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Abstract: Photoacoustic imaging (PAI) has been widely investigated by researchers from
a range of areas. According to the differences between excitation laser sources, PAI can
be categorized into two main types, namely the time-domain and frequency-domain PAI.
Although the frequency-domain approach is more portable and economic than the other
alternative, the low intensity of excitation source may lead to a lower signal-to-noise ratio
(SNR). This paper aiming to propose the suitable scheme for image reconstruction, we
focus on the model-based PAI system and make great efforts to reduce the impact of noise
algorithmically. Three regularization algorithms, i.e., Least Square QR-factorization,
Tikhonov, and Total Variation minimization by Augmented Lagrangian and alternating
direction algorithms (TVAL3) are studied. By choosing three important parameters as crite-
ria, i.e., the peak SNR, image quality index, and time consumption during different situations,
the most effective regularization algorithm amongst has been selected. Based on simulation
results and detailed discussions, TVAL3 algorithm performs better than the other two for
model-based signal reconstruction. The result is pivotal for effective PAI in high quality and
highly efficient biomedical tomography and microimaging.

Index Terms: Photoacoustic imaging (PAI), imaging parameters, regularization algorithms,
white Gaussian noise (WGN), stochastic noise (SN).

1. Introduction
Photoacoustic imaging (PAI) is a new biomedical imaging technology which builds upon the foun-
dation of photoacoustic effect. When biological tissue absorbs laser energy, its thermal expansion
produces pressure waves that can be probed by ultrasonic detector in the form of ultrasound wave.
Taking ultrasound wave as an information carrier makes PAI competitive to other traditional optical
imaging technologies since it combines the advantages of both high penetration depth for acoustic
imaging and high contrast ratio for optical imaging [1]–[4]. This technique has been successfully
applied in vitro and vivo imaging of viable tissues [5], [6] and has made great strides in various
biomedical applications, i.e., monitoring oxyhemoglobin saturation [7], [8], cerebral functional imag-
ing [9] and tumor detection [10]. Currently, most of PAI systems employ nanosecond pulse lasers
to stimulate the tissue for photoacoustic signals (PAS) generation. Some research uses low-energy
pulse laser devices, such as diodes, as excitation sources [11]. Time domain photoacoustic signals
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and noises are easier to recognize on account of the high energy density of pulse laser signals
within short time duration. As a result, the noise can be easily reduced by a simple modified
wavelet shift-invariance threshold would be sufficient for noise reduction for time domain PAI in
most instances [12], [13].

However, the wide implementations of high energy pulse lasers in clinical applications are still
challenging because of their high expense and large size. Therefore, the frequency domain PAI
employing continuous wave (CW) lasers receives more attention recently. The frequency domain
PAI alternatively uses near infrared CW laser as the excitation source and periodic amplitude
modulations are applied onto the laser beam to generate PAS. Beyond its better portability and lower
cost compared with the time domain one, frequency domain PAI owns the merits of deeper imaging
depth, less harmful to operate, etc. [1], [14]–[16]. The frequency modulated photoacoustic signals
can be collected to reconstruct images by corresponding reconstruction algorithms [17]–[19].

Despite of the great progress in the probing technology over the past decades, novel signal
analysis methods remain highly desired for the critical demand of noise reduction in particular for
the signals that too weak to be recognized after denoising by simple methods. Therefore, acquiring
valuable information and filtering undesired one from a mixed signal remains a big challenge in the
field of frequency domain PAI. In 2002, Paltauf’s group reported an iterative algorithm to minimize
the detection error [20]. Liao proposed a new way to extract the weak PAS due to diffraction with
synthetic aperture focusing technique and coherence weighting [21], Wavelet denoising technic
were also involved as the solution to automatic noise reduction by Holan and Viator [22]. Some
other attempts are also made by other researchers worldwide [23]–[26]. Compared with that in time
domain PAI, frequency domain PAS produced by the low energy-density source are even weaker
and under most conditions these signals are submerged in complex noises, which make it tough or
even impossible for processing reconstructions directly.

The traditional frequency domain PAI using chirp signal as its excitation signal is reconstructed
with the back-projection algorithm based on Radon transform. However, back projection algorithm
is a time domain signal processing path which requires huge data-collecting time and strong
calculation capacity of hardware. In order to eliminate the above drawbacks, Pouyan et.al invented
a remarkable PAS reconstruction technique which is referred as the model-based technique [27].
This method employs discrete frequency components as the excitation signal and promotes the
imaging efficiency and feasibility of frequency domain PAI. Nevertheless, being a frequency domain
approach, the power intensity of PAS is still weaker than that from the time domain PAI. Also, on
account of the characteristic of model-based PAI, solving the ill-posed functions for the image matrix
is a critical step in reconstruction. This is a very time-consuming process which may bring damage
to the quality of reconstructed image by a large extent. Therefore, an optimized regularization
algorithm will improve the image quality and shorten the reconstruction time. Moreover, based
on our experience under the model-based PAI frame, regularization algorithms are also crucial
in noise-reduction. As a result, efficient algorithms with high performance and robust operation
property are desired.

In this paper, we compare the performance of three regularization algorithms, i.e., Least Square
QR-factorization (LSQR), Tikhonov and Total Variation minimization by Augmented Lagrangian
and alternating direction algorithms (TVAL3) in model-based PAI reconstructions. By setting up
the model and programming of the simulative algorithm, detailed comparisons and analyses are
conducted. Finally, we proposed several potential strategies for further improvement of model-
based reconstruction of frequency domain PAI. These research results will be used as a guide for
our further experiments.

2. Methods
2.1 Main Idea

In this study, the results and running time for different algorithms were investigated without con-
sidering noise in simulations at first. Then different algorithms were used under two types of noisy
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circumstance. Based on the simulation, we will be able to select the best regularization algorithm
for model-based PAI amongst on account of its good noise immunity, high efficiency and satisfying
reconstruction results.

In this paper, the analysis is based on the model-based PAI. This type of PAI employs CW
lasers as excitation source and the simulation setup is similar to the traditional frequency domain
experiments. The frequency photoacoustic imaging system is normally excited by an amplitude
modulated near-infrared CW laser, with a dual-channel function generator to produce modulation
waveform (discrete frequency signal components). Another channel generates a pulse signal to
trigger itself for synchronization. The laser beam is then collimated by a single mode fiber collimator
and conducted onto sample surface. In addition, in practical applications, the samples and ultrasonic
sensors should be placed in deionized water for ultrasonic coupling to reduce the loss of ultrasonic
signals during its propagation. The sample is activated by the laser energy to cause thermal elastic
expansion for the production of ultrasonic wave, which is also known as the PAS. The PAS are
received and detected by the ultrasonic sensor. The frequencies of the signal components and the
center frequency of the ultrasonic sensor are determined later in terms of the size of samples. After
the collection of amplitude and phase information from the above process, we will use the following
algorithm for image reconstruction in simulation.

2.2 Model-Based Frequency Domain PAI

The main process of model-based PAI is conducted as follows [27]. Assuming a point sensor is
placed at the circumference of a circle which has a radius of r d and the center is placed at point O .
n measurements are taken equally spaced around. The target is placed at a spot with a distance
r 0 from the center of the circle. The whole imaging area has been segmented into V square mesh
grids and the distance between two neighboring grid centers is d. Derived from the wave equation
in frequency domain, the acoustic wave pressure in a spatial point with modulated frequency ω can
be represented as in Eq. (1).

P(ω) = W(ω)X (1)

P(ω) is a column vector and each element is a complex number taken from n detection positions.
X is also a column vector consisting of non-negative real numbers which represents the product
of optical absorption coefficient and locally absorbed energy μaφ(r , ω). W(ω) is a matrix with n × V
complex weighting factors. As a result, it can be expressed by Eqs. (2) and (3).

W(ω) = − j
β

C p
e jφα

⎛
⎜⎜⎜⎝

w 11 · · · w 1V

...
. . .

...

w n1 · · · w nV

⎞
⎟⎟⎟⎠ (2)

w N V = ω
e j[(ω/c)|r (V )−r d (n)|]

|r (V ) − rd (n)| (3)

The position of the nth detection is rd(n), the position of voxel is r(V ). Then the forward model of
imaging can be written as in Eqs. (4)–(6).

P̄ = W̄X (4)

P̄ =

⎛
⎜⎜⎝

P (ω1)

...

P (ωN )

⎞
⎟⎟⎠ (5)
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W̄ =

⎛
⎜⎜⎝

W (ω1)

...

W (ωN )

⎞
⎟⎟⎠ (6)

where ωn is the modulation frequency of the nth component. The imaging process is then simplified
into solving for X from a system of linear equations. It obviously involves solutions for ill-posed func-
tions where regularization algorithms are necessary. In order to accomplish such reconstruction,
some techniques should be applied to optimize the accuracy and reduce the distortion of different
types of noises.

Due to the low Signal to Noise Ratio (SNR) of PAS in the frequency domain PAI, the reconstructed
image ofmodel-based PAI is seriously distorted under practical circumstances. Therefore, the stable
solution of the ill-posed imaging matrix and noise-reduction are crucial in PAS processing. An
effective regularization algorithm identifies undistorted information while solving both problems.
Furthermore, the time-consumption of the imaging process is also an important evaluation criterion
in practice. Therefore, the reconstruction speed of regularization is taken into consideration as well.

3. Regularization Algorithms
3.1 LSQR Algorithm

LSQR algorithm was first proposed in 1982 [28] and has become a conventional theory in solving
the ill-posed problems. There are three main technics used in this algorithm, namely Lanczos
iteration, orthogonal transformation and modeling iteration. LSQR converges quickly in the iterative
process and its concurrent calculation can be achieved easily. As a result, this method has been
used in a wide range of fields. Since this algorithm is famous for solving ill-posed problems, we will
not give a detailed introduction of it in this subsection.

3.2 Tikhonov Algorithm

Tikhonov [29] algorithm is used by Pouyan when the model-based algorithm is introduced for the
first time [27]. This algorithm can be treated as a reference in order to evaluate the advantages and
disadvantages of other algorithms more directly.

To solve for x in the A x = b form, x can be expressed as in Eq. (7).

x = min
{
‖A xλ − b‖2

2 + λ ‖xλ‖2
2

}
(7)

where λ is the regularization parameter. The appropriate choice of λ is the decisive factor for the
validity of the regularization. The core of this algorithm is to find the compromising point between
the norm of solution and the norm of residue. This point represents the optimized regularization
parameter. Based on the Tikhonov regularization X can be solved. This regularization method
has the basic idea of singular value decomposition (SVD) involved. As has been testified by our
group, the performance of Tikhonov regularization is very similar to other SVD process involved
algorithms.

3.3 TVAL3 Algorithm

TVAL3 is proposed by Chengbo Li around 2010 [30], [31]. And the basic form can be expressed in
Eq. (8).

min
u i ,x

LA (u i , x, γ i , βi ,λ, μ) = min
u i,x

∑
i

(
‖u i ‖p − γT

i (D i x − u i ) + βi

2
‖D i x − u i ‖2

2

)

− λT (A x − y) + μ

2
‖A x − y‖2

2 , (8)
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Where LA (u i , x, γ i , βi ,λ, μ) is the Augmented Lagrangian Function (ALF), u i is the slack variable,
γ and λ are the Lagrangian multiplier, β and μ are the penalty factor. The procedure of TVAL3 is as
follows.

1) Initialize all parameters (including u i ,0, x0, γ i ,0, βi ,0, λ0, μ0) for i .
2) Applying augmented Lagrangian method (ALM) and alternating direction method (ADM) to

find the minimum of LA by iterative process. The iteration will only be terminated when meet
one of the following criteria, which is ‖∇LA (u i ,k, xk)‖2 or ‖xk+1 − xk‖2 is small enough.

3) Use non-monotone line search to judge and correct the Barzilai–Borwein step length to ensure
the convergence of the one step steepest descent method.

4) Continue the k + 1th iteration unless either of the terminating criteria is satisfied in the kth
iteration (k is a positive integer).

TVAL3 algorithm has been used widely in compressed sensing. It is based on the total variation
regularization model and uses ALM and ADM to find the solution. ALM is usually used when solving
optimization problems under equality constraints. As is known, Lagrange method can only ensure
a solution to the necessary and sufficient conditions when the function is convex. Compared with
the plain Lagrange method, ALM increases the robustness of dual ascent method and the strong
convex constraints of the original function. Moreover, by applying ADM, the original problem is
transformed into finding the solutions for two sub-problems. Referring back to Eq. (8), ADM tries to
find x and u iteratively by finding xfirst then finding u subsequently in each iteration. Furthermore,
to promote the calculation efficiency, TVAL3 uses Hadamard matrix as the measurement matrix.
Hadamard matrix is famous for its fast transformation. In this article, we will demonstrate its utility
in model-based PAI simulation.

4. Simulation Experiments and Analysis
In order to testify the feasibility and efficiency of these three algorithms, simulations with different
calculation principles are presented and discussed firstly in this section. All simulations are carried
out in the MATLAB environment on a Dell computer with 16 G memory and 2.8 GHz CPU. Peak
Signal to Noise Ratio (PSNR) and Image Quality Index (IQI) [32] are brought in as criteria of
reconstruction result quality.

PSNR is a full-reference image quality assessment criterion. It is the ratio between the maxi-
mum signal power and the noise power. The greater the PSNR value is, the less distortion the
reconstruction images will be. In a 2-D imaging process, the PSNR is defined as in Eq. (9).

PSN R = 10 × log10

(
(2n − 1)2

M SE

)
(9)

Where n is the number of bits of each sampling value, in the following calculation, we take n = 8,
MSE is the mean square error between the contaminated reconstruction image and the original
distribution and is defined by Eq. (10).

MSE = 1
hw

h∑
i=1

w∑
j=1

∥∥I (i , j) − K (i , j)
∥∥2

(10)

Where h is the height of the images in number of pixels, w is the width of the images in number of
pixels. I (i , j) is the value of the pixel in i th row and jth column in the original distribution, and K (i , j)
is the value of the corresponding pixel in the reconstructed image.

PSNR is widely applied in a variety of fields. Although sometimes the value of PSNR is not
completely coincident with the subjective visual feelings of humans, from the computational formula
of PSNR we can easily recognize that this assessment criterion is objective enough for an impartial
evaluation. Besides, this parameter is very straight forward to understand and that is the reason
why it is chosen as the first assessment criterion.
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IQI is more widely known as structure similarity index (SSIM) index and can be expressed by
Eq. (11).

I Q I = 4σxy x̄ ȳ
(
σ2

x + σ2
y

) [
(x)2 + (y)2

] (11)

In case the denominator might be 0 and cause trouble for calculation, some constants would be
added and the original expression can be expressed in the form of Eq. (12).

I Q I = (2x̄ ȳ + C1)(2σxy + C2)
(
σ2

x + σ2
y + C1

) [
(x̄)2 + (ȳ)2 + C2

] (12)

We normally take C1 = 0.01L , C2 = (0.03L )2 in practice, L is the image gray scale level. x̄ and ȳ
is the mean value of image x andy , σ2

x and σ2
y is the variance of image x andy , σxy is the covariance

between image x andy , the parameters can be calculated by Eqs. (13) to (17).

x̄ = 1
hw

h∑
i=1

w∑
j=1

x(i , j) (13)

ȳ = 1
hw

h∑
i=1

w∑
j=1

y(i , j) (14)

σ2
x = 1

hw − 1

h∑
i=1

w∑
j=1

[x(i , j) − x̄ ]2 (15)

σ2
y = 1

hw − 1

h∑
i=1

w∑
j=1

[y(i , j) − ȳ ]2 (16)

σxy = 1
hw − 1

h∑
i=1

w∑
j=1

[x(i , j) − x̄ ][y(i , j) − ȳ ] (17)

where h is the height of the images in number of pixels, w is the width of the images in number of
pixels. x(i , j) is the value of the pixel in i th row and jth column in the original distribution, and y(i , j)
is the value of the corresponding pixel in the reconstructed image.

Compared with the PSNR, IQI is a more full-scale image quality assessment factor. It takes
brightness distortion, contrast distortion and structural distortion into consideration to give a more
comprehensive assessment. Therefore, IQI is selected as the second image quality assessment
criterion. The closer the IQI is to the 1, the less distortion is contained in the reconstruction image.

The diameter of the sample object corresponds to a particular spatial frequency and can be
calculated as in Eqs. (18) and (19).

t = d
c

(18)

fs = 1
t

= c
d

(19)

Where d represents the diameter or characteristic dimension of the sample object, c is the speed
of sound within the tissue. Throughout the simulation, we take c = 1500 m/s. fs is the lower bound
of the modulated frequency in order to accurately analysis the scale of the sample object. In other
words, only if the frequency components are greater than the lower threshold can the sample be
accurately distinguished from the environment. Comparing with the chirp signal excitation mode,
discrete frequency modulation mode only need to record a complex number which contains the
amplitude and phase information of PAS rather than restore all the data for later image processing.
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Fig. 1. Original distributions of the sample.

The difference between the data volume can dramatically reduce the memory space of the computer
and improve the calculation speed dramatically.

The original distribution has been shown in Fig. 1. There are three target objects in this sample,
a circle, an arrow and a hexagon, and their scales are about 0.5 mm. The absorption coefficient
for all objects is 1 and the absorption coefficient for the dark area is 0. In Fig. 1, the grey scale of
the target is 255 and the grey scale of the background area is 0. As a result, the optical contrast
of the original distribution is 1. According to Eqs. (18) and (19), the lower frequency threshold is
approximately 3 MHz.

4.1 Selecting Appropriate Simulation Parameters

For a convincing simulation analysis, proper selection of parameters is a crucial factor. There are
several critical parameters for successful simulation, such as the number of detecting angels around
the perimeter of detector trajectory, the number of frequency components N and the bandwidth B W
of the frequency domain. For now, we will take the number of detecting angels to be 50 through
the simulation for convenience, which is equivalent of taking observation every 7.2 degrees around
the circular trajectory of detector in experimental environment (the excitation source moves with the
detector, and the relative position between detector and excitation source remains unchanged all
throughout the whole data collecting process).

On each of the 50 observation positions, N frequency components are utilized for signal gen-
eration. The N components are equally spaced within the frequency range of B W , and the first
frequency component equals to the lower bond of the frequency range and the last one equals to
the upper bond of the frequency range. For example, if we take the B W range from 0 to 10 MHz
and chose 101 frequency components, the first frequency component should be 0Hz and the last
one should be 10 MHz, and the step size is 0.1 MHz. As the B W is always given explicitly in this
subsection, the step size of frequencies will be indicated in brackets.

First of all, we are going to explore the influence of different numbers of frequency components
N for reconstruction. The B W for Fig. 2 is from 0 to 10 MHz, we take 2 (step size 10 MHz), 21
(step size 0.5 MHz), 51 (step size 0.2 MHz) and 101 (step size 0.1 MHz) components from each
observation position.

Reconstruction results in each column have the same N while the results in each row are
reconstructed by the same regularization algorithm. As can be visualized clearly in Fig. 2, for
the same regularization algorithm, increasing the number of frequency components can definitely
improve the quality of the PAI. When N = 2, the information is far from sufficient for a success-
ful reconstruction. When N = 21, these results are mixed up with severe artificial noises and
the information is still insufficient for the LSQR and Tikhonov scheme to recover the details of
the original sample objects. Especially the Tikhonov reconstruction results, even the shape of the
sample objects have been distorted. When N = 51, only small artificial noises exist in the results
of LSQR scheme, while the reconstructed images for all three algorithms are neat and clean for all
three schemes when N = 101. Meanwhile, when the number of frequency components is fixed, the
TVAL3 algorithm can always give the best results except for when N = 2, under which circumstance
the PAI quality is too poor as a meaningful comparison. Table 1 shows the time consumption for
each simulation in Fig. 2. The unit for time consumption is in second.
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Fig. 2. Reconstruction results with different number of frequency components.

TABLE 1

Running Time (s) for Reconstruction of Fig. 2

When N is very small, TVAL3 scheme takes the longest time for solving for the image. As N
increases and the image quality improves, time consumption for TVAL3 algorithm rises very slowly
while there are sharp increments for the other two group of imaging algorithms. When N = 101,
TVAL3 only takes about 22% and 15% running time of LSQR and Tikhonov respectively, which is
extremely efficient.

Different B W values also vary the reconstruction results. In the following part of this sub-section,
we will take N = 51 and investigate the impact of different B W values.

Figure 3 shows the reconstruction results for different parameters of B W . When B W is between
0–2.5 MHz (step size 0.05 MHz), the upper threshold is lower than 3 MHz, all the imaging results
in (a), (d), (g) lose some of the details of the three sample objects, and their edges become blurred
and even distorted, especially for the arrow. When B W is between 0–5 MHz (step size 0.1 MHz),
the results of the three PAIs almost restored every detail in Fig. 1. Furthermore, it is obvious that
the TVAL3 scheme gives the best result since its absorption coefficient is very similar to the original
distribution. From the previous analysis of different N values, increasing the number of frequency
component while keeping B W constant will improve the image quality. However, it is not correct vice
versa.
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Fig. 3. Reconstruction results under different excitation bandwidths.

Fig. 4. Quality parameters for reconstruction results under different BW values.

The quality plots for different B W values are shown in Fig. 4. The qualities of the images increase
first when the B W value is extended from 2.5 to 5 MHz, but decreases as the further increase to
10 MHz of B W (step size 0.2 MHz). It is due to the fact that along with the increase of B W , more
noises are brought in with more information. When the B W values increase gradually, the augment
of information becomes slower and less obvious. There will be a threshold point whose benefits are
lower than the loss by widening B W . In other words, impact of noises increases faster than that of
information, which will definitely damage the image quality.

Table 2 shows the time consumption for each simulation in Fig. 3. The results reveal the same
trend as it could be shown in Table 1. That is when N is sufficient for a quality reconstruction, TVAL3
is the most efficient and effected choice for the best quality reconstruction. The image quality of
LSQR results is a bit worse than that of the Tikhonov results, while Tikhonov results take a bit
longer time. We should also notice that, when N is fixed, the reconstruction time for each algorithm
only varies in a very small range because the size of observation matrix are constant. We may
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TABLE 2

Running Time (s) for Reconstruction of Fig. 3

not be able to infer the accurate running time for each algorithm during other simulations and even
the practical applications, but this fact should be very useful to estimate relative imaging speed of
these three algorithms in discrete frequency PAI. We will testify the validity of this inference in the
following sections.

We also investigate the situation if the center of excitation frequency changes while N and B W are
both kept constant. The results reveal that, as the center of frequency increases, the edges of each
sample objects become sharper. Meanwhile, the information for the blocks gets lost gradually. It is
expected as same as common sense, in this paper we will not present these results for conciseness.

Based on the analysis in this subsection, in further simulations, we choose N = 51 and B W is
from 0 to 5 MHz. Or in other words, the frequency components in each position are 0 Hz, 0.1 MHz,
0.2 MHz, 0.3 MHz, . . . , 4.8 MHz, 4.9 MHz and 5 MHz. The size of all reconstruction images is
216 × 210 pixels and the distance between vertically/horizontally adjacent pixels is 20 μm.

4.2 Simulation With Different Types Of Noises

For a convincing simulation analysis, proper selection of parameters is a key factor. There are
several critical parameters for successful frequency domain PAI reconstruction.

In the experimental environment, these are two main types of noises possibly interfering with the
PAS. In this sub-section, noises of White Gaussian Noise (WGN) and Stochastic Noise (SN) are
investigated.

The amplitude of WGN is normally distributed in the time domain and the power of WGN is uniform
throughout the frequency domain. In practice, the noises generally come from multiple sources.
Suppose the real noise can be considered as the sum of the environment, many applications of
random variables, and each of the random variables is independent. Their normalized sum will tend
to be a Guassian distribution as the quantity of noise sources according to central limit theorem.
When the origin of noises is very complex and we have no explicit idea of where the noises
come from, WGN is a very simple and reasonable choice for mimicking the real-world-noises in
simulations.

However, WGN is not optimal choice for all situations. If the quantity of source is very limited
or more than a certain number of individual noises are extremely strong, WGN may not work
very well. In this case, we introduce SN for simulation. SN is a series of random numbers with a
certain amplitude average. SN is even more flexible than WGN and can increase the generality of
simulation.

We take four different WGNs with SNR 10 dB, 0 dB, −10 dB and −20 dB respectively. Firstly, we
choose only one group of WGN for simulation.

Figure 5 shows reconstruction results under WGN with different levels of SNRs. Since the differ-
ences between LSQR and Tikhonov algorithms under relatively low WGN levels are not obvious.
We also have the PSNR and IQI of each image plotted for better comparisons. Figure 6 gives a
clear view of the image quality of three different algorithms under different WGN levels.

The intensity of WGN we use actually ascends quickly. However, the deterioration of the image
quality is very slow, except for the LSQR scheme when the noise becomes very strong.
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Fig. 5. Reconstruction results under different SNR levels of WGNs.

Fig. 6. Quality parameters for reconstruction results under different levels of WGNs.

As has been demonstrated before in Section 4.1, the time consumption for the same regularization
algorithm are very similar under different situation if the original distribution, N and B W remain
unchanged. This inference has been testified here, the running time is shown in Table 3. TVAL3 is
still the most effective and efficient algorithm under WGN.

It is noted that although TVAL3 always gives the best reconstruction results according to both of
the image quality criteria, the WGN noise cannot be eliminated especially when the SNR becomes
really high. In practice, we can eliminate the WGN by taking many groups of measurements. By
finding the average of the observation data set and detracting the average noise intensity (we
normally use a constant for approximation) we can eliminate the influence of WGN. For example,
we take 50 measurements and follow the normal WGN elimination process, and the results are
presented in Fig. 7.
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TABLE 3

Running Time (s) for Reconstruction of Fig. 5

Fig. 7. Reconstruction results by applying WGN elimination process.

The WGNs have been reduced sharply so that the image quality has been improved a lot by
following the normal WGN elimination process. However, it does not imply that study on functionality
of regularization schemes to WGN is meaningless. We take the −10 dB situation as an example,
if we want to achieve 95% quality level of the no-noise situation, LSQR needs about 52 groups of
measurements, and Tikhonov needs about 46 groups of measurements, while TVAL3 only needs
about 27 groups of measurements. It is worth clarifying that using the term “about” is because we
conducted investigation on each algorithm for 10 times, group number varies a bit from time to time.
The results are the average for those 10 times. This can definitely promote the productivity in the
future practical application.

The impacts of SNs are also shown in this sub-section. We take three different SNs with SNR 5 dB,
0 dB and −5 dB respectively. Figure 8 shows reconstruction results under SN with different levels
of SNRs. For a more intuition comparison, the PSNR and IQI of each image are plotted in Fig. 9.

Figure 9 shows the image quality factors of all reconstructions. The quality factors for reconstruc-
tion results under WGN degrade very slowly along with the rapid growth of noise level. Nevertheless,
the images lose their quality very fast under SN even if the increase of noise intensity is much slower
than those under the WGN situations.

From Figs. 7 and 9, the TVAL3 algorithm always gives the best reconstruction qualities and
Tikhonov algorithm gives the second best results all through. Both of these two algorithms have
relative good noise immunity whereas TVAL3 performs much better than Tikhonov. Reconstruction
qualities by LSQR vary with different levels of noises, the qualities of the results are very close to
the Tikhonov algorithm, but the degrading becomes very severe when the noises grow very strong.

Table 4 shows the reconstruction time range for different images. Our inference in Section 3.1
has again be testified. The TVAL3 algorithm is still the most efficient algorithm under all conditions.
Tikhonov and LSQR algorithms consume about the same time lengths during all simulations.

From the simulations in this section, TVAL3 algorithm is without doubt the most effective and
efficient regularization scheme regardless of the existence of and the types of noise. On account of
the application of those methods, the efficiency, robustness and flexibility of TVAL3 are much better
than the other two regularization algorithms. Its rapid arithmetic speed, strong anti-noise ability,
parameter-insensitivity and feasibility for various measurement matrixes under complex situations
make it a very promising solution in future applications for model-based frequency domain PAI.
The merits of TVAL3 algorithm mentioned in Section 3.3 have been thoroughly verified through
simulations.
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Fig. 8. Reconstruction results under different SNR levels of SNs.

Fig. 9. Quality parameters for reconstruction results under differnt levels of SNs.

TABLE 4

Running Time (s) for Reconstruction of Fig. 8
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5. Conclusion
In this study, the efficiency of three regularization algorithms for model-based PAI reconstruction
are investigated and analyzed numerically. By conducting study under different circumstances with
different parameters, the relative efficiencies of different algorithms are concluded to be stable in
most cases. Among these three schemes, the results show that the optimal solutions are achieved
with TVAL3 all through. Tikhonov can give better-quality images in contrast to LSQR but consume
a bit more time in reconstruction. Whereas TVAL3 always turn out to be the fastest regularization
algorithm as long as the reconstruction parameters are sufficient for a satisfying reconstruction. In
summary, TVAL3 is the most effective and efficient method in all the three methods investigated.
The application of TVAL3 will improve the image quality and time efficiency to a great extent in PAI
reconstruction. These findings will be very useful for our further experiment in the coming future.
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