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Abstract: In a quantum key distribution (QKD) system, privacy amplification (PA) is an
essential procedure that can effectively eliminate the leaked information to an eavesdrop-
per and distill a secret key. The processing speed of the PA algorithm inevitably affects
the final key rate of the QKD system. We propose a high-speed PA algorithm based on
field-programmable gate array (FPGA), where the matrix multiplications are divided into a
number of rhomboid-block operations. The implementation of the PA reduces significantly
the required number of FPGA Block RAMs. Meanwhile, it automatically adapts to different
lengths of input and output blocks. Finally, we verified the correctness and high-speed of the
algorithm when implemented in a Xilinx Virtex-7 FPGA.

Index Terms: Quantum key distribution, privacy amplification, hardware implementation,
field programmable gate array, size-adaptive.

1. Introduction
Quantum key distribution (QKD) is the first quantum information task to reach the level of mature
technology, and enables the sharing of an unconditionally secure key string between two legitimate
parties (Alice and Bob). Over the past three decades, various protocols have been proposed, and
great progress has been made in terms of experiments [1]–[9]. A QKD system is typically divided
into four steps: (1) Quantum state preparation, distribution, and measurement; (2) Data sifting and
parameter estimation; (3) Information reconciliation in which Alice and Bob correct errors in sifted
keys to obtain identical corrected keys; and (4) Privacy amplification (PA) [10], [11], which eliminate
the leaked information by using universal classes of hash functions to map long-corrected keys to
shorter final keys.

For a high-speed QKD system, the processing speed of PA in software has been unable to
match the raw key generation speed. Although some algorithms, such as the number theoretic
transform (NTT) [12] and optimal multiplication algorithm [13], enable us to perform fast matrix
multiplications, it is desirable to find an even faster approach. One way to achieve this is by using
hardware-based acceleration. Field-programmable gate arrays (FPGA) features powerful parallel
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operation and straightforward matrix multiplications. Owing to their faster operation rate and better
time efficiency compared with conventional algorithms executed through software, FPGA are very
attractive when designing prototypes and manufacturing small-production-run devices and their
in-system programmability makes them substantially cost-effective [14]. Although we can also use
GPU or Coprocessor to accelerate the data processing [15], [16], FPGA is good at binary opera-
tions and can configure the degree of parallelism more flexibly. So that it facilitates control over the
trade-off between data throughput and hardware resource requirements [17]. In addition, FPGA
energy consumption is much lower than that of GPU and Coprocessor. However, one disadvan-
tage of FPGA is that hardware resources are limited when applied in a complete QKD system.
Therefore, it is a major engineering challenge to optimize and reduce the number of required
hardware resources.

In terms of FPGA-based privacy amplification, several works have been reported [18]–[21]. The
authors in [19] proposed an approach that implemented PA algorithm with “block operations” in
FPGA. In this method, the hash functions were divided into blocks that operated on a small matrix
of 40 × 40 bits. In terms of speed, four clock cycles were required to complete the reading and
multiplication operation of one matrix block. In addition, that architecture required a large amount
of storage on-chip. The operating speed can be improved further by using a pipeline design. For
example, the authors in [20], [21] showed such a design to fully exploiting every clock cycle, and
the data could be stored in an off-chip memory (DDR2-RAM) instead of the on-chip Block RAM
(BRAM).

In a QKD system, large block of hash functions are needed to ensure a high secure key rate due
to finite size effects in the security analysis [22], [23], and the storage of the these hash functions
consumes large amounts of storage space. However, if the hash functions are stored in the off-chip
memory, data read and write will increase the complexity of QKD system control. In this paper, we
propose a novel high-speed PA algorithm that significantly reduces the storage requirements so
that on-chip BRAM can be used. Another feature of our scheme is size-adaptive, which means that
the PA can adapt to various lengths of input and output blocks automatically.

The rest of this paper is organized as follows. In Section 2, we present the principle and advan-
tages of the proposed PA algorithm. In Section 3, we describe an FPGA-based implementation
of the proposed PA algorithm. In Section 4, we present the relationship between the processing
speed and the requirements of the hardware resources. We also show a comparison between
several FPGA-based hardware implementations, including our own. In Section 5, we provide a brief
conclusion.

2. Underlying Principles of the Algorithm
2.1. Hash Functions

In the case of the PA algorithm, universal classes of hash functions [24] with the following require-
ments should be utilized: (1) the closer it is to universality, the better the secrecy of the resulting
key; (2) classes with large input and output sizes; and (3) evaluation of the hash function should
not consume much time.

Toeplitz hashing is a particular class of universal hash functions [25] that meet the requirements
for the PA [18], [26]. Toeplitz hashing uses a diagonal-constant matrix, which can be constructed
using its first row and first column. This specific structure reduces the number of random bits
required when constructing a random matrix. For example, the required number of random bits will
be reduced from M N to M + N − 1 when an M × N diagonal-constant matrix is constructed.

2.2. Rhomboid-block Operation

The secret key rate �I of a QKD system can be written as:

�I = βI A B − χB E , (1)
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Fig. 1. Principle of the Algorithm. The black dots represents the elements of Toeplitz matrix; the circles
represents the padding elements. L k = 10, L = 11, p = 4, M = 12, N = 20, m = 3, n = 4, s = 6. See
the main text for the details of the parameters.

where β denotes the reconciliation efficiency, IA B is the classical mutual information between two
legitimate parties, and χB E is the leakage information. The length of the final key is

L k = �I · L , (2)

where L denotes the length of the corrected keys. The compression ratio is defined by:

r = L k/L . (3)

From (2), the Toeplitz hashing is an L k × L matrix. Since Toeplitz hashing has a regular diagonal
structure, we propose the concept of a “Rhomboid-block (RB)” operation to perform the matrix
multiplication. The RB operation consists of p parallel multiply-accumulator (PMAC) units, in which
each unit performs a p single-bit multiplication over a Galois field G F (2). More specifically, it
combines the bits of Toeplitz hashing with the bits of the corrected keys. The single-bit multiplication
of every bit in a PMAC unit is performed at the same time.

We now describe the PA algorithm in detail. To ensure that the RB operation can involve all
elements of a Toeplitz hashing, we must reconstitute the Toeplitz hashing by inserting some padding
elements. An example is shown in Fig. 1. A 10 × 11 Toeplitz hashing is reconstituted into a new
12 × 20 matrix. An L k × L Toeplitz hashing is reconstituted into a new M × N matrix, where M =
�L k/p � p , N = �L /p � p + 2p , following the diagonal rule that each descending diagonal from upper
left to lower right is constant. According to this rule, M − L k rows are padded after the last row,
p columns are padded in front of the first column, and N − L − p columns are padded after the
last column, respectively. Finally, the rest elements that cannot be covered by the diagonal rule are
padded with zeros. The new matrix is further divided into an m × n RB matrixe, where m = �L k/p �,
n = �L /p � + 1. As shown in Fig. 1 and (4), a 10 × 11 Toeplitz hashing is finally reconstituted into a
3 × 4 RB matrix following the above methods. The reconstitution of the Toeplitz hashing simplifies
significantly the calculation when implemented with FPGA. The corrected keys also need to be
reconstituted following the rule that p zeros are added in the front of the first bit and N − L − p
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zeros are padded after the last bit.⎡
⎢⎢⎢⎢⎢⎣

T1 T2 T3 · · · T10 T11

T12 T1 T2 · · · T9 T10

T13 T12 T1 · · · T8 T9
...

...
...

. . .
...

...
T20 T19 T18 · · · T1 T2

⎤
⎥⎥⎥⎥⎥⎦

→
⎡
⎣

RB 41 RB 11 RB 21 RB 31

RB 51 RB 42 RB 12 RB 22

RB 61 RB 52 RB 43 RB 13

⎤
⎦ (4)

The matrix multiplication is performed group by group. There are s = m + n − 1 = �L k/p � + �L /p �
groups each contains all RB s in a diagonal line. Obviously, each group is constructed with only p
elements. The matrix multiplication depends on the order that the p elements contained in the
group. For example, the calculation order for the RB s in Fig. 1 is RB 11, RB 12, RB 13, RB 21, ..., RB 61.
The result of multiplying each group with corrected keys is a matrix of one column. The final result
is an M × 1 matrix that is the dot product between the result of each group over G F (2), in which
the first L k bits is the final keys. Based on this rule, we can discard the current p elements when
performing the next group, which means that we do not need to store all of the reconstituted matrix
elements.

By using the RB operation, the theoretical maximum processing speed of the corrected keys is

S = L · f
(�L /p � + 1) (�L k/p �)

, (5)

where f is the clock frequency of the FPGA. The corresponding maximum secret key rate is given by:

�I m = r · S = L k · f
(�L /p � + 1) (�L k/p �)

. (6)

We have written two programs in MATLAB to verify the correctness of this algorithm, one process
data with a conventional matrix multiplication method followed by a mod-2 operation, while the
second processes data using the proposed PA algorithm. The calculation results demonstrate that
the proposed algorithm is correct.

2.3 Advantages of the Algorithm

There are three advantages in the proposed algorithm:
1) Minimize BRAM usage in the FPGA. The conventional algorithm requires (1 + r ) × L bits of

memory to construct the hash functions. In contrast, our algorithm only requires r × L bits to
store the final keys and intermediate bit vectors. Due to the compression ratio r was much
lower than one in a long-distance QKD system, the space required for the RAM is smaller
than that required in other works.

2) Adapt to different lengths of the corrected and final key. In general, the length of the final key
is not a constant due to the variations of the parameters in a QKD system. The proposed PA
algorithm adapts to the length of the final key that covered the full range of 0 to L k bits, as
shown in (1), and (2). To ensure the security of a QKD system, the length of the corrected key
should be larger than at least a hundred kilobits, the proposed PA algorithm can also adapts
to different lengths of the corrected key.

3) Simple data stream read. In the early algorithms based on FPGA [18]–[21], the processing
module needs to read elements of the Toeplitz hashing frequently, and the PA process starts
after the Toeplitz hashing is generated. However, in the proposed algorithm, the elements
only need to be read once, and the PA process proceeds while only p elements of Toeplitz
hashing are generated.

3. Hardware Implementation
To completely characterize the PA algorithm, we implemented it in an FPGA using the Verilog
language. For ease of implementation, we used the VC707 Evaluation Kit manufactured by Xilinx
that includes a Virtex-7 XC7VX485T FPGA and a fixed oscillator with a 200 MHz differential (LVDS)
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Fig. 2. Logic structure of our PA algorithm.

output. The Virtex-7 FPGA has a total of 303,600 LUTs and 607,200 flip-flops, as well as 2,060
18 kb BRAMs and 1,030 36 kb BRAMs.

A block diagram of the logic structure of our PA algorithm is shown in Fig. 2. BRAM-1 is configured
as a true dual port RAM with a width of p and depth of n + 2, in which the first and last address space
is allocated to store p zeros, and the rest n address spaces are allocated to store the corrected
keys. BRAM-2 is configured as a true dual port BRAM with a width of p and depth of m to store the
intermediate bit vectors that are updated in each group, and the final secret key in the last update.
The capacity of BRAM-2 depends on the length of the final secret keys, which is determined by
the parameters of a QKD system [27]. The hash functions are stored in a single port ROM with a
width of p and depth of s when testing the algorithm. In the hardware implementation, a logical AND
operation is equivalent to a multiplication in G F (2), and the logical exclusion OR (XOR) operation
is equivalent to addition in G F (2). We can implement parallel processing of AND and XOR in the
PMAC module. The control module is central to the algorithm, and has the following main functions:
(1) calculate the total number of rows and columns; (2) generate the data addresses; and (3) control
the conversion of rows and columns. In the experiment, the operating differential clock was set to
100 MHz.

The proposed PA algorithm is implemented in three steps. Step 1: depending on the size of
Toeplitz hashing, choose a suitable parameter p , where p is the degree of parallelism. In other
words, the PMAC module processes p raw key bits each time. Step 2: according to the size of
Toeplitz hashing and the degree of parallelism p , calculate the number of rows m and the number of
groups s. Step 3: set some reasonable criteria to control the performance of the PA algorithm. When
the RB s in the main part are complete and m e > m , jump to the next group, where m e is the number
of rows currently being processed. In the top right corner of the matrix, jump to the next group when
the address of the corrected keys is higher than the maximum address. In the bottom left corner of
the matrix, p bits of the reconstitution matrix are arranged in reverse order, then jump to the next
group when m e > m + n − se, where se is the number of groups currently being processed.

For any size Toeplitz hashing, it can always be reconstituted as an RB matrix. We can achieve
size-adaptive PA algorithm that utilizes the PMAC module to multiply the elements of RB matrix with
the corrected keys in FPGA. In principle, there is no upper bound on the size of Toeplitz hashing.

To improve the processing speed, the p elements of the corrected keys are input synchronously
without interruption along with the intermediate bit vectors. It takes four clock cycles to process these
data. In the first clock cycle, all data needed in the calculation is read. In the second clock cycle,
the elements of the hash functions read in the first clock cycle are arranged in reverse order. In the
third clock cycle, the PMAC module processes the input corrected keys. In the fourth clock cycle,
the result of the PMAC module is written to BRAM-2. In comparison to PA algorithms implemented
in software, FPGA-based algorithms use a pipelined design, which can begin processing new data
before the prior data processing has finished and, consequently, greatly improve the speed of data
processing. A timing diagram is illustrated in Fig. 3 that corresponds to Fig. 1, where h i and dj

represent the elements of the Toeplitz matrix and corrected keys. The keys km i k correspond to the
result of multiplying RB i k with corrected keys, and k41, k51, and k61 are the final keys.
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Fig. 3. PA algorithm timing-diagram where hash represents the elements of the Toeplitz matrix; data1
and data2 represents the corrected keys; hash_rev represents the rearranged elements of the Toeplitz
matrix; key_mid represents the bit vectors of the previous group; and key represents the results of the
final group.

TABLE 1

Design Space Exploration

PMAC size (bits) LUTs Flip-flops S (Mbps) Simulation Time (ms) key rate (Mbps)

32 × 32 802 (0.26%) 343 (0.05%) 1.023 0.979 0.1021

64 × 64 2,032 (0.66%) 489 (0.08%) 4.094 0.246 0.4079

128 × 128 7,031 (2.32%) 797 (0.13%) 16.367 0.061 1.6183

256 × 256 26,571 (8.75%) 489 (0.08%) 65.443 0.016 6.4004

We simulated the algorithm using the simulation tool Questa SIM, and the results were consistent
with those of MATLAB. After simulation, we implemented the algorithm in hardware on a VC707
evaluation board, and the results of the hardware implementation matched those of the simulations.

4. Results
Before we can determine the size of the PMAC, we must first understand how the speed and area
optimizations actually affect the design. For example, the speed of the algorithm can be increased at
the expense of additional hardware resources. However, the processing speed of the PA algorithm
should not be increased arbitrarily. Instead, the speed should be determined based on the rate
of information reconciliation. This approach ensures that the QKD system will consume a minimal
number of hardware resources. In Table 1, we presented the design space exploration when the
length of input data is 1 Mbits and the compression ratio is 10%. It is shown that the key rate
increases linearly with the LUTs. Based on this information, we can choose the optimal size of
the PMAC to avoid wasting hardware resources. It is noted that both the data processing speed S
and key rate increase linearly with the decreasing length of input data when the compression ratio
r remains constant (as shown in (5)). Howerer, when the compression ratio decreases, the data
processing speed S grows linearly but key rate keeps unchanged (as shown in (6)).

An overview of several FPGA-based hardware implementations of PA algorithms is shown in
Table 2. In [19], four clocks are required to complete each processing unit. While in [20], [21], and
the present work, all the clocks of the FPGAs are exploited efficiently due to the adoption of a
pipeline architecture algorithm, that means only one clock is required to complete each processing
unit. On the other hand, the three algorithms have significant differences in the consumption of
RAM. As shown in the Table 2, for a 1 Mbit length of the corrected key, our RAM requirement is
only 100 kbit, which is much lower in comparison to [20], [21] where 1095 kbit are required. In [19],
the length of the corrected key is 256 kbit, even in this situation, the requirement of our RAM is
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TABLE 2

Comparison of Several PA Algorithms

Zhang et al. [19] Constantin et al. [20], [21] This work

Devices Altera Cyclone III EP3C120 Xilinx Virtex-6 V6LX240T Xilinx Virtex-7 XC7VX485T

Length of the corrected key 256,000 995,328 1,000,000

Length of the final key 76,800 0-995,328 0-1,000,000

Processing unit 40 × 40 512 × 64 256 × 256

LUTs 1,902 15,604 26,571

BRAM 656 kb 0kb 100 kb

External RAM 0 kb 1,095 kb 0 kb

Clock frequency 40 MHz 125 MHz 100 MHz

Max. key rate 0.07 Mbps 4.1 Mbps 6.4 Mbps

still much less than this work where 656 kbit are occupied ([18] does not provides enough detailed
parameters, so we do not list it here).

In above, we have shown that the rhomboid-block operations can reduce the consumption of
RAM from 1.1 Mbit to 100 kbit when the block size is 1 Mbit and compression ratio is 10%. Although
1 Mbit is not a large resource for a FPGA, this is not the case for a large input data block. Due to
the finite size effect of the QKD, large block size is necessary to ensure a long distribution distance
and high secret key rate [22], [23]. For a typical block size of 100 Mbit, the occupation of RAM will
increase to 110 Mbit, which is beyond the memory capacity of the on-chip RAM for a Xilinx Virtex-7
FPGA which has a typical value of several tens of Mbit. In this case, a PA FPGA implementation
with a low memory storage requirement is crucial. By using our approach, the occupation of RAM
resource can decrease to 10 Mbit, which is within the memory capacity of the on-chip RAM of the
FPGA, In addition, the control of data stream is more simple in accordance with our approach.
Therefore, our work is beneficial to the FPGA-based implementation of the PA in practical QKD
systems where a large data block size is required.

5. Conclusions and Outlook
This article provides a detailed description of our high-speed PA algorithm, and presents the
verification results from an FPGA implementation. Compared to other works, the proposed PA
algorithm requires less FPGA BRAM and allows fine adjustment of the lengths of input and output
blocks so that it can meet the requirements of different QKD systems. In the future, we will implement
information reconciliation [28] in an FPGA, and develop a complete practical secret key distillation
engine.
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