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Abstract: We investigate integrated mode-locked laser diodes with distributed Bragg re-
flectors fabricated in the JePPIX-Oclaro indium phosphide photonics platform. The optical
and radio-frequency (RF) characteristics of passively mode-locked lasers with and without
monolithically integrated feedback cavities were measured and compared. The RF linewidth
of the mode-locked laser could be reduced by integrating an optical feedback cavity of a par-
ticular length and a tunable magnitude of feedback. A maximum linewidth reduction factor
of 1.9 was observed near the onset of mode locking, but increasing the laser optical power
tended to lead to unstable operation. Increasing the drive current of the design without
feedback also reduced the RF linewidth. A reduction factor of 7.6 was observed.

Index Terms: Diode lasers, laser mode locking, laser feedback, bragg gratings.

1. Introduction

Mode-Locked laser diodes (MLLDs) that produce periodic trains of pulses at high repetition rates
in excess of 1 GHz have potential applications as radio-frequency (RF) or mm-wave oscillators [1],
[2], in all-optical clock recovery [3], [4], and in data communications [5]. Passively MLLDs (PMLLDs)
have the advantage that they do not require an external RF modulation signal. However, the noise
properties of passively MLLDs tend to be worse than their hybrid mode-locked counterparts, in
which the low frequency phase noise tends to follow that of the RF source [6]-[10]. One technique
for reducing RF noise in mode-locked lasers is through optical feedback or photon seeding, wherein
a small fraction of the power emitted from the laser is fed back into the laser cavity. This technique
has been used to reduce noise in MLLDs through the use of external (off-chip) feedback cavities
[71, [11]-[14] and, more recently, with an on-chip feedback cavity in a hybrid silicon platform [15].
Many examples of distributed Bragg reflector (DBR) MLLDs have been demonstrated, utilizing
conventional [5], [16]-[21], sampled [22], or chirped gratings [23] as reflectors. When compared to
Fabry-Perot (FP) MLLDs, DBR MLLDs offer ease of integration with other components on-chip and
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Fig. 1. (a) Schematic of the standalone MLLD with a 20 GHz repetition rate, and (b) the corresponding
die photo. (c) Schematic of a MLLD with a 20 GHz repetition rate with a monolithically integrated
feedback cavity, and the (d) corresponding die photo.

precise control over central laser wavelength at the cost of narrowed optical bandwidth (limited by
the bandwidth of the DBR mirrors) and a corresponding increase in the pulse width.

The noise of mode-locked lasers is described in detail in [24], [25] and an emphasis on the noise of
MLLDs is given in [26]. As shown in [27], the RF linewidth, Avgf, is related to the Schawlow-Townes
optical linewidth, Avgr, by

Avgr = C1Avst + C2RIN, (1)

where RIN is the low frequency relative intensity noise, and Cy and C, are expressions described
in [27]. Briefly, Cy describes the contribution of optical phase noise to RF phase noise and C»
describes the coupling between variations in pulse energy and timing jitter [15], [27], [28]. The RF
linewidth can be reduced through pulse stabilization techniques, such as controlled optical feedback
or photon seeding, which can also reduce laser linewidth.

In this work, we used the JePPIX-Oclaro generic monolithic indium phosphide (InP) photonics
design kit for the multiproject wafer shuttle run 3 of the PARADIGM program [29], in which the
DBR properties and material layers were fixed, to study PMLLDs with a monolithically integrated
feedback cavity. Under specific feedback conditions, the RF linewidth could be reduced. Previous
analysis of DBR based MLLDs has shown that, like FP MLLDs, the lasers are very sensitive to
both the magnitude of the feedback as well as the length of the optical feedback or photon seeding
cavity [30]. Improper choice of either may cause the laser to become unstable. In a fully integrated
approach, cavity lengths can only be slightly tuned, so we design and compare cavities of various
lengths and tune the intensity of the optical feedback.

2. Device Design

Fig. 1 shows the MLLD designs implemented in the JePPIX-Oclaro technology. Fig. 1(a) and (b)
are, respectively, the schematic and optical micrograph of the laser without any feedback. Fig. 1(c)
and (d) are, respectively, the schematic and optical micrograph of the laser with an integrated
feedback cavity. The lasers were designed to operate with a repetition rate around 20 GHz for
this proof-of-concept study. The lasers can be designed for other repetition rates by adjusting
the cavity lengths. The main laser cavity was nominally identical for the case with and without
feedback. The laser cavity was composed of two semiconductor optical amplifiers (SOAs, 830 um
in length), a saturable absorber (SA, 50 «m), and a phase shifter (PS, 225 um). The SA was formed
by reverse biasing a 50 um long section of SOA, which was the minimum SOA length available
on this platform. The phase shifter was based on carrier injection, in order to use a waveguide
geometry which was compatible with the rest of the laser design, and allowed for fine tuning of
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the repetition rate; however, it was not used in the results to follow. A 10 xm long electrical isolation
region was placed between individual active components, including the DBR mirrors, which were
tunable through carrier injection. The total length of the laser cavity was 1985 um, defined as the
distance between the start of the two DBR mirrors, which corresponds to a 20 GHz repetition rate
assuming a group index of 3.77.

The laser and feedback cavity were terminated by DBR mirrors of varying reflectivities. The
grating strength was 50 cm™ for all three DBRs. The expected repetition rate was slightly under
20 GHz due to the penetration depth of the DBR mirrors, which increased the effective cavity length.
At the Bragg wavelength, the penetration depth of the DBR mirrors is given by [31]

__ VR
2atanh(vR)’

where R is the reflectance and L is the length of the DBR. The laser cavity was terminated by a low
reflectance DBR (DBR1, 50 um long, designed for R ~6% at the Bragg wavelength, L ¢¢f1 ~24 um)
at the front of the cavity for high output power and a moderate reflectance DBR at the rear (DBR2,
150 um, R ~40%, L ¢¢12 ~64 um) to allow for coupling between the main cavity and the feedback
cavity. Devices without a feedback cavity were terminated by a highly absorbing PIN diode placed
after the rear DBR to reduce any residual reflections. A feedback cavity was introduced by placing
a high reflectance DBR (DBR3, 300 um, R ~82%, L ¢tt3 ~90 um) behind the rear DBR of the laser.

The length of the feedback cavity was chosen such that the pulse being fed back into the
laser cavity would arrive just ahead of the main cavity pulse, as is typical in photon seeding
experiments. Feedback cavity lengths, defined as the separation between DBR2 and DBRS3, of
1585 um, 1665 pum, 1745 um, and 1825 um were implemented for comparison. The lengths
between the SA and DBR3 were 1745 um, 1825 um, 1905 um, and 1985 um, respectively. Thus, a
feedback pulse is expected to arrive at the SA 6 ps, 4 ps, 2 ps, or 0 ps in advance of the intracavity
pulse, respectively. The penetration depth of the DBR mirrors has negligible effect on the relative
pulse timing, as the effective length increase due to the DBR mirrors terminating the main cavity
(Lerr1 + Lerro = 88 um) closely matches the penetration depth of a feedback pulse reflecting from
DBR3 (L¢rr3 = 90 um). The magnitude of the feedback was tuned by the three variable optical
attenuators (VOAs, 400 nm long) in the feedback cavity. The VOAs were the carrier injection based
phase shifters in the design kit. The excess single-pass attenuation in each VOA was 4 dB at
a current of 25 mA, and about 5.5 dB for currents greater than 70 mA. Therefore, a maximum
attenuation of over 30 dB was possible for the feedback pulse.

@)

Lerr=1L

3. Experimental Results
3.1. Measurement Setup

To measure the devices, the InP chip was mounted on a stage maintained at 20 °C. Although tunable,
the DBRs were left unbiased to avoid introducing excess electrical noise. Multiple fiber-optic splitters
were used to allow simultaneous collection of the power, optical spectrum (ANDO AQ6317B), pulse
duration (APE pulseCheck USB 50), and RF spectrum (40 GHz Archcom photoreceiver with a
26.5 GHz HP E4407B spectrum analyzer).

3.2. Standalone DBR MLLD

The optical characteristics of the standalone laser (no feedback) are summarized in Fig. 2. The
power measurements reported in Fig. 2(a) and (b) refer to the on-chip average power at the spot
size converter. Fig. 2(a) shows the L-I characteristics of our laser when various SA bias voltages,
Vsa, were applied. The threshold gradually increased from 23 mA for Vg = 0 V to 34 mA for
Vsa = —3 V. Fig. 2(b) shows the output power as a function of Vg, at several values of I sp4. Fig. 2(c)
shows the evolution of the optical spectrum when Vgy = —1.5V and I gp4 was increased from 40 mA
to 100 mA. The spectra shows the expected broadening of the spectrum with higher drive current,
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Fig. 2. Optical characteristics of the standalone 20 GHz MLLD without a feedback cavity. The re-
ported optical powers refer to the average power on-chip. (a) L-I curves for the laser as Vg, is varied.
(b) The output power dependence of the laser on Vg4 with /sp4 ranging from 40 mA to 100 mA.
(c) The optical spectrum of the laser with Vg4 = —1.5 V and /gpa ranging from 40 mA to 100 mA.
(d) The optical spectrum of the laser with /sp4 = 70 mA and Vg4 ranging from 0V to —3 V.
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Fig. 3. RF characteristics of the standalone 20 GHz MLLD without a feedback cavity. (a) The RF
spectrum of the laser with Vg4 = —1.5V and I sp4 ranging from 40 mA to 100 mA. (b) The RF spectrum
of the laser with /sp4 = 70 mA and Vg4 ranging from 0 V to —3 V. (c) The RF linewidth as a function
of Ispa and Vsa. Missing data points indicate the laser did not mode-lock or mode-locked with an RF
linewidth greater than 10 MHz. (d) The center frequency of the RF spectrum as a function of /spa
and Vga.

and had a free spectral range of approximately 150 pm, corresponding to about 19 GHz. Fig. 2(d)
shows the optical spectrum when Igo4 = 70 mA and Vg4 was varied from 0 V to —3 V. The large
change in the optical spectrum shown in Fig. 2(d) between —0.5 V and —1 V corresponds to the
onset of mode-locking. Stable mode-locking was not observed for [sp4 > 100 mA.
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Fig. 4. Characteristics of the standalone 20 GHz MLLD without a feedback cavity. The laser was biased
with /sp4 = 50 mA and Vg4 = —0.8 V. (a) The measured autocorrelation trace in collinear mode and
the sech? fit shows a 9.4 ps FWHM pulse width. In the collinear mode, the peak-to-background ratio of
an ideal autocorrelation trace is 3:1. The measured peak-to-background ratio was 2.38. (b) The optical
spectrum shows line spacing corresponding to the repetition rate. (c) The measured RF spectrum is
centered at 19.24 GHz. (d) The SSB noise spectrum of the RF signal. The extracted 3 dB RF linewidth
was 4.1 MHz.

The RF characteristics of the laser are shown in Fig. 3. Fig. 3(a) and (b) show the evolution of the
RF spectrum over the same sets of bias conditions as shown in Fig. 2(c) and (d). The large variation
in repetition rate as the bias conditions were changed was due to both the material refractive index
changes as well as saturation effects in the SOAs and SA, which would shift the peak position of
the pulses and detune the repetition rate from the round-trip frequency of the laser cavity [28]. The
missing RF spectrum in Fig. 3(b) corresponds to the optical spectrum in Fig. 2(d), where the optical
modes had a free spectral range much greater than 20 GHz. Fig. 3(c) shows the 3 dB linewidth
of the RF spectrum over a wide range of bias conditions. The narrowest linewidth, 530 kHz, was
obtained with 1gp4 = 90 mA and Vg4 = —2.5 V. Fig. 3(d) shows the center frequency of the RF
spectra under the same sets of bias conditions as Fig. 3(c).

The center frequency was slightly under 20 GHz, which is partially due to the penetration depth
of the DBR mirrors. Adding the penetration depths, L o1 and L o2, to the distance between the
DBR mirrors and assuming a group index of 3.77 gives a repetition rate of about 19.2 GHz, in close
agreement with the measured values in Fig. 3(d). In Fig. 3 and the results that follow, the center
frequencies in the RF spectra exhibited random fluctuations of about +1 MHz, which may be due
to noise in the experimental setup (e.g., current supplies). Thus, the spectra show "instantaneous”
lineshapes on time-scales limited by the acquisition time of the RF spectrum analyzer. The RF
spectra have not been averaged.

We next examine in detail in Fig. 4 the optical and RF characteristics for /sp4 = 50 mA and
Vsa = —0.8 'V, which are typical for the laser at the onset of mode-locking. The on-chip power at the
spot size converter under these conditions was about 3 mW. Fig. 4(a) shows the autocorrelation
trace, performed in collinear mode to maximize the autocorrelation signal. A low pass filter was
applied to the interferometric autocorrelation trace to produce the intensity autocorrelation with
background shown in Fig. 4(a). The pulse width was obtained by fitting the intensity autocorrelation
trace to the autocorrelation of a sech? function, and the corresponding full-width at half-maximum
(FWHM) pulse width was 9.4 ps. The ideal peak-to-background ratio of the autocorrelation trace
is 3:1 [32]. The peak-to-background ratio of the measured autocorrelation trace was 2.38, slightly
lower than the ideal. The discrepancy is likely due to pulse-to-pulse timing jitter combined with the
pulse averaging, which would would tend to diminish the peak of the autocorrelation signal. Fig. 4(b)
shows the optical spectrum when the laser is mode-locked.

Fig. 4(c) and (d) show the RF line centered at 19.24 GHz and the extracted single sideband (SSB)
phase noise spectrum. The phase noise spectrum, L (v), was extracted from the RF spectrum by
the relation

@)

L(v) _ 10Iog10 (Pn,1HZ(V_ VO)) ’

P signal
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where P, 14,(v — vo) is the power at an offset v from the center frequency, vo, normalized to a 1 Hz
bandwidth, and Pgjgn4 is the total power under the curve. The two sides of the phase noise spectrum
were averaged (as the RF line is symmetric) and a 5-point running average filter was applied to
the data in Fig. 4(d) for display purposes. At large offset frequencies (=5 MHz), the phase noise
spectrum rolls off at —20 dB/decade, characteristic of a Lorentzian line shape [33] and a random
walk in the phase fluctuations [34]. At lower offset frequencies, the phase noise spectrum shows a
sharp roll off, which is characteristic of the transition between the Gaussian and Lorentzian features
of a Voigt line shape [33]. The 3 dB linewidth was extracted by fitting a 40 MHz portion of the RF
line to a pseudo-Voigt function, as described in [35]. The RF spectrum measurement was taken
at a resolution bandwidth and video bandwidth of 100 kHz, and the extracted 3 dB linewidth was
4.1 MHz. The 3 dB linewidth was dominated by the contribution from the Gaussian noise sources,
as can be seen in the phase noise spectrum of Fig. 4(d).

3.3. DBR MLLDs With Integrated Feedback Cavities

From the measurements of the devices that each had an optical feedback cavity with a different
length, we studied the trends and conditions for the optical feedback that would improve laser
performance. The laser cavity was again biased with /sp4 = 50 mA and Vg3 = —0.8 V, as in
the case for the standalone MLLD described in Fig. 4, and the current to the VOAs was varied.
The characteristics for the MLLD with the optimal feedback cavity length, 1665 pm, at varying
levels of feedback are summarized in Fig. 5. Fig. 5(a) shows the measured autocorrelation traces
and sech? fits for strong feedback (/y04 = 0 mA), near optimal feedback (18 mA) and less than
optimal feedback (33 mA). The corresponding FWHM pulse widths were 8.0 ps, 6.2 ps, and 6.3 ps,
respectively. The optical spectra in Fig. 5(b) were broader than the case of no feedback in Fig. 4(b)
and narrowed as the amount of feedback was reduced. The narrowest RF linewidths were found
within a range of 16-32 mA of current per VOA, as is seen in the RF and phase noise spectra
of Fig. 5(c) and (d), respectively. Similar optical and RF spectra were found within this range. The
FWHM pulse width within this range was about 6.2 ps, which was 34% narrower than the unseeded
case [Fig. 4(a)]. The peak-to-background ratio of the autocorrelation function increased to 2.73,
indicating that the quality of mode-locking has improved compared to the standalone DBR MLLD.
Within this range, the narrowest RF linewidth was 2.1 MHz, a factor of 49% narrower than the
standalone case [Fig. 4(c)].

Fig. 6 compares the RF linewidths as a function of VOA current for different lengths of feedback
cavity with /spa = 50 mA and Vg = —0.8 V. The spread of the data shown in Fig. 6 may be due
to phase shifts introduced when tuning the VOAs, which could not be decoupled from attenuation
in our measurements. As expected, the linewidths were found to be sensitive to both the feedback
cavity length as well as the current applied to the VOAs. A similar relationship between /o4 and
linewidth was observed for all feedback cavity lengths, with the lower limit on linewidth determined by
the feedback cavity length. As /o4 increased (i.e., the magnitude of the feedback decreased), the
linewidths tended to reach a minimum for / yp4 between 15 mA and 50 mA before increasing. When
lvoa exceeded 50 mA, the performance of the lasers generally degraded, with a rapid decrease
in output power, changes in the optical spectra, and broadening of the RF spectra. This degradation
may be due to heating of the InP chip. The narrowest linewidths were obtained for a feedback cavity
length of 1665 m. The longest and shortest feedback cavities [Fig. 6(a) and (d)] did not exhibit an
improved linewidth over a standalone laser.

4. Discussion

In our devices, we found that optical feedback was an effective technique for reducing RF noise
when the laser was operating near the onset of mode-locking. For lasers with a feedback cavity,
the narrowest linewidths were obtained when the round-trip distance between the SA and DBR3
was 320 um shorter than the main cavity round-trip length. Assuming a group index of 3.77
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Fig. 5. Characteristics of a 20 GHz MLLD with a feedback cavity and strong feedback (/yos = 0 mA),
near optimal feedback (/yo4 = 18 mA), and less than optimal feedback (/yoa = 33 mA). The laser
was biased at /s04 = 50 mA and Vs = —0.8 V, and the length of the feedback cavity was 1665 um.
(a) The measured autocorrelation traces in collinear mode and the sech? fit showing FWHM pulse widths
of 8.0 ps, 6.2 ps, and 6.3 ps, for Iyo4 = 0 mA, 18 mA, and 33 mA, respectively. (b) The measured
optical spectrum is broader compared to Fig. 4(b) and narrows as the feedback is reduced. (c) The RF
spectra were centered at 19.45 GHz, 19.57 GHz, and 19.50 GHz, respectively. The narrowest extracted
RF linewidth was 2.1 MHz. (d) SSB phase noise spectra extracted from the RF spectra in (c).
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Fig. 6. Comparison of the 3 dB RF linewidths for various feedback cavity lengths, which were obtained
by fitting a 40 MHz portion of the RF spectrum with a pseudo-Voigt fit. The laser was biased with
Isoa = 50 mA and Vs4 = —0.8 V. The sweep of VOA currents was consistent in all measurements.
Missing data points indicate that the laser did not mode-lock or mode-locked with a 3 dB linewidth
greater than 10 MHz.
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(the nominal value), this corresponds to a feedback pulse arriving at the SA about 4 ps in advance
of the main cavity pulse.

As the SOA current was increased, the linewidth-narrowing effect from the feedback cavity di-
minished. Around /so4 = 70 mA, the addition of the feedback would often cause the device to
become unstable and output pulses at roughly twice the usual repetition rate. The exact cause for
this behavior could not be identified.

The RF linewidth narrowing could also be obtained by increasing /o4 in the lasers without a
feedback cavity. Fig. 7 shows the detailed characteristics of the laser without a feedback cavity when
biased with Isp4 = 90 mA and Vg = —2.5 V. The on-chip power at the spot size converter under
these conditions was 6.6 mW. The RF spectrum in Fig. 7(a), which is magnified in Fig. 7(b) and
fitted with the pseudo-Voigt function, showed a linewidth of about 530 kHz, which was the narrowest
linewidth observed. Fig. 7(c) shows the optical spectrum of the laser output, which was considerably
broadened in comparison with Fig. 4(b). The measured pulse width from the autocorrelation trace
(not shown) was 9.2 ps. These figures are comparable to other MLLDs fabricated in the JePPIX-
Oclaro InP photonics platform [20], [21].

Lastly, passively mode-locked quantum well MLLDs with very low timing jitter and low RF noise
use only one quantum well layer to reduce the differential gain and losses [36]. Quantum dot
MLLDs are also promising for short pulse and low jitter operation [37]-[39]. The JePPIX-Oclaro InP
platform uses multiple quantum wells in the active regions to achieve a high gain. While we were
not able to change the number of quantum wells or the layer stack in this generic foundry process,
our results suggest that future foundry platforms can consider an alternate layer stack for MLLD
applications. In existing foundry platforms, for low noise operation, active or hybrid mode-locking
should be pursued.

5. Conclusion

In summary, we have investigated the effects of incorporating a short feedback cavity monolithically
to a DBR MLLD realized in the JePPIX-Oclaro generic InP platform. At low bias currents to the
SOAs, specific selections of the length and reflection coefficient from the feedback cavity led to a
linewidth reduction of 49% compared to the standalone laser without any feedback. At higher SOA
currents, feedback caused the laser to become unstable. The narrowest RF linewidth of 530 kHz
was achieved with an SOA current of 90 mA and a bias of —2.5 V to the SA without the use of a
feedback cavity. The results shown here may be improved by further reducing the optical feedback
to the laser to avoid instabilities at higher SOA currents. Increasing the length of the external cavity,
which increases its quality factor, would reduce the amount of feedback and may also reduce the
linewidth of the optical modes. A phase-only tuning section could also be introduced to the feedback
cavity to allow for independent optimization of the feedback magnitude and phase. Lastly, the DBR
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mirrors at both ends of the feedback cavity could be replaced with broadband mirrors to simplify
the wavelength tuning of the device.
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