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Abstract: We propose a localization technique by fusing multiple classifiers based on
received signal strengths (RSSs) of visible light in which different intensity-modulated sinu-
soidal signals emitted by LEDs are captured by photodiodes placed at various grid points.
First, we obtain some approximate RSSs fingerprints by capturing the peaks of power spec-
tral density of the received signals at each given grid point. Unlike the existing RSSs-based
algorithms, several representative machine learning algorithms are adopted to train multiple
classifiers based on these RSSs fingerprints. Then, two robust fusion localization algo-
rithms, namely, grid-independent least square and grid-dependent least square (GD-LS),
are proposed to combine the outputs of these classifiers. A singular value decomposition
(SVD)-based LS (LS-SVD) method is proposed to mitigate the numerical stability problem
when the prediction matrix is singular. Experiments conducted on an intensity-modulated
direct detection system show that the probability of having mean square positioning error
of less than 5 cm achieved by GD-LS is improved by 93.03% and 93.15%, respectively,
as compared to those by the RSS ratio and RSS matching methods with the fast Fourier
transform length of 2000.

Index Terms: Indoor positioning, visible light communications (VLC), received signal
strengths (RSSs) fingerprints, intensity modulated direct detection (IM/DD), machine learn-
ing, fusion localization.

1. Introduction

Indoor localization of mobile devices is critical in facilitating myriad location based applications
including indoor navigation as well as location-aware services and advertisements in large public
buildings such as museums or shopping malls. Although the global positioning system (GPS) has
been widely used for precise outdoor localization, it is often unavailable in indoor environments
where signals from satellites are strongly attenuated or affected by multipath propagation.

There exists a number of techniques to provision indoor localization; typical examples include
systems based on WiFi, ultrawideband, radio frequency identification (RFID), Bluetooth, and ultra-
sound [1]-[4]. These technologies have limitations such as requiring additional infrastructure, low
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accuracy, electromagnetic interference, low security, and long response. Comparatively speak-
ing, white light emitting diodes (LEDs) have been widely used because of their durability, eco-
friendliness, and lighting efficiency [5]. Visible light communications (VLC) based on white LEDs
can be utilized for both lighting and communications simultaneously [6]-[8]. Additionally, the tech-
nique utilizes the unlicensed free spectrum and does not incur electromagnetic interference, and
thus VLC based on LEDs has been studied in various fields such as illumination, broadcasting,
and intelligent transportation systems [9]. Therefore, indoor positioning systems using VLC have
recently gained popularity as effective alternatives to the traditional techniques [10].

In this paper, a novel multiple classifiers fusion localization system is proposed based on some
RSSs fingerprints. We first transmit different sinusoidal signals that are intensity modulated by four
LEDs with known locations, and the signals are received by a Photo Diode (PD). We divide a location
areainto G = g x g grid points. Then, we build the RSSs fingerprints by capturing the peaks of power
spectral density (PSD) of the received signals at each grid point. Several representative machine
learning approaches are studied to train multiple classifiers based on the RSSs fingerprints. We
show that the multiple classifiers estimators outperform the classical RSS-based LED localization
approaches in accuracy and robustness. Consider that each classifier is accurate for some RSSs
pattern, and no particular classifier is universally better than all the others. To further improve the
localization performance, two robust fusion localization algorithms, namely, grid independent least
square (GI-LS) and grid dependent least square (GD-LS), are proposed to combine the outputs
of these classifiers. Considering that the LS based fusion will suffer from numerical stability when
the prediction matrix is singular, we also propose a singular value decomposition (SVD) based LS
(LS-SVD) solution to mitigate this problem. Experiments conducted on intensity modulated direct
detection (IM/DD) system demonstrate the effectiveness of the proposed algorithms. The results
show that the proposed algorithms outperform some existing RSS-based algorithms as well as any
single classifier based localization algorithm.

The main contributions of this work are summarized as follows:

1) We first propose a machine learning-based LED localization framework. As compared with the
conventional RSSs matching and the RSS ratio (RSSR) methods, the multiple classifiers are
immune from the high correlation of RSSs fingerprints. The results show that the probability
of having mean square positioning errors (MSPEs) of the multiple classifiers of less than 5 cm
is improved by 79.76% and 79.88%, respectively, as compared to RSSR and RSS matching
methods, with the FFT length being 2000.

2) Two novel fusion methods, namely, grid dependent least square (GD-LS) and grid independent
least square (GI-LS), are proposed to obtain a more accurate localization result by taking
advantages of each classifier. The proposed algorithms show good numerical stability which
is attributed to the use of the LS-SVD solution.

3) The proposed system adopts a relative localization framework and does not need to know
the exact locations of the four LEDs. Although the peaks of PSD cannot yield the exact power
estimates, our proposed localization framework is more robust to the RSSs estimate biases.

4) The proposed LED localization system does not need to estimate many parameters of the
channel model. So, it is more robust to model errors.

The rest of the paper is organized as follows. Section 2 presents some related studies about VLC
localization. The proposed system is discussed in Section 3. We detail our proposed algorithms in
Section 4. The experimental setup and results are illustrated in Section 5 and some conclusions
are drawn in Section 6.

2. Related Works

Owing to the many advantages of LEDs, a variety of techniques for indoor positioning using LEDs,
have been proposed, including received signal strengths (RSSs) [11]-{13], angle-of-arrival (AOA)
[14], time-of-arrival (TOA) [15], time-difference-of-arrival (TDOA) [16], image [17], [18], and their
combinations [19]. Among them, AOA achieves a very good accuracy. The main disadvantage is the
use of a sensor array, which is expensive. Because of the very short traveling time of the signals for
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indoor environments due to the short distances, TOA will require a precise synchronization between
the receiver and the LEDs. TDOA requires synchronization between the LEDs and thus incurs an
increased cost for the installation of the positioning system. Image-based positioning techniques
suffer from low accuracy of localization because of some errors induced by image processing
algorithms.

RSS-based approaches do not need the synchronization between the LEDs. Most of the existing
RSS-based LED localization approaches need to estimate the distances between transmitters and
a PD by using the received RSSs. It is well known that the received RSSs are affected by many
model parameters, such as radiation and incidence angles, model order, model type, detector
physical area, gain of the optical filter and the distance between transmitters and PD [11]. So, it
is difficult to estimate the distance accurately between transmitters and a PD, which will degrade
the localization performance of some trilateration based localization techniques. Jung et al. [20]
proposed an RSS ratio (RSSR) location technique, which uses strength ratio between received
signals to obtain the distance ratio and the final location estimate can be obtained by solving the
distance ratio-based equations. The RSSR method needs to know the model order and several as-
sumptions about the channel need to be made to simplify the derivation of the algorithm. Hann et al.
[21] proposed a correlation sum ratio (CSR) location technique which uses the correlation between
the received data and the assigned addresses to the different LEDs. The extinction ratio (ER) local-
ization algorithm is based on the On Off Key (OOK) modulated signals [22], [23]. The methods in
[21]-[23] need some special modulation information to differentiate from which LEDs these signals
are emitted. Additionally, it is well known that the performance will degenerate seriously when the
model assumption does not hold [11], [12].

Machine learning has been extensively studied in the radio frequency (RF)-based indoor local-
ization, such as WiFi, ZigBee, and Ultra Wideband [24]-[27]. Machine learning based methods
have been shown to outperform the traditional RSS-based approaches in accuracy and robust-
ness in coping with the fluctuations of RSSs. The information fusion based positioning strategy
has shown good performance in Bluetooth, GSM and WLAN environments [28], [29]. The weighing
strategy in [28] severely depends on the correlation between the testing sample and the train-
ing samples, and is thus not suitable for the fingerprints with higher correlations. The method in
[29] will suffer from numerical instability when its prediction matrix is singular. However, to our
best knowledge, machine learning based fusion has not been exploited to facilitate LED based
localization.

In this paper, we first propose a machine learning based indoor LED localization framework based
on some inaccurate RSSs fingerprints. As compared with some existing RSS-based LED localiza-
tion approaches, the machine learning based localization approach shows high accuracy and is
more robust to model errors, inaccurateness, and high correlations of RSSs. To further improve the
localization performance, two robust fusion localization algorithms, namely, grid independent least
square (GI-LS) and grid dependent least square (GD-LS), are proposed to combine the outputs of
these classifiers. We also use a singular value decomposition (SVD) based LS (LS-SVD) method
to mitigate the numerical stability problem when the rank of X (Eq. (10)) is smaller than #, which
will be discussed in Section 4). The fusion strategies can exploit the complementary information of
multiple classifiers to enhance performance in local regions and at the same time reduce the risk
of selecting a poor classifier.

3. Proposed System
3.1 Signal Model

In this section, we propose a simple VLC positioning platform based on RSSs, which are obtained
from the peaks of power spectral density (PSD) of received signals. The system configuration is
shown in Fig. 1. Assume that we can transmit M different sinusoidal signals s; (t) with different
frequencies f; from M LEDs transmitters at positions z; = [a;, b;, h]”, as illustrated in Fig. 2. The
signals received by the receiver at a location with unknown position p = [x, y, 0]" can be expressed
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Fig. 1. System configuration.
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Fig. 2. The experimental testbed.

as
M
y()y=> aipsi(t—n)+n(b), (1)
i

where «; is the signal attenuation of the optical channel between the ith LED and the PD in the
scenario as shown in Fig. 1. The responsivity g; is the conversion factor from the optical to the
electrical domain. It is a function of the wavelength of the light received. n (f) is the noise. «; and
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Bi can be treated as constant over the optical bandwidth of the ranging signal. For the line-of-sight
(LOS) environment, given a generalized Lambertian LED with order m, «; is a function of the area of
the photodiode S, the distance d; between each LED and receiver, and the radiation and incidence
angles ¢ and ¢ with respect to the transmitter and receiver, as shown in (2)
(m+1)S .
oj = ————— COS" ¢ COS ¢. 2
i 27‘[d,-2 ¢ @ ()
The time delay t; = d;/c, where c is the speed of light and the distance d; between the ith LEDs
and the receiver is

dj = \/(hz + (X — X)P + (i — y)2>. (3)

Now, we consider the case where s; (t) is a DC-biased windowed sinusoid waveform with duration
T and is given by

s (t) = w (tyu; (1) = w (t) + w (1) cos (27f;1), 4)

where u; (f) = 1 + cos (27f;t). The first term of (4) is a baseband component and the second term
is a bandpass component centered at f;.
The periodogram power spectral density (PSD) estimate of y (t) can be expressed as

Byer () = - 1Va ()P (5)

where N is the length of FFT and Yy (w) is the FFT of y (t), which can be expressed as
N-—1 ‘
Yu(w)=) y(he’. ©)
t=0

It is well known that peaks of S () indicate the average powers of the received signals at different
frequencies. As a result, we can obtain M RSS values of each received signal by capturing the
peaks of fixed frequency locations in the estimated PSD. That is, the RSS vector can be given by

r=[Sper (1), Soer (f2) 1 - Soer (F)]” 7)

where []” is the transpose operator.

3.2 RSS Fingerprints Construction

Assume we can represent a location area by a grid of G = g x . At each grid point, a PD re-
ceives the signals transmitted from M LEDs and combines them into y (f). Based on the received
y),(t=1,2,....7,7 > N), we can compute Q =7 /N PSDs at each point by using Egs. (5)
and (6). Then, the RSS vectors at each point can be obtained by using (7). This process is
called site-survey. We can repeat this process G times to build all the fingerprints. Denote the
final RSS fingerprints as R; we can summarize the procedures of constructing RSS fingerprints in
Algorithm 1.

4. Proposed Algorithm
4.1 Overview of the Proposed Algorithm

This paper proposes two least square (LS) based multiple classifiers fusion algorithms to improve
the accuracy of LED localization by using the RSS fingerprints which are inherently inaccurate.
The proposed method first uses advanced machine learning approaches to estimate the positions
of a receiver. Then, two LS based fusion methods are proposed to further improve the accuracy
of localization. Unlike traditional methods, the proposed approach, by leveraging each classifier
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Algorithm 1:The RSS fingerprints construction.
Input: 1) The number of grid points G; 2) 7 points of y (t),t = 1,2,---,7 from each grid point; 3) The length of FFT N
at each grid point.
Output: The RSS fingerprints R.
1: for g ={1,2,---,G} do
2: for k ={1,2,---,Q} do
: Compute N-length FFT by using (6);

3

4 Compute the estimate of PSD using (5);
5 Compute the RSS vector r* using (7);
6 end for

7: ‘ R, :[rl,rz,---,rQ];
8: end for

9: R=[R, Ry, ,Rgl;

0:

10: return R

being tuned to recognize specific input patterns, uses the complementary advantages of multiple
classifiers, weighs the various estimation results, and combines them to improve accuracy.
Assume that we have H classifiers available. Given the input RSSs fingerprinting vector r; col-

lected from the real location [xg, yg. O]T at the gth grid point. Denote the location estimate as

:
p]'.?:[x]'?,y;?,o] 2, (r,R),n=1,2...,H, ®)

where j=1,2,...,L with L being the total mumber of inputted RSSs fingerprinting vectors. =
means that we need to obtain the location estimate by transforming binary classification into our
multivariant classification framework in VLC indoor localization.

The location estimate vector X by the weighed multiple classifier can be given by

i = X Wx, (9)
where Wy = [Wyq, Wyo, ..., wa]T is the weights vector of the x-axis. X isthe L x H prediction matrix:

o1 g2 vH

X1 X1 PN X1

A1 A2 ~

X2 X2 PR X;‘l

>
Il

(10)

where each row represents the abscissa estimates from the 7 classifiers. As a result, the problem
is to estimate wy by utilizing (10) with known x and X .

Assume that we know the real locations x = [x1, X2, .. ., xL]T which corresponds to the inputs
vector rq, ro, ..., r;. The estimated error vector can be expressed as
e:|X—2|=|X—XWX|. (11)

The square error can be written as
lell = e"e= (x— Xw,)" (x— Xw,). (12)

If L > H and X is a nonsingular matrix, by finding the least squares (LS) error, the weights w, can
be given by the following LS solution

W, = (R7X) " R7x, (13)

where (-)~" is the matrix inverse. Note that the LS solution W, is not stable when the rank of X is
smaller than H, which happens when some of the classifiers yield the same prediction for each
testing sample. Hence, we can use the singular value decomposition (SVD) to obtain a robust
solution.
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Assume that the rank of £, denoted by K, is smaller than 7, then the SVD of X can be expressed
as

o ¥k 0
X=vU v, 14
) (19
where Xk = diag (o1, 02, ..., ok) is the singular values matrix with o, being the «th singular value.
U=1[uy,us,...,u]Jand V =[vq, vo, ..., vy4] are the corresponding left and right singular vectors,
respectively. Also, we can rewrite (14) based on the rank of X as
o ¥k 0
R=u| v (15)
00
Tk 0 || V]
= |Us U
[Us 2][ 0 0} [v;
= Uizc V],

in which U4, Uo, V1 and V, are the left and right submatrice corresponding to the signals and noise,
respectively. By substituting (15) into (13), we can obtain the LS-SVD based weights estimate as

WX=U1ZE1V:X. (16)

Consider that the solution of (16) contains both the left and the right singular vectors, we can further
AN

simplify (16) by only using the left singular vectors v,. Note that ()? T)“()_1 =k, “2~; substituting
this into (13), we obtain

K vyl . K (Ve
=3 —FX'x=3 <L> Ve, (17)

2 2
k=1 Oy k=1 (ops

where 6 is the cross correlation vector between X and x, and can be written as
0=X"x. (18)

Similarly, the weights vector W, can be estimated by repeating the above procedures.

4.2 Weights Selection Strategies

Here, we propose two alternative weights selection strategies when given an offline testing RSS
fingerprints vector r;: “grid-independent(Gl)” method and the “grid-dependent(GD)” method.

4.2.1 Grid-Independent (Gl) Weights Selection Approach: The idea of the Gl approach for se-
lecting weights is that we only use fixed weights to fuse the final estimated location. That is, in the
weights estimation stage, we combine all the L samples from different grid points to build one X,
and all the real locations corresponding to these L samples are collected to form one x. The weights
iy and W, can be estimated by using (13) or (18) based on the singularity or non-singularity of X.
The final location estimate can be given by (9).

4.2.2 Grid-Dependent (GD) Weights Selection Approach: GD tries to assign different weight
vectors to different grid points. In this case, we should collect the L testing samples r; for each point
to estimate the corresponding weights by using (9). Based on the singularity or non-singularity of
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X, we can obtain two H x G weights matrice W, and W,, respectively, which can be expressed as

i A1 @2 Nl
W, = [, w, ... W] (19)
Pl 52 G
Wy Wi - Wiy
P12 G
Wyo Wip -+ Wyo
P15 +G
Wi Wirg -+ Wy
and
7 o el 52 ~G1T
W, = [W,. w5, ... W] (20)
P12 7 G
Wy1 Wy1 o Wy1
P52 e
i1 52 G
WyH WyH WyH
;
29 _ [»d 0 ~g 17 a9 _ [wg ~g 9 ;
where Wy = [Wy;, W, ..., Wy,] and Wy = [wy1, Wgs o WyH] are the weights vector of the gth
grid point.

In the online stage, we need to determine the weights on which grid point will be selected; an
available weights selection method is the minimization of Euclidean distance between the input
testing sample ¥ and the mean vectors of the fingerprints on each grid point.

g= argmin |F—Rg|,, (21)
ge{1.2,....G}
where ||-||, is the £2-norm.
The final location estimate by GD is given by
x=Xw
(22)

Given an online testing RSS vector ¥, now we can summarize the procedures of the GI-LS and
GD-LS fusion localization algorithms in Algorithms 2 and 3, respectively.

4.3 Classifier Functions

Machine learning has been applied to many interesting problems in many fields, such as image
processing, machine vision, and signal processing. Each machine learning approach can work as
a classifier function h; (R) to yield an expertise prediction. We consider three typical classifiers;
extreme learning machine (ELM), Random forest, and K-neighbour nearest (KNN).

4.3.1 ELM: ELM is based on the empirical risk minimization theory and makes use of a single-
layer feedforward network for the training of single hidden layer feedforward neural networks
(SLFNSs) [24]. The learning process needs only one single iteration and avoids multiple iterations
and local minimization. In VLC localization, the goal of ELM is to find the relationship between the
RSSs fingerprints and its corresponding location label.

The prediction of a standard SLFNs with £ hidden neurons could be mathematically modeled by:

L
hewv (F, R) = sign ( w f, (F, R)) , (23)
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Algorithm 2:GI-LS fusion localization algorithm.

Input: 1) The online testing RSS vector 7; 2) The L offline testing RSS vector r;; 3) The offline training fingerprints R;
4) The H different classifiers &, (R).

Output: The location estimate [£, $]7.

1: The offline phase:

2: for j ={1,2,---,L} do

3 | fornp={12---,H) do

4 | | Compute ﬁ;’ =hy, (rj, R) by using (8);

5 ‘ end for

6

7

8

9

. end for
. Obtain X and V' using (10);
: Compute , and W, using (17);
: The online phase:
10: for n ={1,2,---,H} do
11: ‘ Compute p”7 = hy, (7, R);
12: end for
13: Obtain X and Y using (10);
14: Compute £ and § using (9);
15: return [£,9]7.

Algorithm 3:GD-LS fusion localization algorithm.
Input: 1) The online testing RSS vector #; 2) The L offline testing RSS vector r;; 3) The offline training fingerprints R;
4) The H different classifiers &, (R).
Output: The location estimate [£, $]7.
1: The offline phase:
2: for g = {1,2,---,G} do
3 for j ={1,2,---,L} do
4 ‘ for n ={1,2,--- ,H} do
s: | | | Compute D] =hy (r_f, R) by using (8);
) J
.
8
9

\ end for
end for
Obtain X and YV using (10);
Compute W, and b, using (17);
10: end for
11: Obtain W, and W, using (19) and (20);
12: The online phase:
13: for n = {1,2,---,H} do
14: | Compute p7 = h, (7, R);
15: end for
16: Obtain X and ¥ using (10);
17: Compute g using (21);
18: Find the weights w, and w0, based on g;
19: Compute the location estimate [£, 9] using (22);
. return [£,$]".

N

where W, is the vth output weight between the vth neuron and the output. f, (F, R) is the vth output
of the hidden layer with respect to the input ¥. sign (-) is a sign function. By minimizing the training
error as well as the norm of the output weights, we can estimate the weight w,, of ELM [24]. Then,
the predictions of the ELM classifier can be obtained based on the estimated weights.

4.3.2 Random Forest: Random forest (RF) is a combination of tree predictors such that each tree
depends on the values of a random vector sampled independently and with the same distribution
for all trees in the forest [25]. A tree is a collection of nodes and edges organized in a hierarchical
structure. A decision tree can be interpreted as a technique for splitting complex problems into a
hierarchy of simpler ones. Forest training is performed by optimizing the parameters of the weak
learner at the & split node via

6: = argmaxZ,, (24)
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where Z is the information gain of the &th node. 0: denotes the parameters of the weak learner at

the &th split node. Assume T is a trained tree with weak learner parameters ?)g, tree depth ty4, and
node number {,; then, the prediction of the tree can be given by

hae (F, R) = T (F, R). (5)

4.3.3 KNN: KNN is a type of instance-based learning, or lazy learning, where the function is
only approximated locally and all computation is deferred until classification [26]. It is among the
simplest of all machine learning algorithms. KNN calculates the distance between F and each vector
in the trained data R by using a given distance metric, such as Euclidean distance and Manhattan
distance, etc, to determine the location p. Then, all the distances are sorted in ascending order and
the number of classifications in the first k samples, C, is recorded. The number of samples in each

classificationis N, (c= 1,2, ..., C) and the most votes to estimate the location label g is chosen:
g=arg max Nq. 26
g=arg max Ne (26)

Then, the prediction of the KNN classifier for giving ¥ becomes

hknN (T,H) = [Xg,yg,O]T. (27)

4.4 Performance Analysis

4.4.1 Accuracy: Itis well known that the accuracy of the fingerprint-based localization approach
is constrained by the distance between adjacent grids. Our proposed fusion localization framework
can mitigate this limitation. Two factors can guarantee the high accuracy of the proposed framework.
First, the machine learning approach can improve the accuracy of the localization system by being
immune to the fluctuation and correlation of RSS fingerprints. Second, the weighed fusion strategy
can yield the location estimates that are not on the grid points, thus improving the accuracy without
any grid refinement technique.

4.4.2 Robustness: The robustness of our proposed localization framework is derived from the
following aspects: first, unlike other trilateration methods, the machine learning classifier does
not need to estimate model parameters, and possesses good robustness against model error
and RSS error, fluctuation, and correlation (We will show that the correlations among real RSS
fingerprints are high enough while the traditional trilateration methods incur low accuracy). Second,
the proposed fusion strategy has little effect on the performance of a single classifier. It can leverage
the complementary advantages of multiple classifiers, weigh the various estimation results, and
combine them to improve the robustness. Finally, LS-SVD can guarantee numerical stability when
the prediction matrix X in (9) is singular, thus further improving the robustness of our proposed
approach.

4.4.3 Complexity: The main burden of fingerprint-based localization approach are the finger-
prints construction, also known as a site survey. The machine learning approach needs to train
these fingerprints prior to executing the online localization. However, these tedious tasks are done
offline. Meanwhile, a number of pioneering works, such as Transfer Learning (TL) [27], Matrix Com-
pletion (MC) [30], and Compressive Sensing (CS) [31], can be used to reduce the burden of a site
survey. In other words, the complexity of our proposed approach mainly comes from the online
phase, which is mainly dominated by SVD of X. Consider that the dimension of X in (9) is L x H,
and so its complexity is O (L HZ). Since H « L, we can obtain a fast location estimate if L is not
too large.

5. Experimental Setup and Results

Our testbed is built in the optimized networking laboratory (ONL), which is located at the fourth floor
of Faculty Memorial Hall (FMH) building, New Jersey Institute of Technology (NJIT). The testbed
consists of 4 visible light sources (M = 4), each light source contains two LED arrays (premium
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Fig. 3. The functional block diagram of our proposed localization system.
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Fig. 4. The power spectral density (PSD) of the received signals of the PD.

daylight white LED light bar from Solid Apollo LED). We use two USRPs N210 with two LFTX
daugtherboards to drive the light sources for signal transmission and one USRP N210 with one
LFRX daughterboard to perform signal reception. The optical to electrical conversion is implemented
by an avalanche photodector APD 130 A2/M from Thorlabs. No lens is equipped on the photodetec-
tor. Four different sinusoidal signals (i.e., with frequencies 800 kHz, 850 kHz, 900 kHz and 950 kHz,
respectively) are generated from GNURadio and forwarded to the USRPs for signal transmission.
The sinusoidal signals are then combined with 23.6 Volts DC power supply by 4 Bias tees ZFBT-
6GW+ and used to drive 4 visible light sources, as shown in Fig. 2. The localization experiment is
performed within a 0.7 m x 0.7 m square area. The height of four LEDs h is 1.48 m. The location of
the first grid point is taken as the origin. The locations of four LEDs are z; = [1.56m, 0.7 m, 1.48 m]’,
z, =[-1.183m,0.67m, 1.48m]", z3 = [1.56m, —0.47m, 1.48m]", z, = [-1.13m, —0.5m, 1.48 m]’,
respectively. We record the raw time domain signals at G = 225 (g = 15) different locations in a
grid structure with 5 cm between each pair of adjacent locations. Each location is recorded for
5 seconds. The sampling rate is set to 4 MHz. The time domain samples are then analyzed in MAT-
LAB using the Fast Fourier Transform (FFT) process to extract the signal strengths for constructing
RSSs fingerprints by using Algorithm 1. The functional block diagram of our proposed localization
system is shown in Fig. 3.
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Fig. 5. The power profile of four LEDs at all grid points.

Fig. 4 shows the estimated power spectral density (PSD) of the received signals of the PD when
the length of FFT is 2000. From Fig. 4, we find that there are four clear peaks at the corresponding
frequencies, which can be captured as the powers of the received signals. It is worth noting that
the RSSs from the peaks of the PSD is inaccurate. To show the inaccurateness of the RSSs, we
list the mean powers of the four frequencies at the first grid point with FFT lengths of 2000, 4000,
6000, and 8000 in Table 1 (Unit:dBm). The mean RSSs values are computed with 200 samples.
From the table, we find that the RSSs are changing with different lengths of FFT even for the same
frequency LED. This will degrade the positioning accuracy of the classical RSSs methods, such as
RSSR and RSS matching methods. Fortunately, unlike the classical RSSs methods, our proposed
algorithms are robust to the inaccurate RSSs.

The length of FFT is set to 2000 (N = 2000) Fig. 5 illustrates the instant RSSs of LEDs versus
different grid indices. Although the instant RSSs have some slightly fluctuation, the variation trends
of RSSs can basically reflect the distances between the PD and the four LEDs. It is seen that the
fluctuation of RSSs of LED is smaller than that of the WLAN environment [2]. In other words, the
fluctuation is not the main characteristic of LED’s RSSs. The main characteristic of the RSSs in
VLC is the high correlations among fingerprints, as depicted in Fig. 6, which shows the correlation
coefficients between the testing samples and the mean RSS fingerprints at each grid index. It can
be seen that no clear peaks appear in the diagonal of the correlation coefficients. It means that
there exists higher correlations between each fingerprint vector in the mean RSS fingerprints, which
will degenerate the classical RSS matching methods.

To compare the performance of our proposed algorithms with the RSSR method [20] and the
classical RSS matching method, the Lambertian model order m = —In 2/ In cos (¢1,2) with the semi-
angle (at half power) @12 = 22° is considered. To evaluate the positioning performance of the listed
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Fig. 6. The correlation coefficients between the testing samples and the mean RSS fingerprints at each
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TABLE 2
The Parameters of the Three Machine Learning Approaches
KNN Distance metric: Euclidean distance; k = 120.
ELM Number neurons in input, hidden, and output layers: 4, 600, and 225; Activation
function: Sigmoid.
Random Forest Tree depth: 5; Tree number: 40; Weak classifier: Decision stump.

algorithms, we define the mean square positioning error (MSPE) as

MSPE — 157 [ -2 + 71— 2] (@9)

where 7 is the number of testing samples and [%;, ] is the location estimate of the ith testing sample.
Three machine learning algorithms (H = 3) are compared, including KNN, ELM, and random forest.
The parameters implemented in our experiment are listed in Table 2. The positioning results of the
three machine learning approaches as well as our proposed fusion algorithms are illustrated in
Fig. 7. It is seen that our proposed algorithms and the machine learning approaches perform the
LED positioning well.

In order to see their performance clearly, we compare the cumulative distribution functions (CDFs)
versus the MSPE for the listed algorithms in Fig. 8. From this figure, we find that the accuracies
of the multiple classifiers are superior to the RSSR and the classical matching methods. The
probabilities of positioning errors less than 5 cm are 80.4%, 85.56%, and 88.09%, for KNN, ELM,
and Random Forest, respectively. While the probabilities of the GD-LS and GI-LS are 88.78% and
93.17%, respectively, implying that the fusion strategy works well in this case. The high correlation
between each column in RSS fingerprints, as shown in Fig. 6, has great impact on weights selection
of the GD-LS algorithm. In other words, GD-LS will select some wrong weights to fuse because the
selected weights are decided by the distance between the testing sample and the training data, as
shown in (21). Note that the GD-LS weight selection strategy is similar to the method in [28]. So, it
is proven that the GD-LS is not good for VLC fingerprints. As expected, the high correlation directly
results in the poor performance of the RSS matching method, as shown in Fig. 8. The probability

Vol. 9, No. 6, December 2017 7803716



IEEE Photonics Journal Indoor Localization Using Visible Light

0.8 T T T T T T T
O %:I & 9 O & & Random Forest

07t # oo $ O o O ok g E)'ilt’r\‘emeLeaming Machine | |
O O M O & B® & & x GpLs

06F #O¥M GOP & & ® & 0O GLS -
# O o % & & Ok GEH g O ok Ok

os5F # ¥ » & %0 & & & ® & & ODHO %K |
B G k0 e 00 % KO B (k@R K

€
T 04l BXOK®  BRO KON GO R . KO B -
? ¥ ® § o ook Fxom OO oK 0 W
03 ® B K 90 OR KO Ok GKOK KH KR -
DOOK® R KD L & K KK DO KO
OuE A B B KW R B RO KO
» % &  o® x oo ® B &
oM BRE - B B & K Ok - KK Ok -
K OHOKKO X B K X B OKO O

0 | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

x-axis(m)

Fig. 7. The positioning results of the compared algorithms in the location plane.
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Fig. 8. The CDFs versus MSPE of different localization algorithms, N = 2000.

of the matching based method in acquiring a positioning error of less than 20 cm is only 17.93%.
Note that the probability of the GI-LS algorithm in achieving positioning error of less than 7.5 cm
has reached 100%, which is better than other compared algorithms. Fig. 9 shows the CDFs versus
MSPE when the FFT length N = 4000. In comparing Fig. 8 with Fig. 9, we find that our proposed
algorithms are robust to the RSSs variation. The longer FFT length, the more robust our proposed
algorithms.

Note that the performance of the RSSR approach is worse than the RSSs matching approach, and
probability of its achieving positioning error of less than 20 cm is just 18.65% as shown in Figs. 8 and
9, which is far less than the machine learning approaches and the two fusion algorithms. The high
correlation of RSS fingerprints is just one of the reasons that degrades the performance of the RSSR
approach. Meanwhile, the RSSR approach needs several assumptions on model parameters. Any
parameter mismatch will induce positioning errors. Additionally, the RSSR approach needs to know
the locations of the four LEDs accurately. Furthermore, the RSSs captured from the peaks of PSD
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Fig. 9. The CDFs versus MSPE of different localization algorithms, N = 4000.

are not accurate enough, and this is also a bias source of positioning errors. Hence, it is easier to
yield wrong location estimates when taking the above reasons into consideration. While the RSSs
matching approach is a pattern matching technique, which is slightly robust to the model error but
more sensitive to high correlations, it is slightly more robust than the RSSR approach. Comparatively
speaking, our proposed method shows high accuracy without knowing model parameters and is
robust to high correlations, the biases of LEDs locations, and fluctuations of RSSs.

6. Conclusion

In this paper, we have proposed a multiple classifiers fusion localization framework by using the
RSS fingerprints, which are captured from the peaks of the PSD of received signals. Besides the
inaccurateness, the RSSs fingerprints show high correlation, which would introduce some large
positioning errors for the classical RSSs matching methods.

To mitigate this problem, we first train the multiple classifiers based on the RSS fingerprints offline.
Then, in the online stage, we design two robust fusion algorithms, namely, GD-LS and GI-LS, based
on the outputs of these multiple classifiers. The proposed algorithms have been shown to exhibit
numerical stability in dealing with singular outputs matrices. Unlike the trilateration techniques based
on the RSSs, our proposed algorithms do not depend on the model parameters and are robust to
the inaccurateness of the RSSs. Meanwhile, they can also position without knowing the locations
of the transmitters. We have validated the feasibility of our proposed positioning framework in the
real VLC indoor environment.

Here, we just consider three typical machine learning approaches. Theoretically speaking, the
more machine learning algorithms are fused, the more accurate positioning results are obtained.
As for the LS based fusion strategy, we can also derive a weighted LS (WLS) solution when the
variance of the noise information of the received signals is given [4]. All in all, multiple information
fusion is a good strategy to achieve accurate and robust VLC indoor localization.
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