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Abstract: In this paper, by considering the surface plasmon resonance (SPR) effect, we
theoretically study the photonic spin Hall effect (SHE) in a three-layer structure com-
posed of glass, metal, and air. It is revealed that the obtained spin-dependent splitting in
photonic SHE is far greater than the previously reported results in refraction when the in-
cident angle is near the resonant angle. The inherent physics behind this interesting phe-
nomenon is attributed to the sharp decrease in Fresnel reflective coefficients around the
SPR. We also find that there exists an optimal thickness for minimal resonant reflection,
above which the huge beam displacement is also observed. These findings provide us a
pathway for modulating the photonic SHE and open the possibility of developing nano-
photonic applications such as the SPR-based sensor.

Index Terms: Photonic spin Hall effect (SHE), spin-dependent splitting, surface plasmon
resonance (SRP).

1. Introduction

The photonic spin Hall effect (SHE) is an interesting transport phenomenon in which an applied
field on the spin photons leads to the spin-dependent splitting of light beam perpendicular to the
field [1]-[3]. It is the optical analogy of SHE in electronic system where the spin photons play
the role of the spin electrons and the refractive index gradient plays the role of the applied elec-
tric field [4]-[7]. The photonic SHE is currently attracting growing attention and has been widely
investigated in different physical systems such as optical physics [8], [9], [23]; semiconductor
physics [10]; high-energy physics [11], [12]; metamaterial [13]-[15]; and even in free-space [16],
[17]. Generally, the photonic SHE is very weak, and the corresponding spin-dependent splitting
is restricted to a few tens of nanometers so that the normal experimental equipments can not
detect it directly. Thanks to the weak measurement method [18]-[22], the Kwait’s group first ob-
served this tiny transverse displacement of refracted light at the air-glass interface [3].

Some methods were proposed to obtain the large spin-dependent splitting in photonic SHE.
For example, a layered nanostructure can be used to enhance or suppress the transverse beam
displacements [23]. When the light beam is reflected near the Brewster's angle, a huge trans-
verse and in-plane splitting of left- and right-handed circularly polarized components appear
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Fig. 1. Schematic of the photonic SHE in a three-layer structure (composed of glass, metal, and air)
by considering the SPR effect. Here, 6; and 6, are the incident and reflected angles. The refractive
index of the corresponding materials are ny (glass), n. (metal), and ng (air). 6. and 6_ denote the
transverse beam displacements of left- and right-handed circularly polarized components, respec-
tively. (Inset) Overall structure of the SPR model.

[24], [25]. Yin et al. reported a strong photonic SHE resulting in the direct observation of large
transverse motion of circularly polarized beam, even at normal incidence [14]. Using the
dielectric-based metamaterial, a giant photonic SHE in momentum space was observed resulting
from the Pancharatnam-Berry geometric phase gradient [26]. Recently, the surface plasmon res-
onance (SPR) effect was proposed to enhance the other types of optical beam displacements
such as Goos-Hanchen and Imbert-Fedorov shifts [27]. There exists a resonant angle where the
optical beam shifts are far greater than the previous results.

In this work, we theoretically investigate the photonic SHE in a three-layer structure com-
posed of glass, metal, and air by considering the SPR effect. When the SPR is excited by a
horizontal (H) polarization beam, we discover a huge transverse beam displacement which is
far greater than the previous reported results observed at the air-glass interface. On the con-
trary, there is no plasmon field for vertical (V) polarized incident light excitation so that the
spin-dependent splitting is relatively small. We also find that there exists an optimal thickness
for minimal resonant reflection above which the huge beam shift is also observed. These find-
ings provide us a pathway for enhancing the photonic SHE and open the possibility of develop-
ing new nanophotonic applications. In fact, in order to make a direct comparison, we choose the
calculated parameters as the same in the previous work [3]. The rest of the paper is organized
as follows. At first, we establish the general beam propagation model to study the optical beam
reflection coefficients and obtain the expression of beam shifts. Then, we theoretically analyze
the abnormal behavior of photonic SHE due to the SPR effect and the corresponding physical
mechanism. Finally, a conclusion is given.

2. Theoretical Analysis

A three-layer structure composed of glass, metal, and air is our model (see Fig. 1). If we choose
the suitable polarization state, incident angle, and the thickness of metal film, the SPR will be
excited when the light beam is reflected at the glass-metal interface. Simultaneously, the pho-
tonic SHE appears resulting in the splitting of left- and right-handed circularly polarized
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components. First, let us analyze the incident and reflected electric fields of this model. In the
spin basis set, the angular spectrum can be written as Ef = (E. +E,_)/v2 and

E,V = i(E,-_ - Ei+)/\/§. Here, H and V denote the horizontal and vertical polarization states, re-
spectively. The left- and right-handed circularly polarized (spin) components are represented as
the positive and negative signs.

We consider a monochromatic Gaussian beam reflects at the glass-metal interface. It can be
formulated as a localized wave packet whose spectrum is arbitrarily narrow

_ w2 ( k2 + k2
Ei. = (ex +ioey) \/M;iexp {_ 0 ( Ix4 |V)] . (1)
™

Here, wp is the beam waist, and the polarization operator o = +1 corresponds to left- and right-
handed circularly polarized light beam, respectively. In order to obtain the reflected field, we
need first to establish the relationship between the incident and reflected fields. Through the co-
ordinate rotation, we can calculate the reflected angular spectrum according to the relation

E, (Kix, ky) = MgE;(ki, kiy) [24]. The Mg stands for
[E,r_,] _ A krycot(j(,o(rpws)] [Efl] )
E/ '
r

_ k,ycoti,vo(errrS) rs Ely
Here, r, and rs are Fresnel reflection coefficients for H and V polarization states. kg is the wave
number in free space.

According to (1) and (2), we can first get the expressions of the reflected angular spectrum

~ r . ~ , =

E/ = % {exp(+lkry6';’)E,+ + exp(—lkryéf’)E,,} (3)
= ir, . = . =

E/ = 7‘% {—exp(+/kry5)/)E,+ + exp(—/kryé)/)E,_]. (4)

Here, (5,” = (14 rs/mp)cotb;/ky and 5)/ = (14 rp/rs)cotbi/ko. E,i can be written as the similar
style with (1). The calculation of the reflected beam shifts in photonic SHE requires the ex-
plicit solution of the boundary conditions at the interfaces. Thus, we need to know the gener-
alized Fresnel reflective coefficient of SPR model (the multilayered structure), which can be

written as [5]
Ra + RLexp <2ik01 /n3 — n?sin® 9,-d>
1+ RaR,exp (2ik0\/n§ — M sin? Qid)

Here, Ae{p, s}, Ra is the Fresnel reflection coefficient at the first interface (glass-metal). R}
is the corresponding coefficient at the second interface (metal-air). n, and d represent the re-
fractive index and thickness of the metal film, respectively. ny is the refractive index of glass.
Therefore, we have established the general beam-propagation model for describing the light
beam reflected from the three-layer SPR model.

The photonic SHE is described for the spin-dependent splitting of left- and right-handed circu-
larly polarized components, and therefore, the reflected field centroid should be calculated. At
any given plane z,, the shifts of light beam centroid compared to the geometrical-optics predic-
tion is given by

(5)

ra =

51t E"idk, Edkixdky ©)
J | E*Edkedky
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Fig. 2. Role of the thickness of a metal film and the incident angle in the Fresnel reflection coeffi-
cients |rs| and |r,| under the condition of SPR. (a)—(c) show the Fresnel reflection coefficients
changing with the incident angles, and the thickness are fixed to the three values 10 nm, 50 nm,
and 100 nm. (d) describes the Fresnel reflection coefficients varying with thickness of the metal
film, and the incident angle is fixed to the resonant angle.

Substituting (3) and (4) into (6), we can obtain the transverse spin-dependent displacements of
the two spin components

A /15|
H_ ™ 1'si _ .
=% [1 +jeos(ee sop)} cotd; @)
§Y = $i 1 +mcos(@ — ps)|cotb; (8)
* 2r |15 P

where 1, s = |rp slexp(igps), and X is wavelength of the incident beam. In order to make a direct
comparison, we choose the calculated parameters as the same in the previous work in [3]. The
wavelength of the incident beam is selected as 632.8 nm. The metal is chosen as the Au and
the corresponding refractive index is n, = v/—10.4 + 1.4/ at 632.8 nm [28]. The refractive index
of the glass is ny = 1.515. In fact, the SPR effect is wavelength dependent and this dependence
can be considered starting from dielectric function [29]. Therefore, the further study of photonic
SHE in SPR by considering the wavelength dependence will be an interesting work in the future.
In the next part, we will theoretically analyze the abnormal behavior of photonic SHE due to the
SPR effect and explain the corresponding inherent physical mechanism.

3. Results and Discussion

To obtain a clear physical picture, we draw Fig. 2 to reveal what roles the incident angle and
thickness of the metal film play in the enhanced photonic SHE under the condition of SPR. In
fact, the SPR effect can be significantly affected by both of the incident angle and thickness of
the metal film [30]. Fig. 2(a)—(c) show the Fresnel coefficients r, and rs; changing with the inci-
dent angles for three different thickness (10 nm, 50 nm, and 100 nm) of the metal film. When
the thickness of the metal film is small [see Fig. 2(a)], the behavior of the Fresnel reflective coef-
ficients are similar to the condition that a light beam reflects at the pure glass-air interface, and
there is no SPR. With the increasing of the thickness, the SPR will be excited gradually.
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Fig. 3. Photonic SHE in SPR model under the condition of H polarization state. (a)—(c) show the
spin-dependent splitting varying with the incident angles. Here, we choose three different thickness
10 nm, the optimal thickness 48.5 nm, and 100 nm. (e)—(f) plot the spin-dependent splitting in pho-
tonic SHE changing with the thickness of metal film. The incident angles are selected as three
values 30°, the resonant angle 44.1°, and 60°.

Remarkablly, there exists a fixed incident angel called resonant angle (about 44.1°) where the
Fresnel coefficient r, undergoes a sharp decreasing [see Fig. 2(b)]. However, the rs; keeps al-
most stable. So, under this condition, the value of |rs|/|rp| can reach very large. From the ex-
pression of beam shifts (7), the value of the spin-dependent splitting mainly depends on the part
Irs|/|ro]. Therefore, the photonic SHE will be greatly enhanced due to the SPR. In fact, the inher-
ent physical mechanism of photonic SHE is spin-orbit coupling which describes the mutual influ-
ence of the spin (polarization) and the trajectory of the light beam. From (3), the term
exp(iikryéﬁ’) denotes the spin-orbit coupling. From the above analysis, under the condition of
SPR, the Fresnel reflective coefficient r, will greatly decrease, and the ratio |rs|/|r,| which plays
a great role in spin-orbit coupling term, can be significantly enhanced. Therefore, the spin-orbit
coupling in photonic SHE can also be amplified, which leads to the enhancement of spin-
dependent splitting. With the thickness continually increasing [see Fig. 2(c)], the SPR effect
will become weak and the resonance nearly disappears. The results show that the local reso-
nance decreasing clearly appears only for a suitable range of thickness. Fig. 2(d) describes the
Ips changing with thickness and the incident angle is fixed to the resonant angle. We find that
there exists an optimal thickness for minimal resonant reflection (about 48.5 nm).

Fig. 3 shows the spin-dependent splitting in photonic SHE under the condition of H polariza-
tion state in which the SPR can be excited. Fig. 3(a)—(c) describe the transverse beam shifts
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varying with the incident angles. Here, we choose three different thickness 10 nm, the optimal
thickness 48.5 nm, and 100 nm. When the thickness reaches small value (10 nm), there is no
SPR effect and the corresponding beam displacements is tiny. It is noted that a switchable spin
accumulation in photonic SHE is observed, which is similar to the previous work [24]. Under the
condition of optimal thickness 48.5 nm, the SPR effect is significantly excited. Importantly, we
find that the spin-dependent splitting reaches 3000 nm, which is about 40 times larger than the
previously reported values in refraction [3]. It is an effective way to enhance the photonic SHE.
With the thickness running away from the optimal value, the SPR effect gradually disappears
and the corresponding beam shifts become weak. Here, we select the thickness 100 nm as an
example and find that the maximum splitting is just about 40 nm.

We also plot the spin-dependent splitting changing with the thickness of metal film
[see Fig. 3(d)—(f)]. For simplify, the incident angles are chosen as three values 30°, the reso-
nant angle 44.1°, and 60°. When the incident angle is selected as the resonant angle and the
thickness of metal film reaches at the optimal thickness, there appears an amplified transverse
beam displacement as shown in Fig. 3(e). It is noted that when the incident angle is close to the
resonant angle, the spin-dependent splitting is very sensitive to the variations of the incident an-
gles. The tiny changes of the incident angles will strongly affect the values of the displacement.
As the incident angle leaving away from the resonant angle, even at the optimal thickness, there
is no enhanced beam shifts [see Fig. 3(d) and (f)]. Under this condition, the spin-dependent
splitting first get the relatively large value at the small thickness and then become stable with
the thickness increasing gradually. We note that the SPR effect only appears in the case of the
incident angle and the thickness are chosen as the suitable values. Therefore, the photonic
SHE can be greatly enhanced due to SPR.

Fig. 4 describes the spin-dependent splitting in photonic SHE under the condition of V polari-
zation state. It is noted that, under this condition, the SPR can not be excited so that there are
no enhanced beam shifts. Fig. 4(a)—(c) denote the transverse beam displacements changing
with the incident angles, and we also choose three different thickness 10 nm, the above men-
tioned optimal thickness 48.5 nm, and 100 nm. We find that there is no resonance enhancement
effect, and the maximum value of spin-dependent splitting is about 200 nm [see Fig. 4(a)l.
The spin-dependent splitting in photonic SHE varying with the thickness of metal film are shown
in Fig. 4(d)—(f). The incident angles are selected as the same as those in the H polarization
case. Similar to the H polarization case, the transverse beam shifts also first reach the relatively
large value at the small thickness and then tend to be stable with the thickness increasing.

The photonic SHE can be an effective tool for precision metrology. Owing to the fact that the
spin-dependent splitting in photonic SHE is just a few tens of nanometers and cannot be distin-
guished directly, a precise signal enhancement technique called quantum weak measurements
can be used to detect this tiny effect [3], [9], [24]. There are some examples for precision metrol-
ogy such as measuring the thickness of nanometal film [31], identifying the graphene layers
[32], and detecting the strength of axion coupling in topological insulators [33]. However, in the
field of precision metrology, there is a demand for observing the photonic SHE directly, which
will significantly reduce the complexity of experiment and improve the efficiency. Therefore, we
need to find some methods for greatly enhancing the spin-dependent splitting in photonic SHE.
The SPR effect could be a potential way to amplify the photonic SHE. We can modulate the inci-
dent angle and thickness of the metal film, and even the model structure, to greatly strengthen
the SPR and then enhance the photonic SHE. Conversely, the photonic SHE can also be an in-
direct method for observing the SPR effect, which has application potential in nanophotonics
such as the SPR-based sensor.

4. Conclusion

In summary, we have investigated the surface plasmon resonance (SPR) induced photonic spin
Hall effect (SHE) in a three-layer model made of glass, metal, and air. We have found that the
maximum value of spin-dependent splitting reaches about 3000 nm at the resonant angle, which
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Fig. 4. Photonic SHE in SPR model under the condition of V polarization state. (a)—(c) describe the
transverse beam shifts varying with the incident angles. The thickness of the metal film is also cho-
sen as the same in the above case 10 nm, 48.5 nm, and 100 nm. The spin-dependent splitting in
photonic SHE changing with the thickness of metal film are shown in (e) and (f). The incident an-
gles are also selected as three values 30°, 44.1°, and 60°.

is 40 times larger than the previously reported values in refraction. The enhanced beam shifts
depend on the large ratio between the Fresnel reflection coefficients at the resonant angle.
We have also found that there exists an optimal thickness of the metal film for minimal reso-
nant reflection, above which the huge beam displacement is observed. These findings provide
an effective pathway for enhancing the photonic SHE and offer an indirect method for measur-
ing the SPR leading to the development of new SPR-based sensor.
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