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Abstract: Deep-tissue multiphoton microscopy (MPM) enables noninvasive optical im-
aging into the deep regions of the tissue in animal models in vivo. High-order MPM
techniques, such as three- and four-photon fluorescence microscopy at the 1700-nm
window, are emerging as promising imaging techniques for deeper penetration.
Currently, signal depletion at large imaging depth sets the depth limit for these imaging
techniques. As a result, how to further boost signal level is the key to achieving a
larger imaging depth. Contrary to the previous thought that overfilling the back aperture
of the objective yields the highest multiphoton fluorescence signal, in this paper,
through numerical simulation, we show that, due to the effect of exponential decay of
the excitation beam, the signal generation is maximized for certain underfilling of the
back aperture of the objective lens. This will provide a simple strategy for signal gener-
ation maximization in deep-tissue MPM and potentially enables deeper imaging pene-
tration into the tissue.

Index Terms: Multiphoton microscopy, deep-tissue, three-photon, four-photon.

1. Introduction
Multiphoton fluorescence microscopy [1]–[3], combining subcellular resolution, 3-D sectioning,
deep-tissue penetration in scattering biological tissue, label or genetic-modification based struc-
ture specificity, and functional imaging capability, enables scientists in various fields including
neuroscience [4], [5], embryology [6], and oncology [7] to visualize in vivo and ex vivo tissue
morphology and physiology. Multiphoton fluorescence microscopy involves excitation with
n-photons (n � 2 and is an integer) simultaneously and emission of one fluorescence photon for
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signal generation. 2-photon fluorescence microscopy (2PM) is the most commonly used imaging
modality. However, for uniformly labeled tissue, imaging depth in mouse brain was limited
to ∼1 mm since the surface fluorescence overwhelmed the signal generated at the focus
(signal-to-background ratio, or SBR reaches unity) [8]–[10]. Recently, 3-photon fluorescence mi-
croscopy (3PM) at the 1700-nm window was demonstrated to break this imaging depth limit [11].
This technique combines both reduction in attenuation of excitation at 1700 nm, compared with
other wavelengths, and increase in SBR due to 3-photon excitation. As a result, we reached an
imaging depth of 1.4 mm [12] in mouse brain in vivo, penetrating the white matter and imaging
into the hippocampus in adult mouse [11]. Recently, at the same wavelength, we demonstrated
that even higher order 4-photon fluorescence microscopy (4PM) [13] with higher SBR than with
3-photon could be achieved for in vivo deep-tissue imaging, extending the fluorophores coverage
to the most commonly used GFP.

Both 3PM and 4PM promises a larger imaging depth than 2PM. Theoretically, 3PM at
1700 nm can image down to 9 9le (le: attenuation length of excitation beam due to both ab-
sorption and scattering) before SBR reaches unity [11] and larger can be expected for 4PM.
However, currently the imaging depth is only limited to G 4le for 3PM. This discrepancy is due to
the depletion of the signal. There are two factors leading to the decay of the excitation beam
and hence signal in tissue such as brain: absorption and scattering [11], [14]. As we image deeper,
the excitation beam as well as signal decays exponentially. Finally, the signal is so weak that it is
below the noise floor of the detection system. Apparently a boost in signal level will enable a larger
imaging depth.

Here, we suggest a method for boosting signal level in 3PM and 4PM, by underfilling the back
aperture of the high numerical aperture (NA) objective lens. The common deed in multiphoton
fluorescence microscopy was to overfill the back aperture to maximize signal and to get the
highest resolution [15]. For example, under scalar approximation, 3PM and 4PM signals are pro-
portional to NA2 and NA4, respectively. This means overfilling the back aperture of the objective
lens maximizes the signal. Underfilling leads to a decrease in the effective NA and signal reduc-
tion. However, we realize that in deep-tissue 3PM and 4PM, there is a competing effect that
could lead to signal reduction as the back aperture became more filled: The rays converging at
a larger angle will experience more attenuation than those at smaller angles (see Fig. 1). Conse-
quently, for fixed power deposited on the sample after the objective lens, the more the lens filled,
the smaller the signal due to the excessive loss experienced by the large-angle rays. In this pa-
per, through numerical simulation of the vectorial electric field distribution around the focus of the
high NA objective, we demonstrate that there exist optical filling factors which may be employed
for boosting signal levels in deep-tissue 3PM and 4PM. To account for possible resolution reduc-
tion due to underfilling, we also present results of 3PM and 4PM point spread functions (PSFs)
along the x , y , and z axes.

Fig. 1. Schematic of beam focusing into lossy samples. The rays at larger angles experience larger
attenuation than those at smaller angles.
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2. Simulation Details
Omitting irrelevant constants, 3PM and 4PM signals are given by

S3 ¼
Z

I3ð�; ’; zÞdV (1)

S4 ¼
Z

I4ð�; ’; zÞdV (2)

where S3 andS4 are the 3PM and 4PM signals, respectively; Ið�; ’; zÞ ¼ jEð�; ’; zÞj2 is the inten-
sity in the cylindrical coordinates. After omitting a constant, the vectorial electric field distribution
around the focus of the high NA objective lens is given by [16], [17]

Ex ð�; ’; zÞ
Ey ð�; ’; zÞ
Ezð�; ’; zÞ

2
64
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75 (3)

I00 ¼
Z�max

0

E incð�Þsin� ffiffiffiffiffiffiffiffiffiffiffi
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p ð1þ cos�ÞJ0ðk�sin�Þexpðikzcos�Þd� (4)

I01 ¼
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E incð�Þsin2� ffiffiffiffiffiffiffiffiffiffiffi
cos�

p
J1ðk�sin�Þexpðikzcos�Þd� (5)
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0

E incð�Þsin� ffiffiffiffiffiffiffiffiffiffiffi
cos�

p ð1� cos�ÞJ2ðk�sin�Þexpðikzcos�Þd�: (6)

In the above equations, E incð�Þ is the angular distribution of the linearly polarized incident elec-
trical field, k is the wave vector in water for water immersion objective lens, and �max is the max-
imum angle of integration.

In our simulation, we consider two types of incident fields, plane wave and Gaussian beam.
For a reasonable comparison of signal levels, we keep the power after the objective lens the
same for different filling factors. This allows us to maximize the signal for a fixed power on the
sample. The scaled E incð�Þ for plane wave and Gaussian beams, after angular-dependent at-
tenuation are taken into account [17], [18] are given by

E inc
planeð�Þ ¼

1
�
exp � ldepth

2lecos�

� �
(7)

E inc
Gaussianð�Þ

1
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� expð�2Þ

1� expð�2=�2Þ

s
exp � sin2�

�2sin2�max

 !
exp � ldepth

2lecos�

� �
(8)

where ldepth is the imaging depth, and � is the filling factor accounting for the extent to which the
objective lens is filled. We note that � takes different values for plane wave and Gaussian beam
incidence, i.e., � � 1 for plane wave while there is no such upper limit for Gaussian beam.

Similar to experiments, laser wavelength is 1700 nm for deep penetration, and the water im-
mersion objective lens has a high NA of 1.05. The corresponding refractive index of water is
1.3145 at this wavelength. In our simulation, we calculated 3-photon and 4-photon signals
using (1) and (2) to find out optimal filling factors �opt for both plane wave and Gaussian beam
incidence at different ratios of ldepth=le. The boundary of integration was chosen such that the
corresponding intensity Ið�; ’; zÞ dropped to 1/10 of its maximum value at the focus (the drops
of I3ð�; ’; zÞ and I4ð�; ’; zÞ were 1/103 and 1/104, respectively). 3PM and 4PM point spread
functions (PSFs) measured at full-width-at-half-maximum of the signal along x , y , and z were
also calculated for an estimation of resolutions.
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3. Simulation Results

3.1. Multiphoton Signal vs Filling Factors With and Without Attenuation
First, we illustrate the idea of optimal filling, by comparing the dependence of multiphoton sig-

nals on filling factors with attenuation and without attenuation. Fig. 2 shows that under plane
wave illumination without attenuation of the excitation beam, both S3 and S4 (black curves) reach
their maxima at largest filling of the back aperture ð� ¼ 1Þ, in agreement with previous analysis
[15]. However, in the presence of attenuation, the peak S3 and S4 positions shift to smaller filling
factors (see Fig. 2, red curves). Specifically, for ldepth=le ¼ 3:82, the optimal filling factors �opt for
S3 and S4 are 0.68 and 0.79, respectively. The corresponding imaging depth ldepth for a mea-
sured le ¼ 365 �m [11] is 1.4 mm. Compared with overfilling at � ¼ 1, S3 and S4 are 1.7 and 1.5
times higher, respectively, justifying that underfilling the back aperture indeed boosts signal
levels for both 3PM and 4PM. Extension of imaging depth �z can be evaluated by
expð3�z=leÞ ¼ Sð� ¼ �optÞ=Sð� ¼ 1Þ for 3PM, given that SBR 9 1. For example, �z ¼ 67:4 �m
for le ¼ 365 �m and ldepth ¼ 1:4 mm for 3PM. The larger Sð� ¼ �optÞ=Sð� ¼ 1Þ, the larger �z.

From an experimental perspective, the excitation beam sometimes can be well approximated by
a Gaussian beam, especially when it is from a large-mode-area (LMA) fiber [19] or a photonic-
crystal (PC) rod. Without attenuation, both S3 and S4 reach their maximum, then slightly drop and
tend to a fixed value as � increases (see Fig. 3, black curves), since Gaussian beam illumination
tends to plane wave illumination in the limit that � ! 1. However, in the presence of attenuation
ðldepth=le ¼ 3:82Þ, there still exist optimal filling factors which maximize both S3 and S4 (see Fig. 3,
red curves), similar to those for plane wave illumination. The corresponding optimal filling factors
�opt for S3 and S4 are 0.62 and 0.73, respectively.

From both Figs. 3 and 4, we find that the optimal filling factor for S3 is smaller than that for
S4. This can be qualitatively explained by the nonlinear nature of signal generation in MPM.
As we mentioned in the introduction, under scalar approximation, 3PM and 4PM signals are pro-
portional to NA2 and NA4, respectively. This means a higher NA is favored for higher order

Fig. 2. 3-photon (a) and 4-photon (b) signals for various filling factors under plane wave illumination.
Black curves: without attenuation; red curves: ldepth=le ¼ 3:82.

Fig. 3. 3-photon (a) and 4-photon (b) signals for various filling factors under plane Gaussian beam
illumination. Black curves: without attenuation; red curves: ldepth=le ¼ 3:82.
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MPM signal generation and leads to the relatively larger optimal filling factor for S4 compared
with S3 in the presence of attenuation.

3.2. Optimal Filling Factors for Various Ratios of ldepth=le
Experimentally, either the imaging depth or the effective attenuation length may vary. To maxi-

mize MPM signals accounting for these variations, next through numerical simulation we investi-
gate optimal filling factors for various ratios of ldepth=le. Fig. 4 shows that for both S3 and S4 under
either plane wave or Gaussian beam illumination, as the ratio ldepth=le increases which leads to
more attenuation of the large-angle rays, we need a smaller filling factor to avoid this excessive
loss and to maximize signal. For example, for ldepth=le ¼ 7:63 (corresponding to an imaging depth
of ldepth ¼ 2:79 mm for le ¼ 365 �m), �opt for S3 under plane wave illumination is 0.52, and it is
only half of that when there is no attenuation ð� ¼ 1Þ. Still, �opt for S4 is larger than that for S3 for
both illuminations. For example, for the same ratio of ldepth=le ¼ 7:63 under plane wave illumina-
tion, �opt for S4 is 0.61. The calculated S3 andS4 under optimal filling conditions are 4.66 and 4.
51 times higher than those under overfilling conditions ð� ¼ 1Þ.

3.3. Spatial Resolutions
According to the results given above, underfilling the back aperture in the presence of attenua-

tion indeed helps boosting MPM signals. However, it can be expected this will lead to deterioration
of spatial resolutions. Fig. 5 shows variation of PSFs along the three axes for various attenuations
under plane wave illumination. The black curves in Fig. 5 were calculated PSFs corresponding to
optimal filling factors shown in Fig. 4(a). For comparison, PSFs corresponding to overfilling ð� ¼ 1Þ
were also calculated (red curves in Fig. 5). Fig. 5 clearly shows that 3-photon and 4-photon signal
maximization through optimal filling comes at the cost of resolution reduction along all axes. For ex-
ample, at ldepth=le ¼ 3:82, 3-photon PSFx , PSFy , and PSFz are increased by 27.5%, 39.7%, and
129%, respectively. 4-photon PSFx , PSFy , and PSFz are increased by 13.9%, 21.6%, and 65.9%,
respectively. PSF deterioration for 3-photon is worse than for 4-photon, since �opts for 3-photon are
smaller than for 4-photon (see Fig. 4). For both 3-photon and 4-photon, PSFz suffer more from un-
derfilling than PSFx and PSFy . As attenuation ðldepth=leÞ increases, PSFs deteriorate even more
as more underfilling is required and �opt becomes smaller (see Fig. 4). Deterioration in PSFs is
also observed for Gaussian beam illumination (see Fig. 6).

3.4. Impact on SBR
Intuitively, the smaller the filling factor, the more background fluorescence will be generated

near the surface of the sample, leading to a decrease in SBR. As we mentioned before,
SBR 9 1 is the prerequisite for multiphoton fluorescence microscopy. Next, we evaluate SBR
under optimal filling condition for 3-photon excitation and plane wave illumination. Background
fluorescence calculation is in accordance with our previous theoretical analysis [11], assuming

Fig. 4. Optimal filling factors for various ratios of ldepth=le under plane wave (a) and Gaussian beam
(b) illumination.
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the background is generated mainly within one effective attenuation length of the sample sur-
face. Then, SBR is

SBR ¼ �4

�
ldepthNA

2

le
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2��2NA2

p
� �2

l3e

Z
I3ð�; ’; zÞdV (9)

Fig. 5. Calculated PSFs vs ldepth=le for 3-photon (a)–(c) and 4-photon (d)–(f) under plane wave illu-
mination. Black curves: PSFs corresponding to optimal filling; red curves: PSFs corresponding to
overfilling � ¼ 1.

Fig. 6. Calculated PSFs vs ldepth=le for 3-photon (a)–(c) and 4-photon (d)–(f). Black curves: PSFs
corresponding to optimal filling under Gaussian beam illumination; red curves: PSFs corresponding
to overfilling � ¼ 1 under plane wave illumination.
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where n is the refractive index of water, and f is the focal length of the objective lens. The con-
stant ikfexpð�ikf Þ=2 originally omitted in (3) was taken into account in deriving (9), and f is the
focal length of the objective lens. Fig. 7 shows calculated 3-photon SBR results corresponding
to various ldepth=le at optimal filling. For the largest ratio of ldepth=le ¼ 7:63 we considered, SBR
drops to 0.41, which is 22% smaller than that under overfilling (SBR ¼ 0:52 for � ¼ 1). For this
specific case, optimal filling still enables 3-photon imaging down to a depth of �7:4le.

4. Conclusion and Discussion
To maximize signal generation for high-order, deep-tissue multiphoton fluorescence microscopy,
in this paper, we suggested underfilling the back aperture of the high-NA objective lens.
Through numerical simulation we demonstrated that, there was an optimal filling factor for each
ratio of ldepth=le. As this ratio increases, corresponding to an increase in imaging depth or attenu-
ation, �opt becomes smaller to avoid excessive loss of excitation light due to the large-angle
rays. Experimentally, variable beam expanders (with tunable expansions) can be used to contin-
uously change the filling factors. Admittedly, compared with overfilling, this method comes at
the expense of deterioration of spatial resolutions manifested by the calculated PSFs along all
the three axes. Therefore, there is a comprise between maximizing the MPM signal generation
and sacrificing spatial resolution using the proposed method. However, for deep-tissue MPM,
sometimes the first goal is to be able to see the structures, for example, neurons in deep layers
of the brain. From this perspective, sacrifice in spatial resolution may be acceptable, given that
maximizing signals allows a larger imaging depth. We also note that the optimal filling method
suggested in this paper doesn't mean that a small-NA objective should be chosen for deep-tissue
MPM, since a high-NA objective lens collects more fluorescence, which is required. Therefore, a
high-NA objective should be chosen but optimally underfilled to maximize MPM signal generation.
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