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Abstract: A deep transfer learning (TL)-based comprehensive eye diagram analysis and
diagnosis scheme that can output essential eye diagram parameters, estimate fiber link
length, calculate Q-factor, and diagnose device imperfection-induced impairments is pro-
posed. TL can be used to extract system information and optical signal characteristics
contained in eye diagrams and apply the learned knowledge and extracted features ob-
tained from source tasks to related target tasks. As a source task, the proposed method
estimates the transmission distance of a fiber link using convolutional neural network (CNN)-
based eye diagram recognition. The feature extraction layers of the CNN are transferred to
six target tasks involving the recognition of cross percentage, levels “0” and “1,” eye height
and width, and Q-factor. Using TL reduces the total training times for on-off keying (OOK)
and pulse amplitude modulation (PAM4) formats by >95% and 60%, respectively. We also
investigated six common PAM4 impairments caused by transmitter imperfection by setting
the impairment category identification as source task and the impairment-degree diagnoses
as target tasks. The TL methods consistently outperformed non-TL methods, with higher
accuracies and significantly reduced training times. The proposed impairment diagnosis
technique should be useful in impairment healing and fault correction.

Index Terms: Transfer learning, eye diagram analysis, impairment diagnosis.

1. Introduction
Optical signal measurement and analysis are significant tools for optical performance monitor-
ing (OPM), signal quality assessment, impairment diagnosis, and fault detection [1]. In intensity
modulation-direct detection (IM-DD) systems, eye diagrams are a primary important analysis object
for comprehensively modeling the quality of optical signals and intuitively displaying the character-
istics of various impairments occurring in optical communication systems [2]. Eye diagram analysis
primarily focuses on on-off keying (OOK)-and pulse amplitude modulation (PAM)-formatted signals,
which are widely used in optical access, metropolitan area, and data center optical networks [3]–[5].
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However, conventional eye diagram analysis methods rely on professional expertise and engineer-
ing skills and are therefore prone to unavoidable human error and subject to higher labor costs.

To address this problem, convolutional neural network (CNN)-based deep learning techniques
have recently been applied in optical signal analysis. Such techniques include optical signal-
to-noise (OSNR) estimation [6], [7], modulation format recognition (MFR) [8], bit-rate identifica-
tion [9], and atmospheric turbulence detection [10]. CNN-based eye and constellation diagram
analysis schemes have also been proposed to perform joint MFR and OSNR estimation for mul-
tiple formats [11], [12]. However, such schemes can only simultaneously execute a small num-
ber of tasks. This is because in multi-task learning, the multiple tasks are simultaneously im-
plemented in one whole neural network, as multi-task learning algorithms require increasingly
complex network structures, such as deeper network layers and more neurons in the output
layer, as the number of tasks increases. When the number of tasks is larger than three, the
algorithmic complexity becomes much less tractable and the processing accuracy sharply de-
creases [13]. Although single-task learning algorithms can process multiple tasks, to do so they
must assemble multiple algorithms to achieve each target separately [14], making it necessary
to train each algorithm separately from the original state for each task, which takes substantial
training time and consumes significant computational resources. Eye diagrams contain abundant
information and plentiful optical signal characteristics, making it useful to develop more powerful
eye diagram analysis techniques that can execute as many tasks as possible with limited train-
ing times and computational resource use, and without the extra cost of added complexity and
accuracy.

As artificial intelligence (AI) techniques have become more widespread, transfer learning (TL)
has become a rapidly expanding field of research for making deep learning easier, faster, and
more efficient, especially in multi-task cases [15]. TL is a learning process that focuses on storing
knowledge gained from a source task and transferring it to different but related tasks [16]. While most
deep learning algorithms assume that the training and testing data have the same distribution, under
TL, the domains, tasks, and distributions used in training and testing can differ—a condition that is
much more compatible with real-world situations [17]. TL techniques have been applied in learning
text data among different domains, cross-language processing, human activity classification, and
multi-class image recognition [18]. In the field of optical signal analysis, TL can be used to obtain a
variety of characteristics and information from eye diagram data through knowledge transfer among
different task domains.

In this study, a TL approach was used to carry out comprehensive eye diagram analysis and
impairment diagnosis. To perform image processing, a CNN was used to recognize eye diagram
images and the TL algorithm was then used to effectively transfer the learned knowledge and
extracted features from a source task (fiber length estimation) to execute six target tasks—the
recognition of cross percentage, levels “0” and “1,” eye height and width, and Q-factor—for OOK-
and PAM4-formatted signals. Both fine-tuning and frozen TL approaches were investigated. Com-
pared to a TL-free approach, the TL algorithm achieved higher accuracies with significantly reduced
training time. We then investigated six common impairments caused by transmitter imperfection—
clipping and pattern effect, overshoot, eye-skew effect, insufficient extinction ratio, and mismatch-
ing power—using an impairment category identification as the source task and the corresponding
degree-of-impairment diagnoses as the target tasks. Once again, higher accuracies and sharply re-
duced training time were achieved by the TL methods, demonstrating the feasibility of the proposed
eye diagram analysis scheme.

2. Operating Principle
An eye diagram is an image based on the afterglow effect within an oscilloscope, which accumu-
latively produces an overlapping symbol waveform of a scanned signal. A wealth of information
can be retrieved from an eye diagram, including essential characteristic parameters (such as high
and low levels, cross percentages, and eye height and width), overall signal performance indica-
tors (including modulation format, Q-factor, and OSNR), link properties and information (such as
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Fig. 1. Essential characteristic parameters of eye diagrams: (a) OOK and (b) PAM4 formats.

fiber transmission distance), and device imperfection-induced impairment features. The information
obtained from eye diagram analysis is important for signal quality evaluation, OPM, impairment
diagnosis and recovery, and the provision of reliable guidance for subsequent signal processing.

2.1 Essential Eye Diagram Characteristic Parameters

Conventional eye diagram analysis focuses on essential characteristic parameters that can be
directly observed or measured, including “0”/“1” level, eye height and width, and cross percentage.
As shown in Fig. 1(a), for an OOK signal the “0” and “1” levels in the eye diagram correspond to
voltage reference values representing logic “0” and “1,” respectively. The corresponding levels for
a PAM4 signal are called the “1”–“4” level. Eye height corresponds to the degree of opening in the
vertical direction at the middle of the eye diagram and, to a certain extent, reflects signal noise
tolerance. Eye width corresponds to the extent to which the eye expands horizontally, i.e., to the
time difference between the intersection of the upper and lower edges of the signal. Because signal
jitter causes symbol widening, eye width can effectively reflect the overall jitter state of the signal.
The cross percentage represents the relationship between the cross point amplitude and the “0”/“1”
level. In general, a standard cross percentage of 50% indicates that the logic bits “1” and “0” each
account for half of the signal. In other words, signals with different cross percentages have different
level “0” and “1” transmission capacities.

In addition to these partial and microscopic parameters, eye diagrams also contain overall per-
formance parameters such as modulation format and Q-factor. The modulation format of a signal is
a performance parameter that can be directly observed from the overall eye diagram. The Q-factor,
a performance index that is related to OSNR and can be obtained by eye diagram measurement,
indicates the ratio of signal to noise power in a receiver under the optimal decision threshold. As
the Q-factor in an optical interconnection system is affected by power, noise, and linear and non-
linear factors, it can be used to comprehensively represent system performance: larger Q-factors
correspond to higher optical signal quality and better system performance.

2.2 Fiber Link Information Reflected in Eye Diagram

In addition to the parameters discussed above, eye diagrams also contain abundant transmission
link information, reflecting the inherent impairments in the optical fiber such as dispersion, loss, non-
linear effects, etc. Such parameters cannot be obtained directly through observation or effectively
through quantitative mathematical modeling, but machine learning algorithms can be used to mine
hidden important performance parameters to enable qualitative analysis. As shown in Fig. 2, the eye
diagrams produced by signals transmitted through fiber will differ by fiber length because the impacts
of dispersion, loss, and nonlinearity in the fiber vary with transmission distance. Therefore, eye
diagram analysis can be used to measure transmission link length, a valuable input for compensating
the corresponding link impairments for digital signal processing at the receiver side.
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Fig. 2. Fiber transmission distance as reflected by eye diagrams for three OOK and PAM4 signals
captured following transmission through 20-, 40-, and 60-km fibers.

Fig. 3. Eye diagrams corresponding to six device imperfection-induced impairments: (a) clipping effect;
(b) pattern effect; (c) overshoot; (d) eye-skew effect; (e) insufficient ER; and (f) mismatching power.

2.3 Impairment Characteristics Caused by Imperfect System Components

When device imperfection-induced impairment occurs, it is essential to diagnose the impairment,
find its cause and the degree of impairment, and provide reliable guidance for distortion correction
and system recovery. To enable impairment analysis, information on system impairment character-
istics can be extracted from eye diagrams.

Here, we examine six common physical impairments originating from imperfect devices or im-
proper operation in an IM-DD system and their mechanisms (Fig. 3):

a) Clipping effect: To provide a Mach-Zehnder modulator (MZM) with a maximum undistorted
optical modulation amplitude, the modulation amplitude should be located in the linear region
of the modulation curve while the optimal bias voltage point should be located at the quadrature
point of the cosine modulation curve [19]. When bias voltage drifts as a result objective
factors, the modulated electrical signal amplitude will leave the linear region, resulting in a
non-equidistant signal output level, or clipping effect [20].

b) Pattern effect: The electro-optic (EO) bandwidth of a modulator is determined by the material
constituting the active region [21]. When the bitrate exceeds the EO bandwidth, the electrical
signal suffers from an insufficient recovery time to reach the reference level before the next
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Fig. 4. Difference between conventional machine and transfer learning approaches for multiple tasks:
(a) conventional machine learning and (b) transfer learning.

pulse arrives, resulting in a pattern effect that produces an eye diagram with a thickened eyelid
and blurred and sharply changed traces [22].

c) Overshoot: The output signal from a directly modulated laser (DML) will be distorted at high
modulation frequencies as a result of the intrinsic relaxation resonance in the laser cavity [23].
The overshoot occurs at the rising edge of the optical pulse because the current pulse injected
into the laser induces a change in the carrier concentration of the active region.

d) Eye-skew effect: Direct-current modulation of semiconductor lasers, especially for the vertical
cavity surface emitting lasers (VCSELs), is always accompanied by high-frequency chirps
caused by the dependence of refractive index on carrier density [24]. Different injection currents
change the refractive index, leading to changes in the frequency of the output optical signal
and ultimately inducing a level-dependent skew in the eye diagram called the eye-skewed
effect [25].

e) Insufficient extinction ratio (ER): ER is an important parameter that affects the quality of an
output signal. At higher signal rates, it is more difficult to control the signal-to-noise ratio, which
in turn significantly reduces the ER as a result of optical signal attenuation and transmission
loss [26]. This finally results in an increased bit error rate and a compressed eye diagram.

f) Mismatched power: As a transmitter ages and its usage time grows, it becomes increasingly
difficult to reach the rated laser output power. The resulting signal can be easily masked by
noise, leading to a blurred and shrunken eye diagram [27]. Conversely, if the laser power is so
high that it exceeds the capacity of the modulators, signal performance will also be impaired.

2.4 Transfer Learning

As noted in the discussion above, information on impairment errors can be acquired from the eye
diagram produced by the signal. Although such analysis requires a multi-task learning procedure
with multiple learning models, all of the tasks will focus on the same study object, namely, the eye
diagrams, which means that different target tasks can learn from similar stored knowledge gained
from a single source task. TL can be used to skillfully solve this problem by utilizing similarities
between data, tasks, or models to transfer a trained model from a source domain to a new target
domain [18], [28]. In conducting multi-task learning, conventional machine learning and TL differ
most significantly in that approaches using the former must be retrained for different target tasks,
whereas TL approaches do not require retraining (see Fig. 4).

Through the use of convolutional layers composed of sets of kernels, CNN-based deep learning
can apply feature extraction and self-learning to process eye diagram images in their raw form
without knowing other features. During a forward pass, each kernel convolves with pixel points
across the width and height of an input image to calculate the dot product between the kernel

Vol. 11, No. 6, December 2019 7205019



IEEE Photonics Journal Comprehensive Eye Diagram Analysis

Fig. 5. Schematic of frozen transfer learning. The structure and connection parameters transferred from
the source domain are retained while the parameters of the fully connected layers are adjusted through
back-propagation.

Fig. 6. Schematic of fine-tuning transfer learning. Both fully connected and transferred layers are
adjusted by back-propagation.

entries and the input. The output units are organized into a two-dimension plane called the feature
map [29]. In general, building an effective model requires several kernels to detect multiple features
and produce multiple feature maps in a convolutional layer. Following feature extraction in the
convolution layer, a pooling layer is used to merge semantically similar features into one feature.
The features extracted from the convolutional and pooling layers are then sent to fully connected
layers to execute a specific recognition task.

Convolutional and pooling layers trained from a source task can be transferred to other target
tasks to reuse extracted general features and initialize a model from a half-finished state. Based
on this pre-trained model, the target model can be further trained. To minimize the errors between
target and actual output labels, the parameters in the networks are adjusted gradually via back-
propagation using gradient descent methods [29]. TL has two commonly used parameter adjustment
approaches–frozen and fine-tuning TL, which are shown in Figs. 5 and 6, respectively.
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Fig. 7. Setup schematic. ECL: external cavity laser; PRBS: pseudo-random binary sequence; SMF:
single mode fiber; VOA: variable optical attenuator; PD: photodetector; LPF: low pass filter; ADC:
analog-to-digital converter.

Frozen TL involves the freezing of the front convolutional and pooling layers transferred from
the source domain, including their network structure and connection parameters, to serve as a
feature extractor and then adjusting only the parameters of the fully connected layers through back-
propagation [30]. The loss function ∂L t is used to assess the error magnitude, with ∂L t/∂θt used to
adjust the weight value between the fully connected layers, as shown in Fig. 5. Under fine-tuning
TL, both the network structure and connection parameters of the pre-trained model from the source
domain are used [31]. Thus, in addition to adjusting the parameters of the fully connected layers,
the parameters of the transferred components are fine-tuned by continued back-propagation in the
target domain, as shown in Fig. 6.

3. System Setup and Demonstration
To demonstrate the feasibility of the proposed eye diagram analysis approach for IM-DD systems,
we set up a simulation system based on VPI Transmission 8.6 software, as shown in Fig. 7. IM-DD
systems for 10 Gb/s OOK and 20 Gb/s PAM4, respectively, were investigated. At the transmitter,
an external cavity laser with the power of 0 dBm was used to provide an optical carrier to an
intensity modulator (e.g., an MZM, DML, or VCSEL) driven by a pseudo-random binary sequence
with length 213, symbol mapping, and a pulse shaper to generate OOK and PAM4 optical signals.
In this simulation of transmitter, sample rate is 32 × 10 GHz, sample mode bandwidth is 128 × 10
GHz, rise time is 0.25× symbol period, and the greatest prime factor limit is 2. To simulate the
transmission of a real optical link, we applied standard single-mode fiber (SMF) parameter settings,
where dispersion is 16 × 10−6 s/m2, nonlinear index is 2.6 × 10−20 m2/W, and attenuation is
0.2 dB/km. At the receiver, the optical signal was directly detected by a photodetector, where
detector type is PIN, electrical LPF filter type is 4-order Bessel filter, and filter bandwidth is 0.75 × 10
GHz. Following synchronous sampling, the eye diagram of the obtained digital electrical signal was
drawn using a specialized oscilloscope-hosted eye diagram generation module that could convert
the digital signal into the corresponding eye diagram images (in “.jpg” format). The generated eye
diagrams were then fed to a TL-based eye diagram analyzer. Using this system, we separately
collected eye diagrams produced under the two modulation formats over a transmission range of
0–80 km. Here, 70% of the diagrams were used as a training set to train the CNN model, while the
remaining 30% were used as a test set to evaluate the accuracy of the results.

3.1 Transfer Learning for Fiber Link, Essential Parameters, and Q-Factor Estimation

The priority in implementing TL is to designate the source task, which is vital to original feature
extraction and knowledge storing. In general, learning from the source task should enable the
extraction of as many effective features as possible. In these experiments, we set fiber link analysis
as the source task because it requires a more comprehensive recognition of eye diagram features.
The structure of the CNN for eye diagram recognition—which comprises three pairs of convolutional
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Fig. 8. CNN-based transfer learning network structure. Input layer: Eye-diagram images with pixel size
of 32 × 32 × 3. Convolution layer 1(C1): 32 × 32 × 32 feature maps generated by 32 × 5 × 5 kernels.
Pool layer (P1): 32 × 16 × 16 feature maps after subsampling from 2 × 2 region. C2: 64 × 16 × 16
feature maps generated by 64 × 3 × 3 kernels. P2: 64 × 8 × 8 feature maps after subsampling from
2 × 2 region. C3: 128 × 8 × 8 feature maps generated by 128 × 3 × 3 kernels. P3: 128 × 4 × 4 feature
maps after subsampling from 2 × 2 region. The input layer and hidden layer of the fully connected
layers consist of 2048 and 1024 neurons, respectively. The number of neurons in the output layer is
task-dependent.

and pooling layers and three-layer fully connected layers—is displayed in Fig. 8. The corresponding
parameter details are also presented in the caption of Fig. 8. We first used the two formats to
measure the accuracies of estimation of fiber link transmission length at different epochs, as shown
in Fig. 9. It is apparent from the figure that accuracy increased with the number of epochs. The
accuracy of the OOK signal reached 100% at the minimum 0.5-km distance interval, while the
accuracy of the PAM-4 signal remained relatively low at 0.5 km (81.73%) before finally reaching
100% at 1 km. It is because PAM-4 has a larger number of signal levels than the OOK format,
leading to more features and the need to use a deeper network structure to improve the accuracy.

To demonstrate the advantages of CNN, five other well-known and widely-used machine learning
algorithms [32]–[34]—k-nearest neighbor (KNN), random forest (RF), gradient boosting decision
tree (GBDT), support vector machine (SVM), and artificial neural network (ANN)—were used to
perform fiber link length estimation at 0.5- and 1-km intervals, as shown in Fig. 10. The key
parameters of each algorithm are depicted in the caption of Fig. 10. It is seen from the histogram
that the CNN obviously outperformed the other algorithms under both the OOK and PAM4 formats.
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Fig. 9. Accuracy of fiber link length estimation at four different link length intervals: 0.3, 0.5, 1.0, and
5.0 km for (a) OOK and (b) PAM4.

Fig. 10. Comparison between CNN and other algorithms in link length estimation at 0.5- and 1-km
intervals for (a) OOK and (b) PAM4. The key parameters of each algorithm: KNN: number of neighbor
is 5; RF: number of trees is 10; GBDT: number of estimators is 100; SVM: kernel function is radial basis
function and degree of the polynomial kernel function is 3; ANN: number of neurons in hidden layer is
1024 and the maximum number of epochs is 200.

This result is attributable to the ability of the CNN to automatically extract and exploit more deep
features in image applications.

We then transferred all of the CNN-trained feature extraction layers from the source task (link
length estimation at 1-km intervals) to six target tasks, i.e., recognition of cross percentage, levels
“0” and “1,” and eye height and width, and estimation of Q-factor. Note that the first five tasks
were processed as classification issues, while Q-factor estimation was processed as a regression
issue to obtain more accurate analog values. The eye diagram images are divided into a 30 × 40
meshed grid (i.e., made up of 1200 finely subdivided regions). The positions where eye lips and
cross points are located and the scopes that eye height and width cover correspond to the specific
grid coordinates and regions. Through detecting the located coordinates and regions of eye local
features, CNN can implement recognition tasks for different targets. As shown in Fig. 8, all of
the CNN structures were similar to the source task structure. The feature extraction layers (i.e.,
convolutional and pooling layers) were completely transferred to the six target models as pre-
trained feature extraction layers, while the fully connected layers were separately designed for the
respective target tasks and retrained from their original state. For the purpose of comparison, we
studied three cases for each target task: without TL, using fine-tuning TL, and using frozen TL.
For the case without TL, both the convolutional and fully connected layers were retrained from
the beginning and all of the parameters were adjusted from a randomly initialized state; for the
fine-tuning TL case, three convolutional layers and one fully connected layer were finely adjusted
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Fig. 11. Test results for six target tasks using OOK format with fine-tuning, frozen. and non-TL: (a) cross
percentage; (b) level “0”; (c) level “1”; (d) eye height; (e) eye width; and (f) Q-factor.

from the pre-trained state of the source task; for the frozen TL case, three convolutional layers were
retained and only the fully connected layers were adjusted.

We first measured the OOK-format results, as shown in Fig. 11. It can be seen from Figs. 11(a)–
(e) that at epoch four the accuracies of the tasks based on fine-tuning and frozen TL are close
to 100%, while the case without TL performs with poor accuracy up to epoch 20, demonstrating
the superior performance of TL. To assess the regression of Q-factor estimation, the mean error
and standard deviation (SD) were used to develop a performance evaluation index (Fig. 11(f)). The
solid lines in the figure represent the mean errors of the estimated Q-factor values at epoch 20
at different transmission distances, with the colored envelopes indicating the corresponding SDs
reflecting the respective degrees of mean error. It can be seen that the two cases with TL achieve
performances similar to the non-TL case within 20 km and outperform it from 20 to 80 km. The TLs
achieve a smaller degree of jitter, particularly in long-range transmission.

The training time, one of the most important performance indices, was also measured (Fig. 12).
It is apparent from the figure that applying TL—frozen TL in particular—significantly reduces the
training times for the six target tasks. This reduction occurs because the pre-trained model and
features extracted from the eye diagram by TL save an enormous amount of time and shorten
the parameter adjustment procedure. Frozen TL has fewer parameters and adjusts fewer layers,
resulting in an extremely shortened training time.

We then conducted similar performance assessments of the six target tasks using the PAM4
format (Fig. 13) with the highest and lowest of the four PAM4 levels identified as token levels.
Here, the cross percentage refers to the middle cross point ratio and eye height refers to the height
between the highest and lowest levels. It is seen from Fig. 13 that, by epoch 30, the accuracies of
each task performed using fine-tuning and frozen TL are close to 100%. PAM4 requires a longer
training period than OOK and is therefore more difficult for the CNN to recognize: the format
produces a larger number of eyes and levels than OOK and therefore represents more features,
which in turn leads to a more complicated feature detection process and a longer learning time.
Despite this, the TL-based methods still performed with an apparent comparative advantage to
the non-TL approach, which could achieve accuracies of only 95% for each target task at epoch
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Fig. 12. Comparison of training times for six target tasks required using OOK format and fine-tuning,
frozen, and non-TL.

Fig. 13. Test results for six target tasks carried out using PAM4 format with fine-tuning, frozen, and
non-TL: (a) cross percentage; (b) level “0”; (c) level “1”; (d) eye height; (e) eye width; and (f) Q-factor.

30. Frozen TL performed more stably than fine-tuning TL throughout the training process. The
training times at which the respective methods achieved their optimal results are shown in Fig. 14.
Compared to the non-TL case, training time could be reduced by an average of 90% by frozen TL,
a result that can significantly reduce training cost and avoid repetitive learning.

To figure out how sources task features are utilized by the specific target tasks in TL, we also
study how different source tasks affect the TL performance. Here, eye width recognition as the
example is selected as target task and other three different tasks (fiber length, eye height, Q-factor)
are set as source task separately. Three source models are trained by the corresponding source
tasks, and after 100 epochs, the whole convolutional layers from these three source models are
frozen and transferred to the target task for eye width recognition. The test results are displayed
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Fig. 14. Comparison of training times among fine-tuning, frozen, and non-TL for six target tasks using
PAM4 format.

Fig. 15. The test results for eye width recognition transferred from different source tasks: (a) OOK and
(b) PAM4.

in Fig. 15. It is seen that the source task “fiber length recognition” performs the optimal results,
illustrating the features extracted from “fiber length recognition” is the most effective and worthy to
be transferred.

Then we set “fiber length recognition” as source task and transfer different convolutional layers
to the target task. Four cases are measured: transferring the first one convolutional layer, the first
two convolutional layers, the whole three convolutional layers, the whole three convolutional layer
and the first one fully-connected layer, as shown in Fig. 16. It is clearly seen that more layers
transferred to the target task lead to the faster convergence and better performance. As discussed
in [35], deep neural networks trained on natural images exhibit a common rule: on the first layer
they learn features similar to Gabor filters and color blobs. Such first-layer features appear not to be
specific to a particular dataset or task, but general in that they are applicable to many datasets and
tasks. Features must eventually transition from general to specific by the last layer of the network.
Therefore, in our scheme, the more specific features in last layer is effective and helpful for target
task “eye width recognition”.

In conclusion, the target tasks can learn the valuable features from the more related source task
with diverse characteristics. Meanwhile, if source task is appropriate and strongly related, compared
with general features obtained in first few layers, the more specific features extracted from the last
layer are more applicable to target task, but if source task is not weakly related, then the general
features would be preferable for transferring.
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Fig. 16. Transferring different layers to target model of eye width recognition: (a) OOK and (b) PAM4.

3.2 Transfer Learning for Impairment Diagnosis

We then extended the TL technique to the task of impairment diagnosis based on eye diagram im-
ages, which to the best of our knowledge had not been reported to date. When impairment occurs,
two types of tasks must be executed through impairment diagnosis: identifying the impairment
category—that is, confirming what has caused the impairment—and, based on the determined
impairment category, quantifying the degree of impairment to obtain the accurate diagnosis infor-
mation for distortion correction and fault repair. We investigated six common impairments that may
occur under the PAM4 format as a result of transmitter imperfection, including the clipping and
pattern effects, overshoot, the eye-skew effect, insufficient ER, and mismatched power (see the
preceding discussion of these effects and Fig. 3). The impairment category identification was set
as the source task and diagnosing the degrees of impairment for the respective impairment types
was set as the six target tasks.

The main driving factor of the clipping effect is bias voltage. Under the indirect modulation PAM4
system, 11 degrees (corresponding to classes) of clipping effect can be obtained by adjusting bias
voltage at 0.25 V intervals over a half cycle (i.e., 2–4.5 V) of the MZM transmission function. As
the initial phase of the transmission function in our system was −0.5 V, to ensure a wide scope of
coverage we sampled signals corresponding to an offset point located within the second half of the
cycle to obtain varying degrees of clipping effect. When the offset point is located at the quadrature
point of transmission function (i.e., 3.25 V), the clipping effect will not occur. When the offset point
is located at the highest or lowest points, the corresponding eye diagrams cannot be distinguished
because of serious signal distortions, and therefore the eye diagrams sampled at these two points
are regarded as one case. Based on these restrictions, the number of degrees of impairment are
reduced to nine classes.

The primary factor driving the pattern effect is the EO bandwidth of the modulators. Because EO
bandwidth is determined by the material properties in the modulator gain region and is therefore
relatively fixed, it is possible to obtain different degrees of pattern effect by adjusting the signal
transmission rate. As the EO bandwidth of the modulator used in our system was 36.5 GHz and the
signals were generated at bitrates of 20, 40, 60, and 80 Gb/s, the impairment degree was divided
into four classes. At signal bitrates exceeding 80 Gb/s the signal was seriously distorted and eye
diagram quality was very poor, and therefore no results were considered for this extreme case. On
the other hand, signal transmission rates far below the EO bandwidth produced ideal eye diagrams
that required no additional sampling.

The primary driving factor of overshoot at the rising signal edge is the injection current. The
effect can be suppressed and mostly ignored if the bias current is close to the current threshold.
However, when current pulse modulation is applied and there is a strong, instantaneous change
in injection current, the effect will be significant and impossible to ignore. For the experiments, we
set the injection current at intervals of 10 mA over the range 25–55 mA and divided the degree of
impairment into four classes.
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Fig. 17. Accuracy of impairment category identification by epoch at image sizes of 32 × 32 × 3 and
64 × 64 × 3.

The eye-skewing effect is primarily driven by the modulation current amplitude. As the VCSEL
employed in the direct modulation PAM4 system had a threshold current of about 2 mA, a bias
current close to the threshold value of 2.2 mA was chosen. Because the amplitude of the applied
modulation current ranged from 2 to 20 mA, the impairment degree was divided into four classes
by sampling at current intervals of 6 mA. At modulation currents below 2 mA, the modulated PAM4
signal was quite similar at all four levels and could easily be seriously distorted. At modulation
currents above 20 mA, the overshoot effect occurred as a result of excessive modulation current.

Various degrees of signal impairment can be obtained by adjusting the ER parameter (insufficient
ER). The lower end of the ER range was selected based on the general requirement that the signal
ER should be above 10 dB; accordingly, we selected 8 dB as the lower measurement limit. Similarly,
ERs above 15 dB have very little influence on the performance of an optical communication system
and produce eye diagrams that differ only marginally; thus, we only chose an ideal measuring point
at 20 dB. Based on this range, the impairment could be divided into four classes.

Different degrees of signal impairment from optical power mismatch can be obtained by adjusting
the laser output power. For practical operation, we separately sampled signals at optical powers
of 5, 10, and 50 mW and accordingly divided the mismatch into three classes: small, normal, and
large.

From the preceding breakdown, there are a total of 28 classes of eye diagram data (9 + 4 + 4 +
4 + 4 + 3) covering six impairment categories with different degrees of impairment. We collected
100 eye diagram images for each class to produce a dataset containing 2,800 images with a 9:1
ratio of training to testing data. To conduct the source task of impairment category identification,
half of the dataset samples were selected to train the CNN model to carry out the source task of
impairment category identification with the goal of determining for each sample which of the six
impairment categories it belonged to. We measured identification accuracy as a function of epoch
for images of pixel-size 32 × 32 × 3 and 64 × 64 × 3, as shown in Fig. 17. It can be seen that, at
both image sizes, an identification accuracy of 100% could be achieved by epoch 15. Although the
larger eye diagram image size provided higher resolution and richer information, for the purposes
of the study, the size of 32 × 32 × 3 with smaller associated parameter count was sufficient and
could converge faster. The following tests were therefore based on this size and consistent with the
CNN structure in Fig. 8.

Next, using the TL approach, the CNN model of the source task was used as a pre-trained
model for the six target tasks of executing impairment degree diagnosis corresponding to the
six impairment categories. Using frozen and fine-tuning TL structures, the pre-trained model was
reused to train networks for diagnosing the impairment degree of each impairment category. To
demonstrate the advantages of using TL, new networks were trained for the same targets from
the original state as a comparison. As shown in Fig. 18, the TL-based methods started at more
advanced stages and had better initial performance than the non-TL method; that is, the models
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Fig. 18. Accuracies of six target tasks for impairment degree diagnosis: (a) clipping effect; (b) pattern;
(c) overshoot; (d) eye-skew effect; (e) insufficient ER; and (f) mismatching optical power.

Fig. 19. Training times of fine-tuning, frozen, and non-TL approaches for six target tasks.

without TL started from zero knowledge and began initializing their parameters randomly, resulting
in repetition of the learning procedure.

Figure 19 shows the training times of the three methods. The non-TL method had significantly
longer training periods for each impairment category, with fine-tuning and frozen TL requiring the
second-shortest and least training time, respectively, in each case. Specifically, the model training
processes of the frozen and fine-tuning TLs were faster than the non-TL processes by factors of
up to 20 and 2.5, respectively. By freezing the parameters of the transferred layers and only using
the data to train the parameters of the fully connected layers, frozen TL reduced the number of
model adjustment parameters significantly compared to the non-TL algorithm. Furthermore, most
of the memory usage and time-consuming calculation in the CNN occur at the convolution layers,
while the fully connected layers primarily identify eye diagram features and output classification
results. The fine-tuning TL initializes its model parameters using the parameters obtained from the
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Fig. 20. Globally optimized scheme for multi-task learning with fine-tuning TL, frozen TL and no-TL:
(a) accuracy under different epochs and (b) training time.

pre-trained model. This advancement of the starting point means that fewer epochs are needed to
reach convergence, which reduces training time accordingly. However, because it is also necessary
to fine-tune the parameters of the transfer layer through back-propagation, the training times of fine-
tuning TL models are longer than those of models trained by freezing the transferred layer. In both
cases, however, the application of deep TL significantly reduces the training time.

The six impairment degree diagnoses described above were conducted separately. Given the
correlations among the six target tasks, the eye diagram analysis scheme could be globally opti-
mized for multi-task operation using TL. In addition to a unique fully connected layer corresponding
to each task, the other layers in the model would be hard parameter shared layers. It should be
noted that, under such a multi-task globally optimized model, the transferred layer would not be the
same as the shared layer but would instead coincide with the front part of the shared layer. The
most significant difference between this scheme and an individually optimized model is that it would
be able to execute each eye diagram analysis task simultaneously. That is, the model would have
simple multiple outputs and therefore would be trained to minimize the sum of the error functions
of each task, as the different tasks would correspond to different error functions.

Based on the above specifications, a pre-trained model was reused to train a composite net-
work model for simultaneously diagnosing multi-impairment degree (Fig. 20(a)). As in the single-
optimization cases, the transferred composite network demonstrated better initial performance than
the non-transferred network. The accuracies of the non-transferred network and the transferred net-
work using the fine-tuning method both reached 99.88%, while that of the transferred network using
the frozen method reached 99.2%. Although in this case the accuracy of the transferred network
using the frozen method was slightly lower than that of the other two networks, frozen TL still
represents a worthwhile approach that can achieve good performance within a short training time
(Fig. 20(b)). Furthermore, the transferred network converged faster than the network without TL.

3.3 Generalization

To demonstrate the generalization of the proposed method for practical eye diagrams, we collect
some practical eye diagrams from experimental oscilloscope (Tektronix MSO 73304DX), which can
execute real-time burst-mode eye diagram display. The optical signals at 10Gbaud are modulated
by a MZM driven by an arbitrary waveform generator (AWG). After transmitting over 10 km fiber,
OOK and PAM4 signals are detected by a PD. In addition, an ASE source and one variable optical
attenuator (VOA) are added before receiver to adjust the optical signal-to-noise rate (OSNR) of
optical signals so that generating various eye diagrams. We totally collect 20 different eye diagrams
for OOK and PAM4 signals with OSNR ranging from 15 to 25 dB respectively. Here the eye diagrams
of OOK and PAM4 in the case of back-to-back and at OSNR of 18 dB are selected as examples for
display in Fig. 21. Similar to the simulation, all the images are transformed into gray-scale maps.
Even there is a little chromatic aberration in color images between simulation and experiment, after

Vol. 11, No. 6, December 2019 7205019



IEEE Photonics Journal Comprehensive Eye Diagram Analysis

Fig. 21. The collected eye diagrams of OOK and PAM4 signals from oscilloscope: BTB and at OSNR
of 18 dB.

TABLE 1

Summary of Misclassified Practical Eye Diagrams and Corresponding Error Rate

gray transformation, the experimental eye diagrams look similar to the simulated ones. Then these
experimental eye diagrams are directly sent into the transferred models from simulation to output
the six essential characteristic parameters.

The correct values of these six parameters are measured by using the built-in dividing ruler of
oscilloscope and determined by manual method, which are also the artificially estimated values
but can be referenced as the comparison values for performance evaluation. Then we count the
amount of misclassified experimental samples and the corresponding error rate for each parameter,
as summarized in Table 1. For Q-factor, the mean error (ME) is calculated. This is a small sample
set composed of 20 samples for each format, and thus error rate is equal to amount of misclassified
samples/20. It is seen from Table 1, the misclassified samples for each parameter are not larger
than 2 and 3 for OOK and PAM4 respectively, and the corresponding error rates are 10% and
15%. The mean errors of Q-factor are less than 0.23 and 0.31 for OOK and PAM4. Comparatively
speaking, performance of PAM4 is worse than OOK. This is because the similarity of OOK eye
diagrams between simulation and experiment is better than PAM4. It is observed from Fig. 21
that experimental eye diagram of PAM4 signal presents the more gentle rising edges (i.e., longer
rising time caused by longer response time of a practical modulator) than simulation one, leading
to the narrower eye width. But even so, all the misclassified samples are still limited within 3,
demonstrating the acceptable generalization of the simulation-generated models in a certain extend.
The performance can be further improved by adding the sufficient experimental data into the training
data set, or applying technique of transferring learning to transfer the knowledge from simulation to
the experiment, which are interesting and worthy of investigating in the further work.

Additionally, in our demonstration, the signal speed is 10 Gbaud and transmission distance is
0–80 km. If longer distance is deserved, the amplifier of EDFA is necessary at the intermediate
node. Under this situation, eye diagram is amplified and accompanied with ASE noise from EDFA
and other accumulated fiber impairments, meaning that the proposed method could be feasible
to recognize these information for longer distance. Meanwhile, when the speed of optical signals
grows from 10 Gbps to 40 Gbps or even more, the higher-rate signals are more sensitive to system
impairments (like interference, dispersion, receiver bandwidth, etc), which can be visually displayed
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in eye diagrams. Thus, we think the proposed method could be feasible for higher rate and longer
distance with amplification

4. Conclusion
This paper proposed a comprehensive and multifunctional eye diagram analysis scheme based
on deep TL. Using the estimation of transmission distance through the processing of eye diagram
images via a CNN as a source task, six target tasks, including cross percentage, levels “0” and
“1,” eye height and width, and Q-factor estimation, were trained. Both fine-tuning and frozen TL-
trained models achieved 100% accuracies within a small number of epochs, with training times
reduced by over 95% for OOK and 60% for PAM4. We further investigated intelligent impairment
diagnosis through the recognition of eye diagram features using impairment category identification
as a source task and impairment degree diagnosis for six common impairments as target tasks.
In all cases, the TL-based methods performed with higher accuracy and with a faster convergence
speed. The training time relative to non-TL training was decreased by more than 60%, particularly
for frozen TL-trained models. Finally, a composite CNN model to simultaneously diagnose multi-
impairment degree was constructed. Even under its complicated network structure, accuracies of
99.88% and 99.2% were achieved using fine-tuning and frozen TL approaches, respectively. All the
results suggest that TL is a feasible tool for eye diagram analysis and impairment diagnosis with
reduced learning periods and lower computational overhead.

In conclusion, in our scheme, TL can not only speed up the training process, but also bring down
the training data size. In addition, benefitting from the diverse data source, the models obtained by
TL have the better generalization and stronger robustness.
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