is because in the short wavelength
range, the silicon has a very strong absorption coefficient and all the light get into the silicon

A, =1 (7)
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Fig. 6. At normal incidence, the electric field distribution at the X-Z cut of the CDN, CCN and PBN solar
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slab will be absorbed totally, thus no light will be reflected back to make the interference at the
front surface. While for the long wavelength range, it's just the opposite. Moreover, benefit from
the excellent antireflection property of the surface nanostructure, the resonance peaks induced at
the wavelength range of 0.80-1.1 um breaks the Yablonovitch limit as shown in Fig. 5(a). One
may notice that the curves for the nanostructured solar cells show an obvious raising step at
around 0.43 um in Fig. 5(a). This sharp step is only related to the period, therefore, we consider
that the first-order diffraction is satisfied, which makes the diffractive light absorbed completely.
Nevertheless, in the study, we found that the absorption behavior of the wavelength shows a
very strong dependence upon the period of the nanostructures. As shown in Fig. 5(b), for the
nanostructured solar cell with period of 0.1 um shows a better absorption performance in short
wavelength range but a worse behavior in the long wavelength part compared to these with a
bigger period (p = 0.3 um and p = 0.5 um). Actually, the smaller the period of the nanostructured
solar cell is, the better the absorption performance in short wavelength will be. For the situation in
long wavelength part, it is the opposite.

The mechanism of light capture ability of nanostructured solar cell was studied by their electric
field at 0.3 um, 0.5 um and 1.0443 um. The distribution of the electric field strength is shown in
Fig. 6. It can be seen that in the short wavelength region (e.g., 0.3 um), nanostructure provide
Mie scattering resonance to enhance the absorption performance [52], [53], but strong surface
reflection limits the increase of absorption. In the mid-band (e.g., 0.5 um), besides the weak Mei
scattering resonance and F-P resonance, the first-order diffraction of nanostructure also provides
a strong optical waveguide mode, which greatly improves the absorption capacity of c-Si [54],
[55]. Therefore, the absorption layer has the best electric field distribution and absorption. At the
long wavelength (e.g., 1.0433 nm), the guided mode disappears in c-Si, while the enhanced Mie
scattering resonance, the F-P resonance still exist, thus ensures an enhanced absorption at the
long wavelength band.

To characterize the parasitic absorption of the Ag mirror, the Ag mirror of Fig. 1 is replaced
by PEC (perfect electric conductor). The corresponding results are shown in Fig. 7, which uses
optimized parabolic nano-structure as an example. As shown, only 0.36 mA/cm? of Jph difference
can be obtained and almost no surface plasmon excitation at the Si/Ag interface can be observed.
Thus, the decrease in absorptance is mainly caused by parasitic absorption of Ag mirror [8], but it
has little effect on the overall silicon absorption as shown in Fig. 7. Therefore, the strategy has great
flexibility in material choice for either the surface nanostructure or the back-reflector. Here, one
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Fig. 7. The absorption spectra with Ag and PEC.

should notice that, the parasitic absorption of Ag contact has no contribution to the photocurrent
generation and has been excluded from all simulations since the red rectangle area in Fig. 1 only
monitors the absorption fraction from silicon. For the same reason, the PEC model in Fig. 7 has a
higher Jph than that of the Ag model.

4. Conclusion

In summary, we applied nanostructures with cylindrical, conical and parabolic sidewall profiles
based on AAO to the surface of ultra-thin solar cells, and studied the light trapping abilities of
the corresponding nanostructures. The results show that the Jph improves with the increasing of
nanostructured period from 0.1 um to 0.5 um. In the meanwhile, the efficient light trapping area
(defined by FxH) of the nanostructured solar cell can be effectively enlarged. The conical and
parabolic nanostructures are insensitive to the structural parameters (H from 0.05 umto 1 um and
fill factor from 0.1 to 0.9) while ensuring high performance. We considered the preparation process
of nanostructures, the thickness of ultra-thin solar cells and optimized parameters with respect to
the practical applications. The enhancements of light absorption of solar cells in full wavelength
range were attributed to the equivalent refractive index of nanostructures, so that their Jphs have
been upgraded by more than 33% compared with that of the AR planar solar cell. This study
is of great help for the design and optimization of sidewall profile dependent high performance
nanostructured ultrathin solar cells.
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