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Abstract: Exploiting the characteristics of spatially chirped ultrafast pulses has been an
increasingly active area of research. In this paper, we review the developments in the past
year of the microscopy, materials processing, and micromachining fields, where the spatio-
temporal structure of these beams is important. We also summarize progress in theoretical
and experimental work to better control and characterize spatially chirped beams.

Index Terms: Ultrafast lasers, ultrashort pulse measurements, pulse compression, ultra-
fast technology, ultrafast optics, nonlinear microscopy.

1. Introduction
As the technology of ultrafast lasers matures, control over the spatio-temporal characteristics of
the broadband beams has moved beyond ensuring overlap of the spectral components of the
beam to intentionally introducing spatial chirp. This has provided new degrees of freedom to con-
trol how these pulses interact with the target. Here, we review the recent advances in the applica-
tion of angular spatial chirp, which leads to temporal focusing since the second-order spectral
phase evolves along the propagation direction [1]. This makes possible depth sectioning in wide-
field nonlinear microscopy. Simultaneous spatial and temporal focusing (SSTF) [2] occurs when
the frequency components are also focused at the crossing plane. The increased intensity locali-
zation has advantages for micromachining and materials processing. The pulse structure is de-
pendent on the system alignment, so techniques for controlling and characterizing these pulses
are important. Transverse spatial chirp can also be useful: the time-dependent angular rotation of
the optical wavefront (the Lighthouse Effect [3], [4]) has been applied to spatially separate attose-
cond pulses generated in the high-order harmonic process, as described in a recent review [5].

2. Nonlinear Imaging With Temporally Focused Pulses
One of the challenges in nonlinear (two photon excitation fluorescence, second and third har-
monic generation, etc.) biological imaging is spanning multiple spatial and temporal scales. A
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large-field-view is desirable (100 �m to millimeters), with micrometer to sub-micrometer lateral
spatial resolution, and micrometer axial resolution. Spatial requirements for an imaging system
can therefore span several decades. Dynamic information with sub-millisecond resolution is de-
sirable, along with the ability to track the entire system for extended periods: seconds, minutes
or even hours. Thus, temporal requirements for the imaging system also spans decades. A key
technology in helping address this range of spatial and temporal characteristics in nonlinear im-
aging is simultaneous spatial and temporal focusing. As noted above, early work by Oron et al.
[1] showed that temporal focusing yields a large field-of-view (using low numerical aperture
beams or a line cursor as the excitation source) without compromising the axial resolution of the
system. The application of temporal focusing to imaging is now one of the most mature aspects
of this technology. There were several recent examples in deep ð> 500 �mÞ tissue imaging in
in vivo samples [6], neuronal networks [7], and biopsy of tissue-cleared samples [8].

The increased dwell time that accompanies these extended excitation source geometries can
result in improved signal-to-noise, and consequently allowing faster frame rate and higher dy-
namic resolution of the nonlinear microscope. Lien and coworkers [9] took advantage of the low
trapping force of the temporally-focused beam combined with astigmatism to obtain 14 nm
(transverse) and 21 nm (axial) particle tracking resolution at 100 Hz frame rate. An interesting
extension of some of the concepts involved in temporal focusing is shown in recent work by
Iwai [10]. Using a continuous-wave beam incident on a field with moving objects, they found
that the Doppler shift was encoded into the angular spectrum, leading to a technique they call
temporal imaging as opposed to temporal focusing.

Improved spatial resolution of SSTF multiphoton imaging was achieved by combining the
technique with structured light imaging. For example, a collaboration in Taiwan has demon-
strated the use of a digital micromirror device (DMD) to spatially chirp the beam in their multi-
photon imaging system in place of the more traditional grating [9], [11], [12] [see Fig. 1(a)]. The
programmability of the DMD enabled them to also incorporate structure into the light resulting in
measurable gains in the lateral and axial resolution of the system [see Fig. 1(b)]. The same
group also implemented an adaptive-optical system with a deformable mirror to optimize the im-
age quality [13].

3. High-Intensity Interactions With SSTF
While the characteristics and advantages of using femtosecond pulses for certain micromachin-
ing applications is well known, until the advent of SSTF it was difficult to efficiently ablate or
modify a material with a low numerical aperture (NA) beam. In a conventional focusing geome-
try, the longer confocal parameter can be lead to collateral damage to nearby sensitive struc-
tures. Lower NA beams are also susceptible to nonlinear effects such as self-focusing which

Fig. 1. (a) Temporal focusing setup employing a digital micromirror device (DMD). (b) Comparison
of image with temporal focusing alone with an image adding nonlinear structured imaging. Lineout
shows the increased resolution [12].
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can completely inhibit their application at depth within suitably transparent materials. The strong
intensity localization that can be achieved with SSTF allows material modification and inter-
actions either inside the bulk of a sample [14] or on the back surface [15]. By suppressing non-
linear propagation on the way to the target zone, the interaction is much less sensitive to
fluctuations in the laser pulse energy. The importance of SSTF for micromachining and mate-
rials processing applications were highlighted in three recent review articles [16]–[18].

The capability to modify a material at a specific depth in the material with pulse energy well
above the damage threshold is especially important for biological materials [19]. A novel appli-
cation using temporal focusing was demonstrated recently by a team from MIT and the Harvard
Medical School [20]. They used multiphoton excitation for photodynamic therapy to create reac-
tive radical species that induces apoptosis, or programmed cell death, in tumor nodules. By
using widefield temporal focusing (700 �m diameter spot) and sufficient energy (55 �J per pulse
at 10 kHz), they were able to perform controlled apoptosis with 10-30 s exposures. By moving
to a chromophore with higher two-photon cross-section, they hope to reduce the exposure time
to under one second to allow the procedure to be clinically viable.

The localization of the intensity was also demonstrated in a different context (Fig. 2): the syn-
thesis of gold nanoparticles in solution [21]–[23]. By synthesizing nanoparticles in a cuvette, the
controlled environment ensures that the composition and purity of the particles is well known.
As in the photodynamic therapy application described above, multiphoton absorption leads to
the creation of reactive species ðH2O2Þ that help reduce ½AuCl4�� in water after irradiation. With
a conventional Gaussian beam focus, nonlinear self-focusing and filamentation clamps the in-
tensity, limits the production of reacting species and produces white-light continuum (Fig. 2),
which has been shown to fragment the nanoparticles through surface plasmon resonance heat-
ing. With SSTF focusing, the researchers observed a much narrower distribution of particle
sizes. The stability and symmetry of the intense focal spot led to rapid radial ejection of cavita-
tion bubbles that effectively mixed the solution.

Along with the strong intensity localization of SSTF, the associated pulse front tilt (PFT) has
led to intriguing nonreciprocal writing (or “quill”) effects [24], [25]. While more research is needed
to better understand these effects, the ponderomotive force of the tilted pulse is an important
factor [26]. Recent work [27], [28] contributes to the intrigue. Dai et al. [28] observed a coupling

Fig. 2. Comparison of conventional Gaussian focusing (GF) and SSTF focusing into a 10� 10�
40 mm3 cuvette for producing Au nanoparticles from ½AuCl4�� in water. Photographs taken at the
exposure show strong white light generation for GF and a well-localized spot for SSTF. The result-
ing particles were imaged with TEM (second column), showing a size distribution (third column) that
was much narrower for SSTF [23].
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of nanograting formation (associated with the beam polarization) with the PFT that depends on
the direction of the sample motion. Further evidence of the role of ponderomotive forces in elec-
tron transport was observed by Li et al. [29], who measured the beam profile of second har-
monic light generated by a SSTF pulse in air. The observed symmetric second harmonic profile
was consistent with an asymmetric charge separation induced by the tilted pulse. Research with
spatially-chirped pulses is also moving into new areas. Zhang et al. have proposed a novel
quantum optical data storage scheme that takes advantage of the pulse front tilt [30].

4. Generation and Characterization of Spatially-Chirped Broadband Pulses
To take full advantage of the strong intensity localization and pulse front tilt that SSTF makes
possible, it is important to understand how the structure is affected by misalignment and distor-
tion, and even more important to be able to characterize the experimental conditions. Several
papers investigated further theoretically and computationally the nature and structure of the
temporal focus [31]–[33]. Lesham considered the conditions under which the temporal focal
plane can be shifted by dispersion for shaped or structured pulses [31]. He et al. showed that in
addition to the pulse front tilt, the off-axis dependence of the spectral phase leads to a tilt in the
plane where the pulse is optimally compressed [32]. This effect can be important for wide-
bandwidth and large angular chirp.

Much of the work in materials processing with SSTF has made use of compressors retrofitted
into existing systems. In collaboration with KMLabs Inc., our group at CSM developed a Watt-
level 10 kHz repetition rate Yb:CaF2 laser system [34]. The chirped pulse amplifier has an inte-
grated single-pass transmission grating compressor, which has improved efficiency compared
to previously reported SSTF designs. The efficiency combined with the high-repetition rate of
the laser further optimizes its capability for rapid, large volume processing. We also designed a
flexible SSTF compressor that allows smooth control of the pulse front tilt [35]. This compressor
is a double pass design with unequal paths on each pass, resulting in an output beam with colli-
mated spectral components of variable width. A compact beam delivery system capable of deliv-
ering spatially-chirped pulses for endoscopic imaging was demonstrated by Choi et al. [36].
They utilized a gradient-index objective to project the spatially chirped beam through a dichroic
beamsplitter that allowed the emitted light to be collected with a separate objective.

To fully understand and optimize nonlinear interactions with materials, it is important to align
the laser system in a controlled manner and to characterize the spatio-temporal properties of the
beam. Much of SSTF work employs off-axis parabolas, but in many applications the use of lens
systems is more convenient. Sun et al. studied the effect of Zernicke phase aberrations on the
quality of the focal intensity distribution [37]: Many of the common aberrations will affect the
spatio-temporal quality of the focus, since frequency components travel through different parts of
the aperture. In extreme cases, even using an off-axis parabola can lead to unexpected distortions
[38]. Our group has developed a spectrally-resolved knife edge scan technique for characterizing
the focus in situ and a spectral interferometric technique for characterizing the parallelism and
divergence of the frequency components [39]. Wang et al. developed a technique for characteriz-
ing the pulse front tilt interferometrically by using a non-tilted reference pulse [40].

More general diagnostic techniques, useful for arbitrary beams, were improved upon in 2014.
Gallet et al. [41] have further refined the SEA-TADPOLE technique [42] in which a single mode
fiber is scanned across a plane and interferometrically compared to a reference signal. For
spatio-temporally complex beams that might emerge from a nonlinear process, a single-shot
technique for producing interferograms at many spectral slices can be used [43], [44].

5. Conclusion
The use of spatially-chirped beams for microscopy, micromachining and nonlinear optics con-
tinues to become more widespread. At this time, wide-field nonlinear microscopy is the most
mature of the areas of application. Temporal focusing is now being combined with other tech-
niques for improving image resolution such as structured illumination. As the interaction of these
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beams with materials becomes better understood, simultaneous spatial and temporal focusing
is being exploited for its intensity localization and for the material modification effects made
possible by the tilted pulses fronts. The ongoing work to develop SSTF delivery systems and
characterization methods will help lead to better control and understanding of the processes
driven by SSTF pulses.
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