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Abstract: With the shrinking of the IC technology node, optical proximity effects (OPC)
and etch proximity effects (EPC) are the two major tasks in advanced photolithography
patterning. Machine learning has emerged in OPC/EPC problems because conventional
optical-solver-based OPC is time-consuming, and there is no physical model existing for
EPC. In this work, we use dimensionality reduction (DR) algorithms to reduce the computa-
tion time of complex OPC/EPC problems while the prediction accuracy is maintained. Also,
we implement a pure machine learning approach where the input masks are directly mapped
to the output etched patterns. While one photolithographic mask can generate many experi-
mental patterns at once, our pure ML-based approach can shorten the trial-and-error period
in the photolithographic correction. Additionally, we demonstrate the automation in SEM
images preprocessing using feature detection, and this facilitates intelligent manufacturing
in semiconductor processing. The input vector dimensions are effectively reduced by two
orders of magnitude while the observed mean squared error is not affected significantly.
The computation runtime is reduced from 4804 s of the baseline calculation to 10 s–200 s
The MSE values changed from the baseline 0.037 to 0.037 for singular value decompo-
sition (SVD), to 0.039 for independent component analysis (ICA), and to 0.035 for factor
analysis (FA).

Index Terms: Lithography, Diffractive imaging, Technologies for computing.

1. Introduction
Optical lithography is a crucial step in the integrated circuit (IC) technology for transferring patterns
from masks to wafers. Nonetheless, in advanced lithography, the patterns printed on wafers are
distorted due to optical proximity effects such as resist process effects, diffraction, and interference
[1]–[4]. Various resolution enhancement technologies (RETs) have been proposed to improve the
pattern fidelity and the performance of the lithographic imaging system [5]. In RETs, the mask is
modified according to the fundamental principles of optics and limitations in the lithographic system.
Specific to mask side enhancement, optical proximity correction (OPC) is a well-known technique
to enhance the resolution of a specific photolithography system operating in a fixed wavelength.
OPC techniques compensate for image distortions as this method pre-warps the mask patterns
based on the target patterns [6]–[11].
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Fig. 1. Illustration of the EPC/OPC procedures and the associated forward and reverse engineering.

Together with OPC effects, etch proximity effects (EPC) also affects the overall critical dimensions
for the photolithography and patterning process. Etch proximity effects originate from etching the
developed resist patterns. Reference to the photoresist pattern, the etching process can produce
an over-etched substrate or an under-etched substrate. The over-etched substrate is known as a
negative etch bias while the under-etched substrate is referred to as positive etch bias. Negative
etch bias is attributed to the lateral erosion. On the other hand, positive etch bias is caused by the
deposited particles, such as ions and radicals, on the surface of the resist and the substrate through
the entire etching process [11]. Therefore, in order to obtain the desired patterns and the correct
dimensions on the wafer, etch proximity corrections (EPC) have to be applied to compensate the
etch bias reference to the resist pattern [12], [13].

The relationship between etched patterns, resist patterns, and mask patterns are shown in Fig. 1.
In forward engineering, OPC on the photolithography mask is implemented first to arrive at a resist
pattern. Afterward, the resist pattern goes through EPC, and the final etched pattern should match
the desired target pattern on the wafer. This whole process is repeated while OPC/EPC is being
adjusted until we arrive at the desired pattern on the wafer. On the other hand, in the reverse
engineering case, firstly EPC corrections are proposed, and the etched pattern should be the
desired pattern. Afterward, the resist pattern is the target pattern after photolithographic exposure
and resist development. The OPC is then used to ensure that the mask pattern leads to the desired
resist pattern [14], [15].

The OPC process can roughly be classified as model-based OPC (MBOPC) and rule-based
OPC (RBOPC). Rules are empirically generated based on the geometrical properties of the layout
patterns. This technique is a little inaccurate as compared to MBOPC, but it yields faster results
due to less required computation. RBOPC is not suitable beyond 90 nm technology node [14], [16],
[17]. On the other hand, MBOPC is based on approximated optics models. With complex masks
and volumetric data, MBOPC requires excessive computational time. MBOPC has two separate
directions, namely, edge-based (EBOPC) and pixel-based OPC (PBOPC) [18]. In EBOPC, the input
mask layout is partitioned into different edges while in PBOPC the input masks are converted into
pixels. Either EBOPC or PBOPC is effective, but both of them require enormous time in calculation.
As technology shrinks to smaller nodes, more accurate OPC calculations are required, and PBOPC
is in general preferred over EBOPC in optics solvers to get more accurate results.

Similarly, EPC can be classified into rule-based EPC (RBEPC) and model-based EPC (MBEPC).
Rules are empirically generated by performing a few experiments on certain layouts to calculate
etch biases in each case. The results are then put into a tabulated form for future usage if similar
patterns or shapes are encountered in IC layout. Nonetheless, these tabulated rules are, in most
cases, too simplistic to effectively correct a wide range of patterns that occurs in a real layout.
On the other hand, MB-EPC is implemented to model etch bias as a function of a few empirical
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Fig. 2. The linear and non-linear dimensionality reduction techniques.

parameters of a specific shape and its environment. These parameters are density kernel, blocked
kernel, and visible kernel [19]–[21]. The coefficients of this polynomial function are determined
empirically. Thus, MB-EPC can be more accurate and applied to a wider range of layouts than RB-
EPC can, though the results are still unsatisfactory and require excessive time and computations.
Furthermore, the nature of the current EPC models is still semi-empirical. To date, there have not
been accurate physical models for EPC. Detailed physical models can be difficult to construct due
to the high complexity in dry etching processes.

In recent years, machine learning (ML) has emerged as a promising field in bringing new op-
portunities across all fields. Machine learning has been employed in providing optical proximity
corrections (OPC) and etch proximity corrections (EPC) to shorten the trial-and-error cycles and to
provide more accurate and faster results [22]–[33]. These ML-based OPC/EPC efforts have pushed
the resolution limits of photolithography, reduced image distortions, and achieved less computa-
tional time compared to optics model-based OPC. Nonetheless, there have not been many efforts
devoted to dimensionality reduction (DR) for photolithography patterning correction problems to
date. While DR becomes more and more critical in ML, in this work, we investigate its capability
and feasibility to reduce the OPC/EPC problem complexity and computation time.

Dimensionality reduction (DR) has emerged as an effective way to improve the calculation effi-
ciencies and enhance visualization in machine learning problems. The input vector feature sizes are
reduced, and in the preferred case, the critical information in the input space is still preserved. Using
appropriate DR algorithms, improvement can be observed in data redundancy reduction, intrinsic
structure discovery and feature extraction, better visualization of data, enhancing computation, and
machine learning efficiency in terms of run time and memory requirements [34]–[38]. DR algorithms
can also contribute to removing irrelevant and noisy features, such as independent random noise
that is uncorrelated with the input, and the unwanted degrees of freedom. Both linear and nonlinear
dimensionality reduction techniques can be implemented depending upon the situation [39]–[42].
Fig. 2 illustrates the basic working mechanism of both linear and non-linear techniques. In a lin-
ear dimensionality reduction technique, the high variance directions are located to reflect the key
trends in the data set Fig. 2. A new axis is linear and may be non-orthogonal. On the other hand,
non-linear dimensionality reduction utilizes nonlinear kernels to locate the key trends in the dataset
while preserving the neighborhood relation. In terms of neighborhood preserving, the distance or
the distance ranks between the data points in the original space needs to be preserved after the
input vector is transformed into the embedding space. Neighborhood preserving is frequently used
as a measure of the quality of DR techniques.

Vol. 11, No. 5, October 2019 2800215



IEEE Photonics Journal Intelligent Photolithography Corrections

Fig. 3. Illustration of dimensionality reduction in this proposed work. Input mask has N × M feature size,
and thus, the number of input nodes of the neural network is high. After dimensionality reduction, the
number of input features decreases to n_components.

In this work, the dimensionality reduction technique is exploited to reduce the number of input
feature size of pixel-based (PB) OPC/EPC using machine learning. This step induces a little inac-
curacy in the data, but these inaccuracies should not contribute significantly to the predicted output
etched patterns if DR is effective. Fig. 3 below depicts the overall working mechanism of our work.
Various dimensionality reduction techniques have been implemented to decrease the number of
input feature size of PBOPC/EPC masks, and this reduced feature set is used to train the neural
network (NN). After that, testing of the NN is done by the test dataset, and the comparison has been
made between the prediction accuracy using the original input space and the embedding spaces
by different DR techniques. We use a pure machine learning based approach, where the input
is photolithography mask, and output is the experimental etched pattern. This approach is quite
different from most of the current ML-based OPC/EPC in literature [22]–[33]: (1) In most papers, ML
is used to tune the relation between input mask and calculated resist pattern using optical solvers
to save optical solver calculation time. We train experimental patterns instead. This eliminates the
dependency on optical solvers that can be slow. Since one photolithography mask can generate
abundant experimental patterns at once, the training dataset can be collected in a short amount
of time. Furthermore, DR is used to reduce the neural network training time, and intelligent SEM
image preprocessing reduces the data preprocessing time. (2) ML has been mostly applied to OPC,
and there are only few papers working on ML EPC [19], [20]. (3) OPC and EPC in our work can
be done in one calculation. This is distinct from the current practice of separate efforts in OPC and
EPC.

2. Method
2.1 Image Processing

In this work, we use etched pattern as the target output for neural network training, and thus
effectively, we implement EPC/OPC together. This approach is new since, in most of the works
in literature, OPC and EPC are conducted separately. In most practices in the past, OPC still
counts on optics solver while EPC is implemented before OPC using ML or empirical models.
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Raw data is generally susceptible to containing noise or unreliability, especially if data collection
is from semiconductor manufacturing. In this paper, the data pre-processing involves mainly the
following steps: feature detection, feature extraction, geometric transform estimation, binarizing,
and centralizing. The preprocessing code is mainly in Matlab [43] scripts. Different mask patterns
with varying OPC/EPC mask corrections constitute our dataset. To detect the shape and size of
the etched image patterns in the dataset, scale bar in each image has to be detected to correct
the slight scale difference during scanning electron microscope (SEM) operation. Feature detection
is based on speeded up robust feature (SURF), which is a rotation-invariant algorithm [44]. This
descriptor employs Hessian matrix and Laplacian approximation to reduce the CPU time. For
extracting the features, the square region centered at the point of interest has been constructed on
the clustered scene. The orientations of the square box regions are set according to the orientation
of the referenced image [45]–[48]. Afterward, the features on the referenced images, i.e., the scale
bar, and the features of the target image with clustered scenes are matched [49]–[52]. Finally, the
desired object in the clustered scene is detected using affine transformation [53], [54].

In the next step, the binarization of images is conducted. The purpose of this step is to make
the boundary of the etched pattern in SEM images prominent. Firstly, the image is binarized using
a locally adaptive threshold algorithm [55], [56]. Afterward, the hole-filling to the enclosed black
space by white lines is conducted by morphological reconstruction algorithm [57]. In case of slightly
discontinuous lines in the SEM images due to Pt film coating, morphology bridging can be done
before hole filling [58]–[61]. Afterward, we rotate the processed images to the upright position since
SEM captured image can be at any rotation. The size of each image is reduced by considering each
mask at the center position by eliminating the extraneous space in images. Finally, the images are
being centered with a consistent size. Fig. 4 illustrates all these steps for the SEM images of the array
of 200 nm × 3 μm lines. All images have been centered with the size of 660 × 408 pixels. For the
actual calculation, the input image size is set as 600 × 400 and further reduced to n_components =
1–45 based on various dimensionality reduction techniques. The output image size is set as 65 × 38
to reduce the computation time. Multi-layer perceptron (MLP) with two hidden layers is used in this
study. While convolution neural network (CNN) has been the mainstream in image processing and
computer vision, the basic MLP performs better based on our test if the neural network output is
a predicted SEM image rather than a few labels such as the cases in object detection, motion
tracking, or sentiment analysis. This is because the pooling and convolution operation in CNN can
lead to blurred input information, which is not desired if an entire output image is to be predicted
clearly. In the dimensionality reduction studies, the input layer neuron number is n_components,
which ranges from 1 to 45, and the hidden layer neuron number is 50. In the baseline study, the
input layer neuron number is 600 × 400 = 240000, and the hidden layer neuron number has to
be increased to 500 to have converged solutions. Directly downscaling from 240000 neurons to 50
neurons lead to no convergence at all. Therefore, the advantage of using DR algorithms lies in not
only a reduced input neuron number but also a reduced hidden layer neuron number required for
convergence. The output neuron number is uniformly 65 × 38 = 2470.

The Maxwell equation is linearly scalable. Thus, when the device critical dimension (C.D.) is
scaled down, the lithography light source wavelength (λ) has to be scaled down simultaneously. In
response to shorter λ, the physical length per pixel is also scaled down proportional to C.D. and λ

scaling in digital images. Except the scaling down in the physical length per pixel, given the fact that
the intelligent ML-based OPC method in this study only concerns the digitized images with pixels,
there is not much difference in applying ML-based OPC to I-line or DUV/EUV lithography.

2.2 Implementation of DR Techniques

Five dimensionality reduction techniques have been implemented in this work namely, singular-
value decomposition (SVD), independent component analysis (ICA), factor analysis, isometric map-
ping (ISOMAP) and uniform manifold approximation and projection (UMAP). We use Python, Scikit
Learn [62], [63], Matlab [43], UMAP toolbox by McInnes et al. [64], and R programming language
in this work.
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Fig. 4. Preprocessing of the dataset: (a) Gray-scale SEM image with its corresponding scale bar.
(b) Detection of scale bar in the image using feature detection algorithms. (c) Binarization, morphology
bridging, hole filling, and rotation. (d) Centered and zero-padded image to adjust the size of each image
to achieve a uniform size of 660 × 408 pixels in the entire dataset.

2.2.1 Singular-Value Decomposition: (SVD) The Singular-Value Decomposition (SVD) reduces
a matrix into three matrices, and thus the calculation becomes simpler using the decomposed
matrices [63], [65]–[70]. SVD and Principal Component Analysis (PCA) method are related methods
where PCA is mainly used for square matrices, and SVD can be used for non-square matrices [71].
The singular value decomposition method leads to a reduced space where, along the new axes, the
observations/features have the highest variance. These new directions are known as the principal
components [72]. SVD decomposes a matrix as [73]:

A = UW V T (1)

where U is the orthonormal eigenvectors of AAT, VT is the transpose of a matrix containing the
orthonormal eigenvectors of ATA, and W is a diagonal matrix where its diagonal elements are the
square roots of the eigenvalues of ATA in descending order. In comparison, SVD algorithms are
faster and numerically more stable than PCA.

2.2.2 Independent Component Analysis (ICA): Independent component analysis (ICA) is a lin-
ear dimension reduction algorithm where the transformation is conducted on the original dataset
to arrive at reduced features of independent components [63], [72]–[75]. This method iteratively
optimizes and increase the independence between the features in the embedding space. This, in
turn, leads to a linear nonorthogonal projection of the original dataset into the embedding space.
The observed vectors in the original space are then expanded as the linear combinations of un-
known non-gaussian sources S. With the assumption of statistical independence, ICA determines
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the sources from the original observation [72], [73]. Using ICA, given that S is a source random
vector, A = W −1 is a mixing matrix, and X is observation, then ICA finds W and S = WX [73].

2.2.3 Factor Analysis (FA): In factor analysis, relations among a set of random variables is
analyzed, and the goal is to determine the correlations among all variables in the original input
space [63], [73], [76]–[83]. This is done by postulating a reduced set of common factors where the
number of random variables is less than the original set. The new, reduced set of random variables
is assumed to be independent with zero mean. The new factors are assumed to be present in
the experimental samples despite the fact that they may not be directly observed, counted, or
measured. Considering the original space of n random variable, factor Analysis model can be
specified by given equations of observed variables Yi, i = 1, . . . , n [73], [76]:

Yi = λi1F 1 + λi2F 2 + · · · + λi kF k + δi (2)

where δ represents variability in each Yi, and all Yi are linear functions of F and δi. k is the dimension
in the embedding space. If there are m observations in our dataset, the factor analysis equation,
(2) can be written into matrix form [73]:

Yn×1 = �n×m F m×1 + δn×1 (3)

where � is the loading matrix. With some manipulation, we can find that the covariance of original
space observation, Y, can be written as [63], [73], [76]–[83]:

Cov(Y) = � = ��T + cov(δ) (4)

Transformation from Y to F is possible if � can be solved. The procedure is, in short, to find �

that reduces the mean square error in the off-diagonal elements in the correlation matrix [73].
2.2.4 Isometric Mapping (ISOMAP): Isometric mapping (ISOMAP) is a manifold learning al-

gorithm for dimensionality reduction. It recovers low-dimensional representation of a non-linear
manifold based on the assumptions that the manifold is smooth, and the geodesic distance be-
tween two points is equal to the Euclidean distance. The steps of this algorithm are described in
[62], [63], [76], [84]–[86]. Basically, k-nearest neighbor (KNN) algorithm is used to extract which are
neighboring nodes. In this step, the edge length between the neighboring nodes is the Euclidean
distance

di stij = ||x i − x j || (5)

Through this procedure, the neighbors of the manifold for all observations are sketched. The
neighborhood graph, G = G (X , φ), is then generated, where X is a set of input data points and φ is
a set of edges which show the neighborhood relationship between the nodes. Finally, Dijkstra’s or
Floyd–Warshall algorithm is employed to calculate the shortest distance between any two nodes in
the manifold, and multidimensional scaling to calculate the finalized embedding space.

2.2.5 Uniform Manifold Approximation and Projection (UMAP): Uniform Manifold Approximation
and Projection (UMAP) is a unique non-linear manifold dimension reduction technique whose
visualization quality can be similar to t-SNE [64], [76]. UMAP works in Riemannian geometry where
manifold is assumed to be locally connected and metric is locally constant. The implementation of
UMAP in its first step is to construct a weighted k-neighbor graph. Let X = {x1, . . . , xN} be the input
dataset, with a dissimilarity measure d: X × X→R ≥ 0. With an input hyperparameter k, for each x i ,
the set {x i1, . . . , x i k} of k nearest neighbors of x i will be computed under the measure d. For each
x i , the following equations are defined as [64]:

ρi = min{d(x i , x ij)|1 ≤ j ≤ k, d(x i , x ij) > 0}, (6)

and set σi is a value to ensure [64]:

k∑

j=1

exp
(− max(0, d(x i , x ij) − ρi )

σi

)
= log2(k) (7)
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Then, a weighted directed graph G = (V, E , ω) can be constructed and can the set of directed
edges E = {(x i , x ij)|1 ≤ j ≤ k, 1 ≤ i ≤ N } is formed. More details can be found in the decent work by
McInnes et al. [64].

2.3 Sample Fabrication

Firstly, we prepare the masks of the patterns on Synopsys Laker software. The spacing of each
pattern has been set as 10 μm uniformly. We prepared 50 patterns with different sub-resolution-
feature (SRF) corrections. Afterward, the laker GDSII is exported as ASCII. Using the coordinate
and shape information in the ASCII file, we can convert the mask patterns into binary images. The
mask pattern is transferred to the reticle in 1:5 ratio, and the mask is fabricated using laser direct
writer and dry plasma etching.

After that, we used TEL CLEAN TRACK MK-8 for the deposition of photoresist on the silicon wafer.
After this step, we used Canon FPA-3000i5+ I-Line stepper to expose the wafer for pattern transfer.
The frequency of operation is 365 nm for this machine. The resolution and numerical aperture for I-
line stepper are 0.35 μm and 0.45–0.63, respectively. Numerical aperture is automatically variable
in this step. The reduction ratio and field size for I-line stepper are 5:1 and 20 mm × 20 mm,
respectively. Then, we use TEL CLEAN TRACK MK-8 machine again for removing photoresist and
for developing the resist patterns on the Si wafer. Finally, Oxford Estrelas 100 deep reactive ion
etching (DRIE) machine has been used for etching of the patterns onto the Si wafer. This machine
is based on ion bombardment mechanism. Ion bombardment is manifested mainly in the vertical
direction. SF6 gas is sent into the chamber and plasma is then turned on. The SF6 molecule will be
accelerated towards the Si wafer to impact the exposed surface.

2.4 Sample Measurement

Sample measurement is implemented by using a Hitachi SU8010 Cold Field Emission SEM ma-
chine. The electron source for is cathode electron gun. The resolution of the machine is 10 Å (at
15 kV) or 13 Å (at 1 kV). The voltage of operation is 0.1 kV to 30 kV. The sample size suitable
for this Hitachi SEM is 50 mm × 50 mm. The magnification for a quality image for this machine is
around 105.

3. Results and Discussion
In Table 1, we see reduced program execution time when dimensionality reduction algorithms are
applied. The tDR is the execution run time for dimensionality reduction calculation, and the tML is the
time for the training and testing of the neural network. The code is tested on HP Z240 workstation
with Intel (R) Xeon (R) CPU E3-1225 v5 3.30 GHz and HP elite desktop. The time shown in Table 1
is on i5 CPU. An apparent reduction in tML time from 4804s of the baseline calculation to 10 s–
200 s is obvious. This is due to the fact that the input image size is reduced from 600 × 400
pixels to n_components = 1–45. In Table 1, we also observe that in the case of applying linear DR
techniques, the mean square error (MSE) does not change significantly reference to the baseline
calculation where no dimensionality reduction (DR) is applied to the input images. The MSE values
are changed from the baseline value of 0.037 to 0.036 in SVD, to 0.038 in ICA, to 0.034 in FA. In
the case of nonlinear DR, the MSE degrades more significantly but still at the same order. The MSE
values degrade to 0.058 in Isomap, and to 0.069 in UMAP, for the optimally reduced dimension
(n_components) in the embedding space. Satisfactory degradation behavior is attributed to the
capability of DR techniques in capturing the key components that govern the outputs in this machine
learning OPC/EPC problem. In fact, whenever the dimension of the input vectors is reduced,
the information contained in the input space is inevitably lost. Nonetheless, if the input vector
space contains a significant portion of less critical information, reasonably efficient DR techniques
can be used to exclude this non-significant part of the information and retain the prediction accuracy.
It can be noticed that in Table 1 that the execution time for smaller n_components is not necessarily
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TABLE 1

The Mean Square Error (MSE) and the Program Execution Time of Dimensionality Reduction (tDR)
and Neural Network (tML) in the Training/Test Set

shorter. This is because in the case of n_componets = 1–45 as shown in Table 1, the computation
loadings on CPU are all light, and therefore, tML is mainly determined by the time required for
convergence. The convergence is considered achieved when the loss function decreases less
than the tolerance = 1 × 10−4 in multilayer perceptron (MLP) training, and thus, longer tML is
observed if more iterations are needed to achieve convergence. As for the relationship between
n_componets and MSEtrain/ MSEtest, it can be more complicated. MSEtrain mainly depends on two
factors: embedding quality of DR and the complexity of the function that maps the embedded input
space to the output space, and both of these two factors are affected by n_components while
their correlation can be difficult to know using a general rule. High embedding quality ensures
the input data points are well spaced in the embedding space, and which n_components leads
to better embedding varies for different DR algorithms and ML problems. Thus, we can observe
in Table 1 that the optimal n_components is, in fact, DR-algorithm dependent. MSEtest further
depends on the train-test set discrepancy and the test set representation in the embedding space.
Without real calculation, it is difficult to know in advance the optimal n_components for MSEtrain

or MSEtest since all of the factors are entangled. Fig. 5 plots the real and predicted images in
the training and the test set, for using baseline non-reduced input masks and the masks under
various DR techniques. It should be emphasized that the reduction in the code execution time is a
critical factor to determine whether machine learning is going to be useful in OPC/EPC problems.
This is because the bottleneck in current technology is the long execution time associated with
the OPC/EPC calculation. Using pure ML-based approach, we not only overcome the problem of
solving Maxwell equations in 3D but also the problem of lacking an appropriate model for etching
proximity corrections (EPC). While in most photolithography correction cases to data, ML is used to
construct a model between the input mask and output optical-solver patterns to reduce optical solver
calculation load, in our case we directly train experimental patterns across OPC/EPC problems
at once. This can effectively reduce the trial-and-error time since one photolithography mask can
generate abundant experimental patterns. Furthermore, DR and intelligent preprocessing, as shown
in Section 2.1, reduce the time of neural network training and data warehouse clean up.

Further reduction in code execution time can be done by reducing the output neuron number.
This can be done by using feature extraction to highlight the key geometry parameters, as the
case in [23]. Alternatively, we can reduce the output neuron number by evaluating the averaged
difference between the real images and predicted images at predefined partitions over the entire
output images. The number of partitions can be adjusted based on the need. In the extreme case,
the output neuron number can be reduced to one where the averaged difference between the entire
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Fig. 5. The real SEM images and predicted SEM images in the training and the test set for different DR
algorithms.

real images and the entire predicted images are calculated as a lumped figure of merit. This is
feasible because eventually we only want to know whether the real etched pattern is the same as
the predicted pattern. The partition and averaged difference scheme can be more feasible then
direct down-sampling the images, especially when a high reduction ratio is desired.

Fig. 6(a) shows the embedding spaces after dimensionality reduction using various techniques in
the case of optimal n_components values in Table 1 for the five DR algorithms. We plot the training
set in blue circles and the test set in red circles. It can be observed that the UMAP leads to a very
uniform distribution over the 2D reduced embedding space. On the other hand, the independent
component analysis (ICA) maps most of the points onto a crowded region in the embedding space.
Solely looking at the data set distribution in the reduced space, as shown in Fig. 6(a), is not
sufficient to provide overall concrete information regarding which DR techniques are more suitable
for OPC/EPC purposes. A more quantitative analysis is necessary to analyze the quality of vector
space embedding. If we solely compare the neighborhood embedding quality, then it has been
proposed that several meta-criteria can be used to evaluate the performance of DR algorithms.
It has to be emphasized that even we solely discuss neighborhood preservation in vector space
embedding, it is still difficult to find a unified measure since this is still highly ML-problem dependent
[87]–[89]. Which kind or what degree of neighborhood preserving is better depends on the ML
problem under investigation. In literature, the co-ranking matrix has been proposed to show the
rank error of DR algorithms. In Fig. 6(b), we plot the co-ranking matrix for SVD, ICA, FA, ISOMAP,
and UMAP. Co-ranking matrix is defined as [87]–[90]:

Q = [qkl]1≤k,l≤N −1 with qkl =
∣∣{(i , j) : ρij = k and r ij = l }∣∣ (8)

where qkl is the matrix element of co-ranking matrix Q. ρij and rij is the matrix element of the distance
matrix for the original vectors and embedding vectors.
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Fig. 6. n_components = 20 for SVD, 20 for ICA, 45 for FA, 10 for ISOMAP, and 10 for UMAP. (a) The
embedding space plot of various DR techniques. The first two dimensions are plotted for (b) Co-ranking
matrix (c) Local continuity meta criterion (LCMC).

The co-ranking matrix measures the capability of a specific DR algorithm in terms of neighborhood
preserving, i.e., the ability to maintain the same distance ranking between the original space and
the embedding space. The absolute distance values are not used here since during DR embedding,
the distortion and stretching can happen, especially for nonlinear DR algorithms. As a result, the
rank of the distance matrix is used to calculate the co-ranking, Q. To further investigate the co-
ranking matrix, more pronounced, lumped quantities need to be defined to show the performance
of DR algorithms. There have been several different meta-criteria to date [87]–[89]. The prefix meta
means the measure is not absolute and ML-problem-dependent. In 2006, Chen et al. proposed
local continuity meta-criterion (LCMC), which has been cited and used by many researchers in
literature. LCMC is defined as following [90]:

L CM C (K ) = K
1 − N

+ 1
N K

∑

(k,l)∈U L K

qkl (9)
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TABLE 2

The Dimensionality Reduction Quality Based on Local Continuity Meta-Criterion and the
Associated Parameters

where U L k is the upper left part in the co-ranking matrix [88], N is the number of samples in the
dataset, and K runs from 1 to N − 1, equivalently sweeping the entire coranking matrix Q. NK in the
second term is the normalization factor, and K/1-N is the baseline value for LCMC(K). Higher LCMC
values reflect better embedding quality and neighborhood preserving. Fig. 6(c) draws the coranking
matrix (Q) and LCMC for various DR algorithms. Since LCMC is a function of K, three parameters
(Kmax, Qlocal, Qglobal) are normally defined to characterize the key trends in LCMC curves. Kmax is
the K value where LCMC is at maximum. Qlocal is the mean over the values at the left of Kmax,
and Qglobal is the mean over the values at the right of Kmax. Qlocal is more important than Qglobal.
Table 2 shows the values of Kmax, Qlocal, Qglobal for various DR algorithms. It can be seen from the
co-ranking matrix and LCMC plots, SVD, ICA, and UMAP performs quite well while FA and ISOMAP
do not. This is not surprising that UMAP performs well in terms of neighborhood preserving since
the proposal of UMAP is to overcome the deficiency of earlier DR algorithms, and using topology to
embed vectors can be more advantageous than counting on calculating distance between paired
data points in the manifold. Therefore, the neighborhood embedding quality in terms of distance
rank preservation is improved using UMAP compared to ISOMAP. At the same time, simple linear
DR algorithms such as SVD and ICA can also lead to satisfactory LCMC. On the other hand, it
has been observed from Table 1 that in terms of prediction errors, UMAP does not perform well
compared to their linear counterparts. In addition, The MSE values of factor analysis (FA) are
reasonably low, especially for n_components = 45, but it does not provide low LCMC as shown in
Table 2. As a result, it looks like the LCMC in Table 2 does not reflect the entire story of the MSE
errors in Table 1. In fact, DR has been a complicated problem, and it can be difficult to find a single
figure of merit to quantify the superiority of a specific DR algorithm over the other. Depending on
applications and the nature of machine learning problems, one DR algorithm can be better than
the other in terms of prediction accuracy. In our application of OPC/EPC, prediction accuracy, as
shown in Table 1, is always the ultimate goal while embedding quality in terms of neighborhood
preserving only measures the quality of DR in terms of embedding but cannot directly reflect the
quality of prediction. Thus, we claim that MSE values in Table 1 should be more important in our
case. The underlying reason for the relative performance strength and weakness, for various DR
algorithms, will be explained in (10).

In fact, to analyze the relative effectiveness of applying DR to OPC/EPC problems, the total error,
ξ, in the prediction can be expressed as:

ξ = ξembed
(
ξprincipal

) + ξprincipal (ξembed)

+ ξfit DR
(
ξembed, ξprincipal, ξfit ML

) + ξfit ML
(
ξembed, ξprincipal, ξfit DR

)
(10)

The first error ξembed is the error in neighborhood embedding during dimensionality reduction,
as described above, and it is characterized by co-ranking matrix Q and LCMC. The second error
ξprincipal represents the information loss during DR, which depends on the complexity of the input
vector space. If the input space is highly entangled, applying DR can lead to information loss.
In the case that a high complexity space and problems, the input space should not be reduced
since every piece of information in the input vector is indispensable. In general, ξprincipal depends
on ξembed because better neighborhood preserving should lead to better input space information
preservation. Nevertheless, ξprincipal is more difficult to be assessed using a unified framework such

Vol. 11, No. 5, October 2019 2800215



IEEE Photonics Journal Intelligent Photolithography Corrections

as in the case of ξembed. This is due to the fact we do not know what is defined as crucial information
in input vector space until we consider output and prediction accuracy. The third error term ξfit DR

represents the fitting error during dimensionality reduction (DR). This error exists because we only
fit the training set during DR and apply the same DR transformation to the test set. To reduce
this error, a large training set is beneficial although in many cases, this is unattainable. The fourth
error is the error associated with the machine learning model prediction on the test set, ξfit ML. The
co-ranking matrix and LCMC approach quantify the first error ξembed and can be regarded as the
intrinsic quality of the DR itself. Nonetheless, for other error terms, including ξprincipal, ξfit DR, ξfit ML,
it can be more difficult to quantify since they are more implicit and can only be known after we
consider the prediction accuracy and the test set. As a result, it is not surprising that nonlinear DR
algorithms such as UMAP perform worse in Table 1 even if their coranking matrix and LCMC is
satisfactory in Table 2. The last thing to note is that ξembed, ξprincipal, ξfit DR, ξfit ML are not independent.
Instead, they are entangled, as shown in Eq. 14. Such a complex relation leads to the fact that the
assessment should be made when a specific application is targeted.

4. Conclusion
In this work, we demonstrate using image processing and computer vision algorithms to automati-
cally detect, binarize, preprocess, cut, and align the scanning electron micrographs into ML-ready
binary images. Such an intelligent manufacturing procedure can promote automation in the pho-
tolithography correction process. Implementation of both linear and non-linear dimensionality reduc-
tion (DR) algorithms has been performed for pixel-based OPC/EPC using pure machine learning
based approaches without counting on Maxwell equations. By training experimental etched pattern
directly, we can achieve a consolidated OPC/EPC in one run and reduced trial-and-error time.
Pure machine learning approach has the advantage of eliminating the extremely long computation
time associated with optical solvers and more importantly, overcoming the problem that no proper
physical EPC model is available to date. By applying different DR algorithms, our methodology
dramatically reduces the computation time from 4804 s of the baseline calculation to 10 s–200 s.
Additionally, the mean square error values have not been significantly increased by incorporat-
ing various dimensionality reduction algorithms. The MSE is 0.037 for baseline and changed to
0.035–0.039 for linear DR algorithms and 0.058–0.069 for non-linear DR algorithms. Through real
fabrication and model training, we validate the feasibility of using pure-ML based approach and DR
algorithms in future advanced photolithography patterning corrections.
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