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Abstract: In most optical imaging systems and applications, images with high resolution
(HR) are desired and often required. However, charged coupled device (CCD) and com-
plementary metal-oxide semiconductor (CMOS) sensors may be not suitable for some
imaging applications due to the current resolution level and consumer price. To transcend
these limitations, in this paper, we present a novel single image super-resolution method.
To simultaneously improve the resolution and perceptual image quality, we present a practi-
cal solution that combines manifold learning and sparse representation theory. The main
contributions of this paper are twofold. First, a mapping function from low-resolution (LR)
patches to HR patches will be learned by a local regression algorithm called sparse support
regression, which can be constructed from the support bases of LR–HR dictionary. Second,
we propose to preserve the geometrical structure of image patch dictionary, which is critical
for reducing artifacts and obtaining better visual quality. Experimental results demonstrate
that the proposed method produces high-quality results, both quantitatively and
perceptually.

Index Terms: Optical imaging system, super-resolution, manifold learning, sparse
representation.

1. Introduction
With the rapid progress in hand-held photographic mobile devices, images and videos are be-
coming increasingly more popular on the web, due to their rich content and easy perception.
However, limited by optical imaging systems, most images exist as low-resolution (LR) versions
degraded from the source. There is a huge need for improving the perceptual image quality,
among which resolution enhancement technology is called super-resolution [1], [2]. Instead of
imposing higher requirements on hardware devices and sensors, it can offer us high-resolution
(HR) images in more detail economically. This paper focus on Single Image Super-Resolution
(SISR) problem because of its potential effectiveness and flexibility for different applications
[3]–[5].
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1.1. Prior Work
Since SISR is inherently ill-posed as there are generally multiple HR images corresponding to

the same LR image, accordingly, one has to rely on strong prior information, which is available
either in the explicit form (e.g., Tikhonov regularization [6] and Total Variation regularization [7])
and/or in the implicit form [1], [8]. A few representative methods of such kind are summarized as
follows.

Learning-based (or example-based) super-resolution has become a hot topic since it was first
introduced by Freeman et al. in [1]. In this pioneering work, they model the relationship between
LR and HR image patches by using Markov network. However, this approach is computationally
intensive and sensitive to training examples. Another representative work for learning-based
super-resolution was proposed by Chang et al. [9], which is based on Locally Linear Embedding
(LLE) [10] manifold learning theory. It assumes that image patches in LR patch space and the
corresponding HR one are located at two similar local geometries, and the HR patch could be
generated as a linear combination of its K neighbor HR patches found in training database. In
contrast to [1], Chang et al.'s method does not require a large number of samples and achieve
good performance. Since then, there are a lot of different prior constraints have been introduced
to regularize this ill-posed problem. Priors that are commonly exploited in SISR methods mainly
include gradient profile prior [11], self-similarity prior [12], [13], coupled constraint [14]–[16], and
locality regularization [17]–[19]

Recently, in [20] and [21], sparse coding is employed to perform for image super-resolution,
which enforces corresponding LR and HR patches to share the same sparse representations. In
their works, by enforcing sparsity regularization, LR patches are coded with respect to an over-
complete LR dictionary, and the coefficients (i.e., the outcome of sparse coding process) are
obtained to linearly combine corresponding HR counterparts to perform image super-resolution
reconstruction. However, the constraint of same sparse representation in their approaches is
too strong to achieve in practice [22].

1.2. Motivation and Contributions
In this paper, we present a manifold regularized regression framework for super-resolution.

In the proposed framework, the regression relationship is learned from the LR–HR support
spaces,1 which are constructed based on sparse representation theory. Therefore, we call our
proposed method Manifold regularized Sparse Support Regression, which is termed as MSSR
for short. In MSSR, the same sparse representation assumption used in conventional sparse
coding based methods is relaxed for LR–HR sparse support domain regression, which is flexi-
ble in using the information of local training samples [5], [25]. In addition, the proposed method
simultaneously considers the manifold regularization, thus capturing the intrinsic geometrical
structure of the dictionary. Part of our previous work has been published in [24]. Compared
with previous image super-resolution approaches, our contributions can be summarized as
follows:

• Compared with those sparse coding based methods [20], [21], which use the strong regular-
ization of same sparse representation for learning, in this paper, the same sparse represen-
tation is relax for sparse support domain regression. Thus we can expect to give more
flexibility to the learned mapping functions.

• Instead of learning a global mapping function from the entire training samples, we design to
learn a data specific mapping function from its LR–HR sparse support domain, and thus the
learned mapping function can be tuned towards specific input LR patch.

• Compared with those regression-based methods [17], [25], [26], which do not take the ge-
ometry of HR patch space into consideration, we explore the geometry of HR patch space
and use the geometry to regularize the reconstructed HR patch space as well as the map-
ping function.

1Note that image patches have regular structures where accurate estimation of pixel values via regression is possible.
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The remainder of this paper is organized as follows: In Section 2, we give the details of the
proposed method. In Section 3, we give experiments and comparative results. We draw conclu-
sions in Section 4.

2. Proposed Manifold Regularized Sparse Support Regression Method for
Super-Resolution

2.1. Formulation and Overview of the Proposed Method

Given a set of LR and HR training image patch pairs, fðx1; y1Þ; . . . ; ðxN ; yNÞg � Rd � RD , d
and D are dimensions of one LR patch and one HR patch, respectively. Define X ¼ ½x1; . . . ; xN �
and Y ¼ ½y1; . . . ; yN �, each column of which is a patch sample. Therefore, the matrixes X and Y
can be viewed as the LR and HR patch dictionaries respectively. Considering that the manifold
assumption (two manifolds spanned by the feature spaces of the LR and HR patches are locally
similar) may not be tenable in practical [14], we learn a much more stable LR–HR mapping in
the support domain for super-resolution, thereby, transforming super-resolution reconstruction
to a regression problem. Our another important goal is to encode the geometry of HR patch
manifold, which is much more credible and discriminated compared with that of the LR one [14],
and preserve the geometry for the reconstructed HR patch space. This will ensure that the local
geometric structure of the reconstructed HR patch manifold is consistent with that of the original
HR one.

Based on the above discussions, our MSSR algorithm for image super-resolution should be
equipped with two properties: i) The shared support of each LR patch and HR patch has an ex-
plicit regression relationship; ii) the local geometrical information on original HR patch dictionary
is preserved.

Therefore, by integrating the data-fidelity term, the smooth term and the manifold regularized
term, the objective function of MSSR method can be mathematically written as follows:

OMSSR ¼
X
i

"ðP; xi ; yiÞ þ �kPk2H þ �kPk2M (1)

where "ðP; xi ; yiÞ is a predefined loss function of support samples, kPk2H is a regularization func-

tion measuring the smoothness of parameter P, and kPk2M is an appropriate penalty term that
should reflect the intrinsic structure of data. Here the regularization parameter � controls the
complexity of function in ambient space while � controls the complexity of function along geode-
sics in intrinsic geometry of data space.

To provide an overview of MSSR method, we show the flowchart in Fig. 1. Given an input LR
patch, we first obtain its LR–HR sparse support domains, and then use the graph structure of
HR space to regularize the mapping function between LR and HR sparse support domains.
Lastly, the output HR patch can be obtained by the learned mapping function. In the following,

Fig. 1. Flowchart of the proposed method. Note that the red patches denote the sparse support do-
main of the input LR patch on dictionary, and we use the sparse graph of the HR sparse support
domain to guide the construction of mapping function.
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we will describe how we formulate MSSR with sparse support regression (see Section 2.2.) and
manifold regularization (see Section 2.2.).

2.2. Sparse Support Regression
Instead of assuming that each pair of HR and LR patches has the same sparse representa-

tion, in our proposed MSSR method, this strong regularization of same sparse representation is
relaxed for sparse support regression, in which the sparse coefficient vectors of one LR and HR
patch pair share the same support, i.e., same indices of nonzero elements.

Given a set of LR and HR training patches (dictionary pairs), fðx1; y1Þ; . . . ; ðxN ; yNÞg, for an
unseen LR patch xt , we try to learn a mapping function f ðx ;PÞ ¼ Px , from the LR patch to the
corresponding HR one to minimize the following regularized cost function for the regression:

"ðP; xi ; yiÞ ¼
X
i2S

ðPxi � yi Þ2 (2)

where S is the support of coding coefficients � of unseen patch xt on LR training patches X .
The Compressive Sensing (CS) theory states that the observation signal can be reconstructed
from a far fewer number of random measurements than the number of samples stipulated by
Nyquist sampling theory. In recent years the sparsity-based regularization has led to promising
results for various image restoration problems [20], [27]. In this paper, we introduce the spare
constraint to coding coefficients �

�̂ ¼ argmin
�

xt � X�k2 þ �1k�
�� ��

1 (3)

where k�k1 denotes ‘1 norm, and the regularization parameter �1 balances coding error of xt
and sparsity of �. With an appropriate selection of the regularization parameter �1, we can get a
good balance between the sparse approximation error of xt and the sparsity of �. The above �1

minimizing problem is well known as a basis pursuit problem. The solution of (3) can be
achieved by convex optimization methods referring to [28].

The support of one vector is referring to the indices of nonzero elements in the vector. We de-
note the support of �̂ as S ¼ supportð�̂Þ. Therefore, we can define the support sample sets as
XS and YS as XS ¼ fxi ji 2 Sg and YS ¼ fyi ji 2 Sg, respectively, we can rewrite (2) in the follow-
ing matrix form:

"ðP; xi ; yiÞ ¼ kPXS � YSk2F : (4)

Fig. 2. Inconsistency between the LR and HR patch manifold spaces [26]. (a) Input LR image patch.
(b) and (c) Fourteen closest LR patches and corresponding HR patches of (a). (d) Original HR
patch of (a). (e) Fourteen closest HR patches of (d).
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2.3. Manifold Regularization
This subsection targets on the second property, which is to preserve the local geometrical ge-

ometry of data. In previous manifold learning based super-resolution methods, such as neighbor
embedding based super-resolution, they assume that the LR and HR manifold spaces share the
similar local geometrical geometry. These algorithms all try to explore the neighborhood rela-
tionship of LR manifold space and preserve the learned neighborhood relationship for the target
HR manifold space. However, since the image degeneration processing has information lost
(i.e., the high-frequency details), the mapping between the LR image and the HR image is
one-to-many in practical.

As illustrated in Fig. 2, for an input LR patch [see Fig. 2(a)], we searched a typical training da-
tabase of approximately 100 000 patches to find the 14 closest LR patch samples in the LR
patch space [see Fig. 2(b)]. Fig. 2(c) shows the HR patch samples corresponding to each of
these LR patch samples; each of those looks fairly different from the other. We give the original
HR patch in Fig. 2(d) and (e) is the 14 closest HR patch samples of Fig. 2(d), which can be
seen as the true HR patches of the input LR input patch. This illustrates that i) inconsistency be-
tween the LR and HR patch manifold spaces and ii) that the local patch information of LR patch
manifold alone is insufficient for super-resolution.

Therefore, in this paper, we try to preserve the intrinsic geometric structure of original HR
patch manifold rather than LR patch manifold, which may be contaminated by image degenera-
tion (e.g., blurring, down-sampling and noise), for the reconstructed HR patch manifold (as
shown in the right part of Fig. 3). Compared with traditional manifold preserving methods (as
shown in the left part of Fig. 3), which try to preserve the similar local geometric structure by im-
posing the local geometric of LR patch manifold on that of the reconstructed HR patch manifold,
our motivation is to make the local geometric structure of reconstructed HR patch manifold and
original HR patch manifold consistent.

Given a set of data points yi , we can construct a nearest neighbor graph G ¼ ðV ;W Þ, where
each vertex represents a data point, V ¼ fyig. A natural assumption here could be that if two
points yi and yj are close in the intrinsic geometry of HR patch manifold space, their LR and HR
versions xi and xj in the LR patch manifold space should be similar, i.e., should vary smoothly
along the geodesics in the intrinsic geometry of original HR patch manifold. As described in (1),
we use the kPk2M to measure the smoothness of P along the geodesics in intrinsic geometry of

data. When we consider the case that data is a compact sub-manifold, a natural choice for kPk2M is

kPk2M ¼
Z

y2M

krMPk2dy (5)

Fig. 3. Manifold preserving comparison between traditional method and our proposed method.
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where rMP is the gradient of P along the manifold M . In reality, the data manifold M is unknown.
Thus, kPk2M in (5) cannot be computed. Recent studies on spectral graph theory [29] have demon-

strated that kPk2M can be discretely approximated through a nearest neighbor graph on a scatter of
data points. How to define the edge weight matrix W is critical. Researchers have proposed vari-
ous methods to measure the similarity between data points [30], [31], e.g., pair-wise distance
based similarity and reconstruction coefficient based similarity. Since the former is suitable for dis-
criminant analysis problems, such as recognition and clustering, it is mainly used for classification
and recognition tasks. Alternatively, reconstruction coefficient based similarity is datum-adaptive
and thus more suitable for image super-resolution. LLE [10] is one of the representative works for
reconstruction coefficient similarity estimation.

Recently, some researchers have demonstrated that the sparse structure of one manifold can
be explored by the ‘1 graph [31], resulting in many benefits for machine learning and image pro-
cessing problems. Let yi be the i th HR patch which is under consideration now. We want to
identify its neighbors on the smooth manifold rather than the entire Euclidean space. On the
smooth patch manifold space, the patch can be well sparsely approximated by a linear combi-
nation of a few nearby patches. Thus, it has a sparse representation over the support domain
YS . For any HR patch yi , it can be sparsely approximated by data matrix YS except yi

Ŵi ¼ argmin
Wi

kyi � YSWik2 þ �2kWik1; s.t. Wii ¼ 0 (6)

where Wi denotes the i th column of the edge weight matrix W whose diagonal elements are
zeros, and �2 is the parameter balancing the coding error of yi and the sparsity of Wi .

We preserve the geometry relation represented by W for the reconstructed HR patch mani-
fold. When LR patch is transformed to the HR patch, we try to preserve geometry constraint
from W for PXSWi . It can be gained by minimizing

X
i2S

kPxi � PXSWik22 ¼ kPXS � PXSWk2F ¼ PXSðI �W Þk k2F (7)

where I is an identity matrix.

2.4. MSSR Objective Function and Optimization
Considering above-mentioned two properties that we want to engage in, the objective function

of our proposed MSSR is defined as

OMSSR ¼ kPXS � YSk2F þ �kPk2F þ � PXSðI �W Þk k2F : (8)

Using matrix properties trðABÞ ¼ trðBAÞ, kAk2 ¼ trðAAT Þ, and trðAÞ ¼ trðAT Þ, we have

OMSSR ¼ tr PXSX
T
S P

T � PXSY
T
S � YSX

T
S P

T þ YSY
T
S

� �þ �trðPPT Þ þ �tr PXSGXT
S P

T� �
(9)

where G ¼ ðI �W ÞðI �W ÞT .
In order to minimize (9), we would like to take the derivative of OMSSR with respect to P and

set it to zero; thus

P XSX
T
S þ �I þ �XSGXT

S

� � ¼ YSX
T
S : (10)

Then, we have

P ¼ YSX
T
S XSX

T
S þ �I þ �XSGXT

S

� ��1
: (11)

Once a LR patch xt comes, we can just project it onto P via

yt ¼ Pxt : (12)

By integrating all the reconstructed HR patches according to the original position, the final HR
image can be generated by averaging pixel values in the overlapping regions.
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2.5. Iterative Back Projection

It is worth noting that the super-resolved HR image (denoted as Y 0
t ) produced through a patch-

wise strategy does not satisfy the reconstruction constraint exactly [20]. Accordingly, we try to take
iterative back projection (IBP) as the post-processing to further enhance the quality of super-
resolution results by above mentioned local patch based method. Given an observed LR image Xt ,
the global reconstruction constraint can be enforced to minimize the reconstruction error

EðYt ;Xt Þ ¼ kXt � DBYtk22 (13)

where D and B represent the down-sampling operator and blurring operator respectively. This
global reconstruction constraint requires that the HR image should be as close as possible to the
input LR image after smoothing and down-sampling. IBP can guide Yt to be more consistent with
the degradation model in (13), i.e.,

Y �
t ¼ argmin

Yt

kXt � DBYtk22 þ c Yt � Y 0
t

�� ��2
2: (14)

Here, the parameter c balances the prior and the back projection constraint. The solution to this op-
timization problem can be efficiently computed using gradient descent-based minimization

Ynþ1
t ¼ Yn

t þ u BTDT Xt � DBYn
t

� �þ c Y n
t � Y 0

t

� �� �
(15)

where Yn
t is the estimation of HR image after the nth iteration, u is the step size of gradient

descent, and the initial super-resolution result is Y 0
t . The entire procedure of MSSR is depicted in

Algorithm 1.

Algorithm 1 Image Super-resolution via MSSR

1: Input: Training images and a LR test image Xt . The regularization parameters �1, �1, �
and �

2: Training the LR and HR coupled dictionaries using the sparse coding method as in [20].
3: for each patch xt of Xt do
4: Code xt over X via ‘1 minimization to obtain the optimal coding coefficients �̂ through

Equation (3).
5: Obtain the sparse support, S ¼ supportð�̂Þ.
6: Obtain the support sample sets XS and YS as XS ¼ fxi ji 2 Sg and YS ¼ fyi ji 2 Sg.
7: Construct the graph G on HR patch manifold and obtain the similarity matrix according

to Equation (6).
8: Preserve the geometry W for the reconstructed HR patch manifold and obtain the map-

ping P according to Equation (11).
9: Compute the HR version of xt via linear mapping according to Equation (15).

10: end for
11: Integrate all the reconstructed HR patches above and average pixel values in overlap re-

gions to form the HR image Y 0
t .

12: Perform a back projection iteratively for Yt according to Equation (12).
13: Output: HR target image Yt .

3. Experimental Results
In this section, we verify the performance of MSSR method. We conduct experiments on five
widely used test images as shown in Fig. 4, which are very representative for their contents are
various, and they include the human, buildings, animals, grass, home, and so on.

Several state-of-the-art methods, such as Bicubic interpolation, Neighbor Embedding (NE) [9],
Sparse Coding (SC) [20], and Local Learning based Regression (LLR) [17] are used as
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comparison baselines. Peak Signal to Noise Ratio (PSNR), Root Mean Square Error (RMSE),
and Structural Similarity (SSIM) [32] indices are adopted to evaluate the objective quality of
super-resolution results. Since human eyes are more sensible to the change of luminance,
hence, super-resolution reconstruction is only performed on the luminance component, and the
simple Bicubic interpolator is used for chromatic components.

To extract the high-frequency information of LR images, four directions of gradients (two hori-
zontal directions and two vertical directions) are used as input features. The magnification factor
is 3, the size of LR patches is set to 3 � 3, and the size of HR patches is set to 9 � 9.50 000
LR and HR training patch pairs are randomly chosen from training images used in [20], which
has no relation with the test images used in our experiments, for NE [9] and LLT [17] and the
coupled dictionaries with 1024 elements [20] respectively. The neighborhood number of NE [9]
is set to 10 and the sparsity parameter of SC is set to 0.1. For the sake of fairness, we use the
same trained dictionary for SC [20] and MSSR. For MSSR, the regularization parameters �1, �2,
�, and � are empirically set to 0.1 , 0.15, 0.3, and 10, respectively.

PSNR (dB), RMS,E and SSIM of all five different test images are reported in Table 1. It can
be seen from this table that MSSR method achieves the best in terms of PSNR, RMSE and
SSIM. MSSR outperforms Bicubic interpolation, NE [9], SC [20], and LLR [17] in all cases,
which validates the necessity and effectivity of sparse support regression and manifold geomet-
ric preservation.

Fig. 5 shows the visual results of different super-resolution algorithms. All of the learning-
based super-resolution methods outperform Bicubic interpolation in terms of visual plausibility.
Note that the proposed algorithm performs visually much better than Bicubic interpolation, hav-
ing less visual artifacts and producing sharper results. Compared with other learning-based

Fig. 4. Gallery of test images used in our experiments. From left to right, they are named barbara,
foreman, house,lenna, and zebra respectively.

TABLE 1

PSNR (dB), RMSE, and SSIM comparisons of different super-resolution methods
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super-resolution methods, the proposed algorithm provides more image details with improved
objective values. The results of NE [9] method are sharp in textures. However, unpleasant arti-
facts and tiny block effects are also introduced as shown in foreman and lenna. SC [20] method
uses the sparseness prior to regularize the HR image, which suppresses the high frequency de-
tails in the texture region but introduces some noise as shown in barbara, house, and zebra im-
ages. This is mainly due to the difficulty to learn a universal coupled LR and HR dictionary that
can represent various LR and HR structure pairs. The result of locality prior method (LLR [17])
shown in the fifth column is sharp along salient edges. However, the texture detail is blurry and
there are some jaggy artifacts and ringing artifacts. Our result in the sixth column is sharp both
along edges and in textural regions. We owe the superiority of the proposed method to manifold
constrained local sparse regression, which is more powerful and flexible to describe different im-
age patterns.

We further compare the proposed method with comparison methods in term of CPU time.
Fig. 6 shows the CPU time spent on each test image performed using Matlab 7.14 (R2012a) on
an Inter(R) core(TM)i3 CPU with 3.20 GHz and 4G memory PC at Windows platform. Bicubic in-
terpolation is the fastest and need only around 10�2 seconds for each image. NE [9] and LLT
[17] learn the LR–HR relationship based on raw training samples with large size (50,000 LR and
HR patch pairs), and the time spent on each test image is around 103 seconds due to k -NN
search in large-scale dataset. By learning a compact dictionary (1024 elements), SC [20] and
MSSR require much less time in comparing with NE [9] and LLT [17]. However, these ap-
proaches are difficult for practical applications where real-time or near real-time performance
must guarantee. Despite this, thanks to the independence of reconstruction of each target HR
patch, we could still make use of the parallel computation technology to accelerate the super-
resolution algorithms.

4. Main Findings and Future Directions
In order to overcome the hardware limitations of optical system, in this paper we develop a
novel single image super-resolution method, namely Manifold regularized Sparse Support Re-
gression (MSSR), which simultaneously considers the manifold geometrical structure of patch
manifold space and the support of the corresponding sparse coefficients. The support informa-
tion as well as the geometrical structure information of data manifold is incorporated into MSSR

Fig. 5. Super-resolution results of different methods. The top row to the bottom row are the local
magnification of barbara, foreman, house, lenna, and zebra, respectively.
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model. We design a novel sparse regression algorithm having both reconstruction and generali-
zation properties, which can enhance the learning performance. It is experimentally shown that
MSSR method can produce more faithful details and higher objective quality in comparison to
the other state-of-the-art super-resolution approaches. Extending the current linear model to the
non-linear case will be our further work. In addition, we may introduce some reasonable priors
[27], [33] to suppress artifact of super-resolved image.
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