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Abstract: We investigate the dynamical origin of synchronization and phase locking of hy-
perparametric oscillations in Kerr-nonlinear media. These oscillations occur in the presence
of parametric gain and, although arising from modulational instability of random vacuum
fluctuations with arbitrary phases, lead to phase-locked states in the form of pulse trains.
Using few-mode approximations of the Lugiato–Lefever equation (LLE), we find that the
pumped mode injection-locks to the driving laser pump following the Adler equation. Based
on experimentally motivated assumptions, we derive analytical expressions, which reveal
the essence of phase locking in frequency combs and confirm them through numerical in-
tegration of the LLE. Clear understanding of the phenomenon of phase locking in optical
microresonators can lead to devising novel techniques for achieving phase-locked states
or improving the coherence properties of frequency combs. Our results are mathematically
generic and apply to other systems described by an externally driven damped nonlinear
Schödinger equation.

Index Terms: Four-wave mixing, frequency combs, Kerr effect, mode-locked lasers,
nanocavities.

1. Introduction
Phase-locked wideband optical frequency combs have in recent years been demonstrated in Kerr-
nonliear media in multiple platforms [1]–[6]. These combs have shown to be ideally suited for
ultra-high–capacity optical communication [7], [8] and pure radio-frequency (RF) wave generation
[9]. The superior performance of micro-resonator-based combs for such applications hinges on the
stable spacing between the comb teeth and their synchronized oscillations, which leads to the low
phase noise of the generated comb teeth beat note. Phase locking of the frequency comb, i.e., the
establishment of a temporally enduring relationship between the phases of the discrete frequencies
comprising the comb, is key to the emergence of such stable comb lines.

Despite significant theoretical and experimental studies and demonstrations on “microcombs,”
the phenomenon of phase locking in these nonlinear systems is not yet well understood. The
generation of frequency combs in Kerr nonlienar media is described by a damped, externally driven

Vol. 9, No. 3, June 2017 6100911



IEEE Photonics Journal Anatomy of Phase Locking in Hyperparametric Oscillations

nonlinear Schrödinger equation (NLSE) [10], [11], which is also referred to as the Lugiato-Lefever
equation (LLE) [12]–[15]. While it is known that this equation has sharply peaked solutions in
the form of hyper-parametric oscillations (or Turing patterns) and solitons [4], [10], [11], [13], [14],
[16], [17]—which evidence phase-locked states—the temporal evolution of the comb teeth phases
toward these solutions has scarcely been studied. Clear understanding of the phenomenon of
phase locking in optical microresonators can lead to devising novel techniques for achieving phase-
locked states or improving the coherence properties of frequency combs, e.g., by seeding the comb
generation process with pumps whose relative phases mimic the phase profile of a stable comb. It is
also necessary for understanding and justifying some recent phase measurements of steady-state
optical frequency combs [18], [19].

Matsko et al. found the steady-state offset of the pumped mode phase with respect to the
rest of the combs in Turing patterns [20] and Loh et al. observed this offset experimentally [21],
while Coillet and Chembo [22] provided an explanation of phase locking of optical microcombs
in terms of the cascaded emergence of phase-locked triplets. Wen et al. [23] suggested a link
between phase locking in parametric frequency combs and the famous Kuramoto model for the
synchronization of globally-coupled nonlinear oscillators [24]. The analysis in [23] noted, through
numerical simulations, that anti-symmetrization of the comb phase profile occurs prior to phase
locking and soliton formation.

In this work, we report on a study of phase locking in Turing patterns based on 3- and 5-mode
truncations of the LLE. The relative tractability of the truncated model allows us to find analytical
expressions for the temporal evolution of the comb teeth phases, which clearly show how the
frequency sidebands seeded by the random phase of vacuum fluctuations end up lying on a
straight line. We show that the pumped mode of the comb is locked to the driving laser through
the Adler equation and find that the anti-symmetrization of the sideband phases with respect to the
pumped mode phase is predicted by the simplified 3-mode description. Considering the 5-mode
truncation of the LLE, we are able to find an analytical expression describing how the phases of
the comb teeth evolve, on a longer time scale, to their final locked state. It is noteworthy that the
externally-driven, damped nonlinear Schrödinger equation has been used for describing a variety
of physical phenomena in different nonlinear systems (see, e.g., [25] and references therein), and
hence the results presented here apply to other NLSE systems as well.

2. Homogeneous Solutions of the Lugiato–Lefever Equation and Their
Modulational Instability
The LLE is a nonlinear partial differential equation with periodic boundary conditions for the intra-
cavity field envelope, in a slow and a fast time variable [13], [14], [26] or, equivalently, in time and
the azimuthal angle around the whispering-gallery-mode resonator [15]. The non-dimensional form
of the LLE reads

∂ψ

∂τ
= −(1 + iα)ψ− i

d2

2
∂2ψ

∂θ2
+ i|ψ|2ψ + F (1)

whereψ(θ, τ) and F = F P exp(iφP) are, respectively, the field envelope and pump complex amplitude,
both normalized to the sideband generation threshold, α and d2 are the pump-resonance detuning
and second-order dispersion coefficient, each normalized to the half-linewidth of the pumped reso-
nance, and τ is the time normalized to half of the photon lifetime in the resonator [15]. Depending on
the pump power and detuning values, this equation may admit chaotic solutions [27], or solutions in
the form of pulse trains called hyper-parametric oscillations (Turing rolls) as well as dissipative cavity
solitons [4], [10], [11], [13], [14], [16], [17]. Turing rolls evolve from the CW flat solutions of the LLE
through modulational instability (MI) [20], [28], whereas solitons can be generated through chang-
ing the pump power and frequency or through parametric seeding [29], [30]. Creation of sharply
peaked pulses in this equation (rolls and solitons) relies on the establishment of a balance between
nonlinearity, dispersion, gain, and loss [31]. Our aim is to understand how frequency side-bands
generated from random vacuum fluctuations through the modulational instability of the spatially
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Fig. 1. (a)–(c) CW equilibrium ρe = |ψe|2 solutions of the LLE vs. pump magnitude F P and (d)–(f)
modulational instability (MI) gain profile for different values of the detuning α. Each gain profiles
in (d)–(f) corresponds to the point marked by the white dots on the |ψe|2 versus F P curve above
it. Parameter values are (a) α = 0, (b) α = 1.7607 = √

3.1, (c) α = 2.1, (d) (ρe, F P) = (1.147, 1.63),
(e) (ρe, F P) = (1.05, 1.257), and (f) (ρe, F P) = (2.25, 1.517). In all cases, d2 = −0.0124. Note the differ-
ence between the y-axis scale in (f) and that in (d) and (e).

homogeneous solutions of the LLE phase lock to create sharply peaked pulses. Therefore, below
we will briefly review bistability and MI gain for the LLE.

The simplest steady-state solutions of the LLE (∂/∂τ = 0) is the spatially homogeneous or flat
solution for which ∂/∂θ = 0 [4], [10], [32]–[34]. This CW equilibrium value ψe can be found from
solving the cubic algebraic equation ρe[1 + (α− ρe)2] = F 2

P, where ρe = |ψe|2. All solutions ρe of the
latter equation for different values of F P are non-negative. ρe vs. F P is a function (single-valued) for
α <

√
3, but takes an S-shape and has three possible values for any value of F P in a specific range

of pump power when α >
√

3. MI occurs in both of these regimes for ρe larger than the threshold
ρTh = 1 (see Fig. 1). It can be shown [10], [34] that MI gain λ at the early evolution of the comb can be
found from λ = −1 + √

ρ2
e − (α− d2η2/2 − 2ρe)2, and will be positive if ρ2

e − (α− d2η
2/2 − 2ρe)2 ≥ 1.

For the case of α >
√

3 the middle negative-slope branch of the ρe vs. F P curve is unconditionally
unstable while the upper and lower branches demonstrate homogeneous bistability. Instability with
respect to perturbations with non-zero relative mode numbers gives rise to Turing rolls on the upper
branch as well as a small region on the lower branch for ρe > 1 and

√
3 < α < 2. Examples are

shown in Fig. 1(b) and (c). Panels (d)–(f) in Fig. 1 show the MI gain profile for the points marked by
the white dots on the ψe − F P plane in the upper panels (a)–(c), respectively. The Turing patterns
corresponding to these MI gain profiles (detuning and pump power choices) are shown in Fig. 2.

It is worth noting that the Turing pattern in Fig. 2(a) is a so-called supercritical Turing pattern (α <
41/30) while those in Fig. 2(b) and (c) are subcritical (α > 41/30) [35]. While there are differences
in existence threshold and shape between these LLE steady-state solutions [34], they are the same
from the perspective of phase locking which is of interest to this work. We note that the spacing
between the strongest sidebands of the pumped comb mode (upper row in Fig. 2(d)–(f)), or the peak
of the MI gain profile (Fig. 1(d)–(f)) determines the number of peaks in the Turing patterns. The MI
gain peak for Fig. 1(f) is on the 20th mode number, while the corresponding comb of Fig. 2(f) has 14
peaks. The reason is that the gain profiles in Fig. 1 shows the MI gain early on when the sidebands
start to grow. If the gain profile is broad and falls on multiple mode numbers, apart from the mode
number at the position of the MI gain maximum, nearby sidebands start occupying cavity modes
as well, as is the case with Fig. 1(e) and (f). If the generated sharp peaks are too closely packed

Vol. 9, No. 3, June 2017 6100911



IEEE Photonics Journal Anatomy of Phase Locking in Hyperparametric Oscillations

Fig. 2. Steady-state frequency combs for the parameters used for the gain profiles in Fig. 1(d)–(f).
(a) and (d) correspond to Fig. 1(d), (b), and (e) to Fig. 1(e), and, finally, (c) and (f) to Fig. 1(f). (a)–(c)
Intra-cavity field envelope. (d)–(f) Comb power spectra (top row) and phase spectra (bottom row). The
phase spectra show the alignment of the phases for phase-locked combs.

together in the resonator, some of them may merge and the rest will readjust their positions on an
equally-spaced grid [36]. The reduced number of Turing pattern peaks in the resonator corresponds
to a reduction in the spacing between adjacent comb teeth and that is why in Fig. 2(f) the position of
comb sidebands does not match the peak of MI gain profile in Fig. 1(f). While this was true for the
Turing roll in the latter figure, the cascaded emergence of phase-locked comb teeth as a result of
MI was the same as that of the simpler supercritical comb of Figs. 1(d) and 2(d). The integration of
the LLE has been performed using the split-step Fourier transform method with random initial comb
teeth phases and small random initial comb teeth powers to account for noise (random vacuum
fluctuations).

3. Frequency-Domain Description of Optical Frequency Combs
Our goal is to explain how the sidebands which are seeded by noise (and hence have random
phases) develop a simple phase relationship and give rise to sharply peaked pulses. Our approach
is based on coupled nonlinear oscillators. The mathematical tool which allows us to go from the
LLE to the coupled oscillator picture is the discrete-time Fourier transform (DTFT) or the Fourier
series expansion. DTFT of (1), with the angle around the resonator θ and the comb mode number
η as conjugate variables of the transform, leads to a set of coupled nonlinear ordinary differential
equations (ODEs) [32]

dãη
dτ

= −
(

1 + iα− i
d2

2
η2

)
ãη + i

∑

l,m, n

ãlã∗
m ãn δηlmnη + F̃ η (2)

for the temporal evolution of the complex comb teeth amplitudes ãη constituting the intra-cavity field
envelope ψ (θ, τ). For the Fourier pairs we have used the following equations and sign convention
[37]:

ãη(τ) = 1
2π

∫ π

−π
dθ ψ(θ, τ) exp(−i ηθ) (3)
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and

ψ(θ, τ) =
∞∑

η=−∞
ãη(τ) exp(+iηθ). (4)

The set of equations in (2) (for different integer values of the mode number η) is equivalent to
the LLE. These equations are the same as the coupled-wave equations describing four-wave mix-
ing and freqeuncy comb generation [32], [38]. In the coupled-modes picture, each comb mode
labeled with the integer η is a nonlinear oscillator and one of the coupled ODEs follows the tem-
poral evolution of its complex amplitude ãη(τ). In (2), δij (for integers i and j) is the Kronecker
delta, ηlmn = l − m + n , and l, m , and n are integers; the summation runs over mode numbers l,
m , and n satisfying l − m + n = η, a condition enforced by phase matching. The modes are num-
bered relative to the mode closest to the pump (the pumped mode) for which η= 0. We consider
CW pumping and therefore F̃ η = δ0ηF P exp(iφP), F P being the pump magnitude as defined follow-
ing (1) and φP representing its phase. In the frequency domain, Turing rolls have power spectra
which usually have multiple-FSR spacing between their adjacent teeth. In the model introduced
here, η∈ {0,±μ,±2μ, . . . ,±Nμ}, where N is a positive integer and the integer μ ≥ 1 is the mode
number at which MI gain peaks (as in Fig. 1(e)–(f)) and the primary combs are generated [33],
[34], [39].

As a natural consequence of the resonator chromatic and geometric modal dispersion and as
evidenced by experiments and numerical simulations, in stable non-homogeneous solutions of the
LLE (or the equivalent coupled ODEs of Eq. (2)), the power of the comb teeth falls off with increasing
relative mode nubmer. Additionally, the power in the pumped mode is usually much larger than the
other modes (see, e.g., [8] and the examples shown in Fig. 2(d)–(f)); a condition which we refer to
as the strong pumping regime. In this regime, equations of motion for the comb teeth magnitudes
aη and phases φη can readily be found by using ãη = aηexp(iφη) in Eq. (2), dividing by exp(iφη), and
separating the real and imaginary parts. The resulting equations read

d
dτ

ln(aη) = − 1 + a−η
aη

a2
0 sin(φη + φ−η − 2φ0) + F P

aη
cos(φP − φη)δ0η

− a0

aη

∑

l

al{2aη+l sin(φ0 − φl + φη+l − φη) + aη−l sin(φl − φ0 + φη−l − φη)}, (5)

d
dτ
φη = 2a2

0 − α+ 1
2

d2η
2 + a−η

aη
a2

0 cos(2φ0 − φη − φ−η) + F P

aη
sin(φP − φη)δ0η

+ a0

aη

∑

l

al{2aη+l cos(φ0 − φl + φη+l − φη) + aη−l cos(φl − φ0 + φη−l − φη)}. (6)

The summation index l �= 0 in these equations runs over all relative mode numbers with appreciable
power (i.e., above measurement noise level in experiments) for the comb studied. In the absence of
third- and higher-order dispersion and when the frequency dependence of the loaded quality factor
of the resonator is negligible [20], [40], the power spectrum of the generated Turing patterns is
symmetric with respect to the pumped mode [3], [4], [34]; this condition can be seen to clearly hold in
Fig. 2. Hence, we focus in this work on the phase evolution as comb teeth powers grow symmetrically
with time, i.e., respecting aη(τ) = a−η(τ). Therefore, while (5) is included for completeness, we will
not need to refer to it in what follows. The phase equations, however, will be used in our analysis in
the following sections. We emphasize that no symmetry assumptions have been made about the
comb teeth phases.

Because we consider the experimentally-motivated regime of strong pumping, we can consider a
truncation of the set of equations in (2) in our study of phase locking based on MI. Similar truncated
models have been successfully used in studies of nonlinear wave mixing dynamics in fibers [41],
[42] and microresonator-based frequency combs [43], [44]. In the following sections, we first study
the pumped mode and then consider 3- and 5-mode truncations of (2).
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Fig. 3. Evolution of the comb teeth magnitudes and phases in the three-mode truncation of the LLE.
(a) Pumped mode and sideband magnitudes. (b) Difference between the sideband magnitudes,
which tends to zero soon after the comb starts evolving irrespective of the initial conditions, and
confirming the power spectrum symmetry assumption. (c) Pumped mode and sideband phases.
(d) Difference between the sideband phases, which tends to a constant, irrespective of the initial
conditions. ±1 refer to the first sideband pairs labeled ±μ in the text.

4. Injection Locking of the Pumped Mode
We first consider the magnitude and phase equations for the pumped mode

d
dτ

ln(a0) = F P

a0
cos(φP − φ0) − 1 (7a)

dφ0

dτ
= F P

a0
sin(φP − φ0) − α+ a2

0. (7b)

These pumped mode magnitude and phase equations include no linear contributions from aη�=0

and, as a result, for the strong pumping regime we have dropped corrections arising from the
primary and secondary sidebands (i.e., a2

η terms with η= ±μ,±2μ) in these equations. (We will
verify the validity of this approximation using numerical integration of the truncated equations and
the full LLE in what follows.) Hence, the pumped mode equations can be studied independently of
the sidebands.

Numerical integration of the pumped mode equations shows that a0 settles on a fast time scale to
the equilibrium intra-cavity field a0 = |ψe| [45]. After the sidebands a±1 start to grow (i.e., at τ ≈ 130
in Fig. 3(a) and (c)), the relative change in the pumped mode power is small. Subsequently, a0 can
be treated as a constant to first order in aη�=0. With that in mind, the phase equation, (7b), can be
written as

d0

dτ
= −B (sin0 − K ) (8)

where 0 = φP − φ0, B = F P/a0, and K = a0(α− a2
0)/F P. This equation is exactly in the form of

the Adler equation for injection locking [46]. In his 1946 paper, Adler showed that the condition for
synchronization through injection locking is |K | < 1. This condition corresponds to

|α− a2
0| <

F P

a0
(9)
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and is guaranteed to hold when the intra-cavity flat-lock solution is achieved because the steady-
state magnitude a0 = |ψe| satisfies

a2
0[1 + (α− a2

0)2] = F 2
P (10)

and therefore, F 2
P/a2

0 = 1 + (α− a2
0)2 > (α− a2

0)2; see Section II. For pump power F 2
P chosen such

that a2
0 
 α, satisfying the synchronization condition becomes harder. This is where the system

enters a chaotic state, as has been studied, for instance, in [27], [34]. Equation (8) can be integrated
analytically and the final (steady-state) value of φ0 is 2 tan−1[(

√
1 − K 2 − 1)/K ], which, for the

example shown in Fig. 3(c), equals 0.2718π and is within 3% of the value 0.26248π found from
the numerical integration of the LLE of Eq. (1). We note that φP defines a phase reference and its
specific value is immaterial.

5. Few-Mode Truncations of the LLE
5.1. Three-Mode Truncation

Equations of the temporal evolution of the centered phase averages ζη = φ̄η − φ0, where the phase
average φ̄η = (φη + φ−η)/2 is centered relative to the pumped mode phase φ0, can be found from
(6) and (7b). This equation, for the case of 3-wave truncation of the LLE (η∈ {−μ,0, μ}) reads

d
dτ
ζμ = 1

2
d2μ

2 + a2
0[1 + cos(2ζμ)] − F P

a0
sin(φP − φ0) (11)

and can be integrated analytically:

tan ζμ =
√∣∣∣∣

C + 2
C

∣∣∣∣ tanh[
√

|C(C + 2)|a2
0(τ − τ0)]. (12)

In this equation, C = d2μ
2/2a2

0 − F P sin(φP − φ0)/a3
0, and τ0 accounts for the initial conditions. Equa-

tion (12) holds when ρe > |2ρe − α+ d2μ
2/2|, which is automatically satisfied when MI gain exists

(see Section II). The tanh(·) function rapidly approaches unity as τ → ∞, and so, φ̄μ reaches the
same constant irrespective of the initial conditions. As φ̄μ − φ0 is fixed, the phases φ±μ should
take values symmetrically located relative to the constant average and follow the changes in φ0,
as can be seen in Fig. 3(c). This constraint on the phases was noticed numerically by Wen et al.
and termed “phase anti-symmetrization”; the expression given above simply justifies why phases
anti-symmetrize. Therefore, the 3-mode truncation establishes that centered phase average ζμ can
be treated as a constant to first order in aη�=0. Note, however, that this approximation says nothing
about the evolution of the phase differences (PDs) �μ = (φμ − φ−μ)/2; the temporal evolution of
the PDs simply follows d�μ/dτ = 0, stating that in the 3-mode truncation, a constant difference will
rapidly be established between the sideband phases, as seen in Fig. 3(d). It is noteworthy that the
assumed symmetry of the sideband powers (noted following (5)) indeed holds, as seen in Fig. 3(b).

5.2. Five-Mode Truncation

We now proceed one step further by including the second pair of sidebands,η= ±2μ. Fig. 4 shows
that the behavior of the pumped mode and primary sidebands magnitudes and phases does not
change noticeably compared to the 3-mode truncation; this change is less than 2%. However, the
PD equations for η= μ changes. The temporal evolution of the PDs take the form

d�μ

dτ
= −2a0a2μ sin(ζ2μ − 2ζμ) sin(�2μ − 2�μ) (13a)

d�2μ

dτ
= −a0

a2
μ

a2μ
[2 sin(ζ2) + sin(ζ2μ − 2ζμ)] sin(�2μ − 2�μ). (13b)
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Fig. 4. Evolution of the pumped mode and sideband magnitudes and phases in the five-mode truncation
of the LLE for comb parameters as in Fig. 1(d). (a) Pumped mode and sideband magnitudes. (b) Pumped
mode and sideband phases. (c) Evolution of the comb teeth complex amplitudes in polar coordinates.
(d) Zoomed-in version of (c) showing the complex amplitude of the first and second sidebands. While
different initial conditions lead to different final phase values, the relationship φ2μ − φ−2μ = 2(φμ −
φ−μ) is always satisfied in the steady state. In the example shown here, (φ2μ − φ−2μ)/2 = φμ − φ−μ =
−0.104π. ±1 and ±2 refer to the first and second sideband pairs labeled ±μ and ±2μ in the text.

We note that these equations are written in the strong pumping regime to first order in aη�=0, and
can be combined to give a separable equation

d
dτ

(�2μ − 2�μ) = −a0f sin(�2μ − 2�μ) (14)

in which

f = 2
a2
μ

a2μ
sin(ζ2) +

(
a2
μ

a2μ
− 4a2μ

)

sin(ζ2μ − 2ζμ). (15)

Equation (14) has analytical solution of the form

tan[s(τ)] = tan[s(τ1)] exp[−a0f (τ − τ1)] (16)

where s(τ) = [�2μ(τ) − 2�μ(τ)]/2 (called the phase misalignment parameter, for reasons that will
become clear shortly) and τ1 is a constant of integration which can physically be thought of as
marking the moment when second sideband powers a±2μ are above the noise level such that
divisions by a2μ in (13b) and (15) are mathematically valid. The integration leading to the above
equation relies on the phase anti-symmetrization established in the 3-mode truncation, and shows
that if f > 0, irrespective of the value of �2μ − 2�μ at τ1, the exponential decay will take �2μ − 2�μ
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Fig. 5. Exponential decay of the phase misalignment parameter s(τ) with the normalized time τ in the
full LLE, as predicted by (16). The early random oscillations are due to the small power in the sidebands
early on in the generation of the comb, which leads to their phase wandering. The change in the slope
of s(τ) reflects the growth of the sidebands as the comb evolves and is also captured by the few-mode
models shown in Figs. 3 and 4. Note the dependence of the parameter f on the sideband powers
in (15).

to zero. Physically, this amounts to the alignment of the phases of the first and second sideband
pairs, because �2μ/2μ = (φ2μ − φ−2μ)/4μ and 2�μ/2μ = (φμ − φ−μ)/2μ are, respectively, slopes
of the lines connecting φ2μ to φ−2μ and φμ to φ−μ in the phase vs. mode number plane. As a result,
(16) predicts that the phase misalignment is dragged to zero upon phase locking. We show in Fig. 5
evolution of the misalignment parameter s as a function of the normalized time, found from the
integration of the full LLE. This figure confirms that the requirement f > 0 is in fact met and the
prediction of the exponential decay of s(τ) is correct (note the constant slopes and the logarithmic
scale of the vertical axis). The changes in the slope at τ = 220 and τ = 250 occur because of the
growth of the sideband powers as the comb evolves (recall the dependence of f on the sideband
magnitudes in (15)). The reason these changes are shifted in time compared to those shown in
Figs. 3 and 4 is that the power of seeding noise in our integration of the few-mode equations were
not exactly matched with that in the split-step integration of the full LLE where noise power was
smaller. The phase alignment described through the truncated equations and analytical expression
in this section, justify the aligned phases of the Turing rolls shown in the lower panel of Fig. 2(d)–(f).

6. Summary and Outlook
In conclusion, based on few-mode truncations of the Lugiato-Lefever equation, we find analytical
expressions which unfold the essence of the temporal evolution of comb teeth phases from random
vacuum fluctuations toward locked steady states of sharply peaked pulses in the presence of
modulational instability. We show that the pumped mode of the comb injection-locks to the driving
pump laser frequency through the Adler equation. We also find, under assumptions motivated by
experiments and using a three-mode truncation of the LLE, that sideband phases anti-symmetrize,
i.e., their average becomes fixes with respect to the pumped mode phase before phase locking
occurs. Considering the 5-mode truncation of the LLE, we derive an analytical expression describing
how the phases of the comb teeth align irrespective of their initial values supplied by noise. This
analysis shows that the phase misalignment of the comb sidebands dies exponentially with time
until these phases all lie on a straight line. We confirm this prediction through numerical integration
of the full LLE. The LLE is an externally-driven, damped nonlinear Schrödinger equation and has
been used for describing a variety of physical phenomena in different nonlinear systems. The results
presented here are mathematically generic and apply also to other systems beyond microcombs
which are described by this variant of the NLSE. While the procedure for soliton formation is different
from that of the generation of Turing rolls (i.e., hard vs. soft excitation [34], [47]), the nonlinear
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coupling of the comb phases due to Kerr nonlinearity is a common element in both processes.
The relationship between the results presented in this work and the phase locking mechanism in
solitons has been studied elsewhere [48].
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