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Abstract: A new variational method for the modal analysis of 2-D waveguide structures
is proposed in this paper. Maxwell's equations describing the modal properties of scalar
and semivectorial guided waves in the 2-D waveguides are expressed as variational/
minimization problems, which are then discretized in terms of a finite-difference scheme
on a finite rectangular computational window. By applying a dynamic programming tech-
nique to solve such variational problems, a 1-D equation representing the relation be-
tween the modal fields on any pair of adjacent columns in the computational window can
be derived. By using such 1-D equation in a stepwise fashion from one boundary column
toward the other boundary column, a system of linear equations with the unknown
column modal fields can be derived and then solved to give both the accurate modal
indexes and the discrete modal fields. In the examples of one weakly guiding rib-type
dielectric waveguide and another strongly guiding silicon-on-insulator waveguide, com-
putational results show that a small size of the coefficient matrix for such a system of
linear equations is adequate to cause a relative error of 10�5–10�6 in the evaluation of
the modal indexes reachable in an efficient manner. The results of the convergence tests
show that the proposed method is at least an order of magnitude faster than the conven-
tional finite-difference beam propagation method because of the transformation of a 2-D
problem into a 1-D problem. Moreover, the proposed method is applied to investigate the
modal properties of the conductor-gap-silicon plasmonic waveguide. The feature of the
hybrid guided-mode profile is also observable from the modal field calculated by the pro-
posed method.

Index Terms: Waveguides, variational methods, dynamic programming.

1. Introduction
The calculation of the modes is very important in the analysis of the properties of the optical
waveguides. In the case of two-dimensional waveguides, considerable efforts have been made
in the development of various variational methods for the determination of the modal properties
of the optical waveguide over the past two decades. These methods involve the evaluation of
the extremum of the Rayleigh's quotient [1]–[10]. However, the methods reported to date show
that computationally intensive efforts are still required for precisely evaluating the extremum of
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the Rayleigh's quotient because the model of the Rayleigh's quotient is conventionally estab-
lished by applying the finite-difference [1] or the finite-element techniques [2], [3], and the com-
putational efforts for solving the resulting eigen-value problem will be intensive due to the
diagonalization of the large-scale matrices.

To date, many approximation techniques have been developed to evaluate the extremum of
the Rayleigh's quotient. A first-order approximation technique has been introduced based on the
conventional perturbation theory [4]–[9]. The trial fields are utilized to evaluate the value of the
Rayleigh's quotient, which corresponds to the modal index of the waveguide. However, the accu-
racy of the resulting modal indices would substantially depend on the similarities between the
trial fields and the true modal fields. To prevent the numerical inaccuracy occurred in the calcula-
tion of modal indices due to the poor choice of the trial fields, a steepest-descent algorithm [10]
has been proposed by introducing the parameterized trial fields into Rayleigh's quotient. By opti-
mizing the parameterized Rayleigh's quotient, an improved trial field which may be used to evalu-
ate the modal indices more accurately can be derived. An alternative way to iteratively improve
the accuracy of the trial field has been reported by Sharma et al. [11]–[14], which assumes that
the trial field in the waveguide with a rectangular cross section is separable in x- and y- direc-
tions. This separable field defines two equivalent slab waveguide structures. Then by iteratively
evaluating the index distribution and the modal properties of each slab waveguide, the accuracy
of the trial field can be effectively improved. Recently, a variational method combined with an effi-
cient effective index method has been reported [15]. However, effective index method only can
accurately evaluate the modal properties of the weakly-guiding waveguides [16].

An alternative approach to accurately solve the variational waveguide problem and simulta-
neously avoid the diagonalization of the large-scale matrices might be the dynamic program-
ming technique, which has been used in various fields since the original work first published by
Bellman in 1957 [17]. Conceptually speaking, the dynamic programming is a kind of divide-and-
conquer technique, which can be used to solve a large-scale optimization problem in a recursive
manner [18]. In the next Section, we will show that the dynamic programming technique can be
employed to solve the large-scale, waveguide problem in such a way that by applying an alter-
native functional formulation, which has been used over decades [19]–[22] rather than the
Rayleigh's quotient, the original waveguide problem can be transformed into a series of the vari-
ational sub-problems defined in recursively partitioning domains within the cross section of the
waveguide. Meanwhile, the dynamic programming technique can be applied to recursively solve
these variational sub-problems. As a result, a 1-D relation illustrating the modal fields on any
pair of adjacent columns in the computational window can be derived. The method proposed in
this paper utilizes the one-dimensional relation to investigate the modal properties of the optical
waveguide.

The paper is organized as follows. The theory of the proposed method is outlined for the case
of scalar and semivectorial, quasi-TM modes in Sections 2 and 3, respectively. We will show in
Section 3 that due to the lack of the functional expression for which the Euler–Lagrange equa-
tion [23] is the quasi-TM wave equation for the modal fields of the two-dimensional waveguide
in an arbitrary geometry, the method proposed in this paper divides the cross section of the
waveguide into several slab waveguide regions. We show that there exists the functional
expression whose the stationary solution is the part of the modal field in each slab waveguide
region. Meanwhile, the stationary solution in each slab waveguide region can be combined to
construct the accurate modal field defined in the entire cross section of the waveguide via the
consideration of the field continuities at the interfaces between the slab waveguide regions. In
Section 4 the proposed methods are compared with the well-known effective index algorithm
[16], finite-difference algorithm, and the finite-element algorithm by evaluating their algorithmic
performance. In Section 5, the proposed algorithms are applied to investigate the modal proper-
ties of a rib-type, weakly guiding dielectric waveguide [24], a strongly guiding, silicon-on-insulator
dielectric waveguide [25], and a conductor-gap-silicon plasmonic waveguide [26]. The numerical
results are compared with those presented in [24]–[26], as well as the results derived by applying
R-Soft BeamPROP. Finally, Section 6 concludes this paper.
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2. Scalar Mode

2.1. Problem Formulation
Fig. 1(a) defines a rib-type waveguide with a permittivity distribution "ðx ; yÞ in the computa-

tional window � ¼ Lx � Ly . The scalar modal field Eðx ; yÞ associated with the waveguide is gov-
erned by the wave equation [22]

@2Eðx ; yÞ
@x2 þ @2Eðx ; yÞ

@y2 þ k2
0 "ðx ; yÞ � �2

� �
Eðx ; yÞ ¼ 0 (1)

where k0 ¼ 2�=� is the vacuum wave number, and � is the propagation constant. We assume
the modal field Eðx ; yÞ propagates along the z-direction. The functional JðEðx ; yÞ; �Þ [22], in
which the modal field Eðx ; yÞ is a stationary solution is given by

J Eðx ; yÞ; �ð Þ ¼
ZZ
�

@Eðx ; yÞ
@x

� �2

þ @Eðx ; yÞ
@y

� �2

� k2
0 "ðx ; yÞ � �2

� �
E2ðx ; yÞ

( )
dx dy (2)

Eðx ; y ¼ 0Þ ¼Eðx ; y ¼ Ly Þ ¼ Eðx ¼ Lx ; yÞ ¼ 0 (3)

Eðx ¼ 0; yÞ ¼ 0: (4)

Equations (2)–(4) formulate a waveguide problem for scalar modes. The objective is to find
the extremum of the functional equation JðEðx ; yÞ; �Þ subject to four boundary conditions (3)
and (4) at the edges of the computational window �.

In Fig. 1(b), we define a ðM þ 1Þ � ðN þ 1Þ mesh as a discrete window in which Ei ; j ¼
Eðj�; i�Þ and "i ; j ¼ "ðj�; i�Þ, i ¼ 0; 1; 2; . . .M and j ¼ 0; 1; 2; . . .N denote the discrete modal
field and the permittivity distribution, respectively. The boundary conditions at the edges of the
mesh can be written as E0; j ¼ EM ; j ¼ Ei ;N ¼ 0 and Ei ;0 ¼ 0 corresponding to the boundary condi-
tions (3) and (4). By using these boundary conditions, the variation functional JðEi ; j ; �Þ corre-
sponding to the functional (2) can be written in terms of Ei ; j and "i ; j as

JðEi ;j ;�Þ ¼
XN
j¼1

XM�1

i¼1

Ei ; j � Ei ;j�1
� �2 þ

XM�1

i¼2

Ei ; j � Ei�1; j
� �2 þ E2

1; j þ E2
M�1; j þ

XM�1

i¼1

gi ; jð�ÞE2
i ; j

( )

¼
XN
j¼1

uT
j Q þGjð�Þ
� �

uj þ ðuj � uj�1ÞT ðuj � uj�1Þ
n o

: (5)

Fig. 1. (a) The computational window � ¼ Lx � Ly used in the scalar mode calculation. It is enclosed
by x–y coordinate axes and the dashed lines. In (b), the solid circles define a ðM þ 1Þ � ðN þ 1Þ
mesh used in the scalar mode calculation. As indicated in (7), the function fK ðv ; �Þ is the extrema of
the functional JðEi ;j ; �Þ in the mesh enclosed by the dashed box. The dashed arrow on the box
shows the direction along which the function fK ðv ; �Þ can be recursively derived via the recurrence
relation (8).
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In the first equality of (5), the function gi ; jð�Þ denotes the term �ðk2
0 "i ; j � �2Þ�2. The second

equality shows the functional JðEi ; j ; �Þ in a matrix form via the definitions of the ðM � 1Þ � 1 modal
field uj , and the ðM � 1Þ � ðM � 1Þ matrices Q and Gjð�Þ:

uj ¼
E1; j

E2; j

..

.

EM�1; j

0
BBB@

1
CCCA; Q ¼ ½Qi ; j � ¼

2 i ¼ j ¼ 1;2; . . . ; ðM � 1Þ
�1 ji � j j ¼ 1 i ; j ¼ 1; 2; . . . ðM � 1Þ
0 otherwise

8<
: ;Gjð�Þ ¼ diag

g1; jð�Þ
g2; jð�Þ

..

.

gM�1; jð�Þ

0
BBB@

1
CCCA:
(6)

Note that it is easy to verify that the matrix Q is positive definite and thus the coefficient matrix
Q þGj ð�Þ þ I in the quadratic term uT

j ð�Þuj in (5) can be made to be positive definite by appropri-
ately choosing the mesh grid size �. The positive definiteness embedded in the coefficient ma-
trix Q þGj ð�Þ þ I implies that given a fixed value of � there exists the minimum of the functional
JðEi ; j ; �Þ with respect to the modal field uj .

2.2. Dynamic Programming Technique
To calculate the modal field uj which minimizes the functional JðEi ; j ; �Þ, for each positive K

we define a solution fK ðv ; �Þ of the sub-problem associated with the problem (5) as

fK ðv ; �Þ ¼ min
uK ;uKþ1;...uN

XN
j¼K

uT
j Q þGj ð�Þ
� �

uj þ ðuj � uj�1ÞT ðuj � uj�1Þ
n o

¼min
uK

uT
K Q þGK ð�Þð ÞuK þ ðuK � vÞT ðuK � vÞ

(

þ min
uKþ1;uKþ2;...uN

XN
j¼Kþ1

uT
j Q þGjð�Þ
� �

uj þ uj � uj�1
� �T ðuj � uj�1Þ

h i)
(7)

where v ¼ uK�1. Given a fixed value of � the function fK ðv ; �Þ is the extrema of the functional
JðEi ; j ; �Þ in the mesh ½0 M�� � ½K� N��, as shown in Fig. 1(b). The last equality in (7) shows
that the function fK ðv ; �Þ can be written in a recursive form

fK ðv ; �Þ ¼min
uK

uT
K Q þGK ð�Þð ÞuK þ ðuK � vÞT ðuK � vÞ þ fKþ1ðuK ; �Þ

n o
v ¼ uK�1;K ¼ 1; 2; . . . ðN � 1Þ

fNðuN�1Þ ¼ uT
N Q þGNð�Þð ÞuN þ ðuN � uN�1ÞT ðuN � uN�1Þ ¼ uT

N�1uN�1 ¼ juN�1j2: (8)

Equation (8) shows that the function fK ðv ; �Þ can be solved recursively from K ¼ N to K ¼ 1
and the terminal function f1ðv ; �Þ ¼ minu1;u2;...uNfJðEi ; j ; �Þg solves the original waveguide
problem (5). Note the pure quadratic form in the function fNðuN�1Þ holds due to Dirichlet's bound-
ary condition at the edge of the mesh, i.e., uN ¼ ðEi ;NÞ ¼ 0, i ¼ 1; 2; . . . ðM � 1Þ. It is intuitive to
assume that for each positive K the function fK ðv ; �Þ has also a pure quadratic form: fK ðv ; �Þ ¼
vTCK ð�Þv . By substituting the function fKþ1ðuK ; �Þ ¼ uT

KCKþ1ð�ÞuK into the recurrence relation
(8), and algebraically carrying out the quadratic minimization over uK , both iterative relations for
the modal field uK and the coefficient matrix CK ð�Þ can be derived as

CK ð�Þ ¼ I � I þQ þGK ð�Þ þ CKþ1ð�Þð Þ�1; K ¼ 1; 2; . . . ðN � 1Þ
uK ¼ I � CK ð�Þð ÞuK�1 (9)

where CNð�Þ ¼ I followed by the observation on the function fNðuN�1Þ ¼ u2
N�1. Based on the

Dirichlet's boundary condition (4) at x ¼ 0, i.e., u0 ¼ ðEi ;0Þ ¼ 0, the iterative relation for modal
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field u0 and u1 can be written as ðI � C1ð�ÞÞ�1u1 ¼ u0 ¼ 0. This equation and (9) form a new algo-
rithm which is capable to calculate the propagation constant � and the corresponding discrete
modal field uK for K ¼ 0; 1; 2; . . . ; ðN � 1Þ. First the equation (9) is applied to evaluate the co-
efficient matrix CK ð�Þ sequentially until the last coefficient matrix, C1ð�Þ, is derived. Then the
propagation constant � can be derived via solving the equation det½ðI � C1ð�ÞÞ�1� ¼ 0.

Although the equation det½ðI � C1ð�ÞÞ�1� ¼ 0 is a nonlinear equation and must be solved via
well-known algorithms such as Newton's like solver, the numerical results in Section 4 will dem-
onstrate that by appropriately selecting the initial value of �, the accurate value of � can be de-
rived in an efficient manner. Once the final value of � has been determined, the modal field u1
can be calculated via solving a system of ðM � 1Þ linear equations ðI � C1ð�ÞÞ�1u1 ¼ 0. Finally,
the other modal fields uK for K ¼ 2; . . . ; ðN � 1Þ can be derived by employing (9).

3. Quasi-TM Mode

3.1. Problem Formulation
In this section we adopt the same notations as those used in scalar-mode theory. Fig. 2(a)

defines a rib-type waveguide with a permittivity distribution "ðx ; yÞ in the computational window
� ¼ �1 [ �2 [ �3 ¼ Lx � Ly , in which the y -polarized modal field Ey ðx ; yÞ is governed by the
wave equation for quasi-TM modes [22]

@2Ey ðx ; yÞ
@x2 þ @2Ey ðx ; yÞ

@y2 þ @

@y
1

"ðx ; yÞ
@"ðx ; yÞ

@y
Ey ðx ; yÞ

� �
þ k2

0 "ðx ; yÞ � �2
� �

Ey ðx ; yÞ ¼ 0 (10)

where k0 ¼ 2�=� and � denote the vacuum wave number and the corresponding propagation
constant, respectively. To derive the variation functional with respect to the wave equation (10)
for the rib-waveguide in Fig. 2(a), the corresponding permittivity distribution "ðx ; yÞ is divided
into three disjoint slab waveguides, i.e., "ðx ; yÞ ¼ P3

m¼1 "ðx ; yÞ � Umðx ; yÞ, where the unit-step
function Umðx ; yÞ is defined in such a way that Umðx ; yÞ ¼ 1; ðx ; yÞ 2 �m, otherwise
Umðx ; yÞ ¼ 0. For notational simplicity, because the term "ðx ; yÞ � Umðx ; yÞ is zero outside the
slab waveguide region �m, in the following contents of this section we use functions
"mðy 2 �mÞ, m ¼ 1, 2, 3 to define the permittivity distribution in the local slab waveguide region
�m, i.e., "mðy 2 �mÞ ¼ f"ðx ; yÞ � Umðx ; yÞjðx ; yÞ 2 �mg. Note that in each slab waveguide region

Fig. 2. (a) The computational window � ¼ �1 [ �2 [ �3 ¼ Lx � Ly used in the quasi-TM mode cal-
culation is divided into three slab waveguide regions. The regions enclosed by dashed lines,
gray lines, and dashed-dot lines define the divided slab waveguides �1, �2, and �3, respectively.
x ¼ ‘12 and x ¼ ‘23 denote the interfaces between the slab waveguide regions. In (b), the circles
define a ðM þ 1Þ � ðN þ 1Þ mesh � ¼ �1 [ �2 [ �3 used in the quasi-TM mode calculation. The
mesh is divided into three slab waveguide regions in such a way that the mesh points enclosed
by the dashed boxes from the right to the left sides in the figure construct the slab waveguides
�1, �2, and �3. The two sets of empty circles L12 ¼ fði�; j�Þj0 � i � M j ¼ hÞg and L23 ¼
fði�; j�Þj0 � i � M j ¼ s � 1Þg define the interfaces between the slab waveguide regions.
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�m, the permittivity is invariant along the x direction, as shown in Fig. 2(a); so, the function "mð�Þ
depends only on the variable y.

In Fig. 2(a), we introduce x ¼ ‘12 and x ¼ ‘23 as the interfaces between the slab waveguide
regions. Again we partition the modal field Ey ðx ; yÞ into three parts, i.e., Ey ðx ; yÞ ¼P3

m¼1 Ey ðx ; yÞ � Umðx ; yÞ, where the partial field Ey ðx ; yÞ � Umðx ; yÞ is zero outside the local slab
waveguide region �m,. In the following contents of this section, for notational simplicity, we de-
fine a function Em

y ððx ; yÞ 2 �mÞ ¼ fEy ðx ; yÞ � Umðx ; yÞjðx ; yÞ 2 �mg to represent the part of the
modal field Ey ðx ; yÞ in the local slab waveguide region �m.

While the above partitions of the modal field Ey ðx ; yÞ and the permittivity distribution "ðx ; yÞ
are substituted into the wave (10), it can be seen that every local field Em

y ððx ; yÞ 2 �mÞ is gov-
erned by the (10) defined in each local slab waveguide region �m. Furthermore, there exists the
functional minEm

y

RR
�m

FmðEm
y ðx ; yÞ; "mðyÞ; �Þ dx dy for which Euler–Lagrange equation [23] is the

quasi-TM wave (10) defined in each local slab waveguide region �m. The stationary solution of
the functional corresponds to the local field Em

y ððx ; yÞ 2 �mÞ. By summing up all functionals de-
fined in the local slab waveguide regions, we may define the variational problem
Jrib-TMðEy ðx ; yÞ; �Þ in the computational window � ¼ �1 [ �2 [ �3 as

Jrib-TM Ey ðx ; yÞ; �
� � ¼ X

m¼1;2;3

min
Em
y

Z
�m

Z
Fm Em

y ðx ; yÞ; "mðyÞ; �
� �

dx dy

¼
X

m¼1;2;3

min
Em
y

Z
�m

Z
"mðyÞ

@Em
y

@x

� �2

þ @Em
y

@y

� �2
(

� @

@y
1

"mðyÞ �
@"mðyÞ
@y

� �
þ k2

0 "mðyÞ��2
� 	

Em
y

� �2
)
dx dy

(11)

Em
y ðx ; y ¼ 0Þ ¼Em

y x ; y ¼ Ly Þ ¼ 0; E1
y ðx ¼ Lx ; yÞ ¼ 0; m ¼ 1; 2; 3 (12)

E3
y ðx ¼ 0; yÞ ¼0 (13)

E1
y ðx ¼ ‘12; yÞ ¼E2

y ðx ¼ ‘12; yÞ; E2
y ðx ¼ ‘23; yÞ ¼ E3

y ðx ¼ ‘23; yÞ (14)

�j!� � H1
x ðx ¼ ‘12; yÞ ¼

@E1
y ðx ¼ ‘12; yÞ

@x
¼ @E2

y ðx ¼ ‘12; yÞ
@x

¼ �j$� � H2
z x ¼ ‘12; yð Þ (15)

�j$� � H2
x ðx ¼ ‘23; yÞ ¼

@E2
y ðx ¼ ‘23; yÞ

@x
¼ @E3

y ðx ¼ ‘23; yÞ
@x

¼ �j$� � H3
z ðx ¼ ‘23; yÞ (16)

where Hm
z ðx ; yÞ denotes the z-polarized magnetic field corresponding to the field Em

y ðx ; yÞ and
� is the permeability of the material in the window �. Equations (12) and (13) are Dirichlet's
boundary conditions imposed on four edges of the window �. In equations (14)–(16), we intro-
duce the field Em

y ðx ; yÞ and Hm
z ðx ; yÞ continuities at interfaces x ¼ ‘12 and at x ¼ ‘23,

respectively.
Based on the linearity of the functional expression Jrib-TMðEy ðx ; yÞ; �Þ shown in (11) and the

principle of the optimality, the variational waveguide problem Jrib-TMðEy ðx ; yÞ; �Þ can be separately
solved via the minimization of the functional (11) in each slab waveguide region �m, i.e., the mini-
mization of the functional

RR
�m

FmðEm
y ðx ; yÞ; "mðyÞ; �Þ dx dy . To derive the discrete variational

model with respect to the functional (11) in each slab waveguide region �m, Fig. 2(b) shows a
ðM þ 1Þ � ðN þ 1Þ mesh � ¼ �1 [ �2 [ �3 in which the sets �1 ¼ fði�; j�Þj0 � i � M ðh þ 1Þ �
j � Ng, �2 ¼ fði�; j�Þj0 � i � M s � j � hg, and �3 ¼ fði�; j�Þj0 � i � M 0 � j � ðs � 1Þg de-
note mesh points in the slab waveguide regions �1, �2, and �3, respectively. As the empty cir-
cles shown in Fig. 2(b), we select the set of the mesh points L12 ¼ fði�; j�Þj0 � i � M j ¼ hÞg
as the interface between �1 and �2 and the set of the mesh points L23 ¼ fði�; j�Þj0 � i �
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M j ¼ s � 1Þg as the interface between �2 and �3. The permittivity distribution of each slab
waveguide is described by the notation "mi ; j ¼ "ðj�; i�Þ ¼ "mði�Þ; m ¼ 1; 2; 3.

Based on above definitions, we can define a discrete variation functional Jm
rib-TMðEm

i ; j ; �Þ associ-
ated with the functional (11) in each slab waveguide region �m, as shown in (17), shown below.
The objective is to find the extrema of the functional Jm

rib-TMðEm
i ; j ; �Þ in each slab waveguide re-

gion �m subject to the Dirichlet's boundary condition (18), shown below, and the interface condi-
tions (19) and (20), shown below:

Jm
rib-TMðEm

i ; j ; �Þ ¼
X
j2�m

XM�1

i¼1

"mi ; j Em
i ; j � Em

i ;j�1

� �2
þ

XM�1

i¼2

"mi ; j Em
i ; j � Em

i�1; j

� �2
(

þ "m1; j Em
1; j

� �2
þ "mM ; j Em

M�1; j

� �2
þ

XM�1

i¼1

gm
i ; j ð�Þ Em

i ; j

� �2
)

¼
X
j2�m

um
j

� �T
Qm

j þGm
j ð�Þ

� �
um
j þ um

j � um
j�1

� �T
Dm

j um
j � um

j�1

� �
 �
(17)

ðE3
i ;0Þ ¼ 0 (18)

E1
ði ;jÞ2L12 ¼E2

ði ;jÞ2L12 ; E2
ði ;jÞ2L23 ¼ E3

ði ;jÞ2L23 (19)

H1
ði ;jÞ2L12 ¼H2

ði ;jÞ2L12 ; H2
ði ;jÞ2L23 ¼ H3

ði ;jÞ2L23 : (20)

Note that we have applied Dirichlet's boundary condition Em
0; j ¼ Em

M ; j ¼ E1
i ;N ¼ 0, i.e., a discrete

version of the boundary condition (12) into the functional (17). The boundary conditions (19) and
(20) are discrete versions of the conditions (14)–(16). To solve the functional Jm

rib-TMðEm
i ; j ; �Þ by em-

ploying the dynamic programming technique, the functional Jm
rib-TMðEm

i ; j ; �Þ is expressed in an alter-
native matrix form in the second equality of (17), where the scalar coefficient gm

i ; j ð�Þ, the
ðM � 1Þ � 1 column field um

j , and the ðM � 1Þ � ðM � 1Þ matrices Dm
j , Q

m
j , and Gm

j ð�Þ are given by

gm
i ; jð�Þ ¼ �"mi ; j

� �
� 1

"mi ; j

� �2

"miþ1; j � "mi�1; j

2

� �2

þ 1
"mi ; j

"miþ1; j þ "mi�1; j � 2"mi ; j
� �

þ k2
0 "mi ; j

� �
� �2

� �
�2

8><
>:

9>=
>;

um
j ¼

Em
1; j

Em
2; j

..

.

Em
M�1; j

0
BBBBB@

1
CCCCCA; Dm

j ¼ diag

"m1; j
"m2; j

..

.

"mM�1; j

0
BBBBB@

1
CCCCCA

Qm
j ¼ Qm

j

� �
p;q

� 	

¼

"mp; j þ "mpþ1; j ; p ¼ q ¼ 1; 2; . . . ðM � 1Þ;
�"mq; j ; p � q ¼ �1;

�"mp; j ; p � q ¼ þ1;

0; otherwise,

8>>><
>>>:

Gm
j ð�Þ ¼ diag

gm
1; jð�Þ

gm
2; jð�Þ
..
.

gm
M�1; jð�Þ

0
BBB@

1
CCCA: (21)

3.2. Dynamic Programming Technique
Now we may use the dynamic programming procedure to evaluate the extrema of the functional

Jm
rib-TMðEm

i ; j ; �Þ. As shown in (22), shown below, and Fig. 2(b), we define Fm
K ðv ; �Þ;m ¼ 1; 2; 3 as so-

lutions of the sub-problems associated with the waveguide problem (17), i.e., given a fixed value of
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�, the function Fm
K ðv ; �Þ is the extrema of the functional Jm

rib-TMðEm
i ; j ; �Þ in the domain partitioning

from x ¼ K to the rightmost edge of the slab waveguide region �m

Fm
K ðv ; �Þ ¼

min
u1
K ;u

1
Kþ1;...u

1
N

PN
j¼K

u1
j

� �T
Q1

j þG1
j ð�Þ

� �
u1
j þ u1

j � u1
j�1

� �T
D1

j u1
j � u1

j�1

� �
 �
; m ¼ 1

min
u2
K ;u

2
Kþ1;...u

2
h

Ph
j¼K

u2
j

� �T
Q2

j þG2
j ð�Þ

� �
u2
j þ u2

j � u2
j�1

� �T
D2

j u2
j � u2

j�1

� �
 �
; m ¼ 2

min
u3
K ;u

3
Kþ1;...u

3
s�1

Ps�1

j¼K
u3
j

� �T
Q3

j þG3
j ð�Þ

� �
u3
j þ u3

j � u3
j�1

� �T
D3

j u3
j � u3

j�1

� �
 �
; m ¼ 3.

8>>>>>>>><
>>>>>>>>:

(22)

By the same reasoning as (7) and (8) shown in the scalar mode theory, each function Fm
K ðv ; �Þ

in (22) can be written in an alternative recurrence form governing the function Fm
K ðv ; �Þ and

Fm
Kþ1ðv ; �Þ in each slab waveguide region �m can be derived:

In region �1 :

F 1
K ðv ; �Þ ¼min

u1
K

u1
K

� �T
Q1

K þG1
K ð�Þ

� �
u1
K þ u1

K � v
� �T

D1
K u1

K � v
� �þ F 1

Kþ1 u1
K ; �

� �n o
ðh þ 1Þ � K � ðN � 1Þ

F 1
N u1

N�1

� � ¼ u1
N

� �T
Q1

N þG1
Nð�Þ

� �
u1
N þ u1

N � u1
N�1

� �T
D1

N u1
N � u1

N�1

� � ¼ u1
N�1

� �T
D1

N u1
N�1

� �
:

In region �2 :

F 2
K ðv ; �Þ ¼min

u2
K

u2
K

� �T
Q2

K þG2
K ð�Þ

� �
u2
K þ u2

K � v
� �T

D2
K u2

K � v
� �þ F 2

Kþ1 u2
K ; �

� �n o
ðsÞ � K � ðh � 1Þ;

F 2
h u2

h�1; �
� � ¼ u2

h

� �T
Q2

h þG2
hð�Þ

� �
u2
h þ u2

h � u2
h�1

� �T
D2

h u2
h � u2

h�1

� �
In region �3 :

F 3
K ðv ; �Þ ¼min

u3
K

u3
K

� �T
Q3

K þG3
K ð�Þ

� �
u3
K þ u3

K � v
� �T

D3
K u3

K � v
� �þ F 3

Kþ1 u3
K ; �

� �n o
1 � K � ðs � 2Þ

F 3
s�1 u3

s�2; �
� � ¼ u3

s�1

� �T
Q3

s�1 þG3
s�1ð�Þ

� �
u3
s�1 þ u3

s�1 � u3
s�2

� �T
D3

s�1 u3
s�1 � u3

s�2

� �
(23)

where v ¼ um
K�1 in the functions Fm

K ðv ; �Þ;m ¼ 1; 2; 3. Given the functions F 1
Nðu1

N�1Þ, F 2
h ðu2

h�1; �Þ,
and F 3

s�1ðu3
s�2; �Þ at the right edge of each slab waveguide region �m;m ¼ 1; 2; 3, as shown in

Fig. 2(b), the function at the left edge of each slab waveguide region �m;m ¼ 1; 2; 3, i.e.,
F 1
hþ1ðv ; �Þ¼minu1

hþ1;u
1
hþ2;...u

1
N
fJ1

rib-TMðE1
i ; j ; �Þg, F 2

s ðv ; �Þ¼minu2
s ;u

2
sþ1;...u

2
h�1

fJ2
rib-TMðE2

i ; j ; �Þg, and F 3
1 ðv ; �Þ¼

minu3
1 ;u

3
2 ;...u

3
s�2

fJ3
rib-TMðE3

i ; j ; �Þg, i.e., the extrema of the functional Jm
rib-TMðEm

i ; j ; �Þ shown in (17) in

each slab waveguide region �m;m ¼ 1; 2; 3 can be derived by recursively minimizing (23).
Based on the observation from (23) that all of the initial functions F 1

Nðu1
N�1Þ, F 2

h ðu2
h�1; �Þ, and

F 3
s�1ðu3

s�2; �Þ have the quadratic form, we assume the functions Fm
K ðv ; �Þ;m ¼ 1;2; 3 inherits the

quadratic characteristic so that we can express the functions Fm
K ðv ; �Þ;m ¼ 1; 2; 3 in terms of

the ðM � 1Þ � ðM � 1Þ unknown coefficient matrices Am
K ð�Þ, Bm

K ð�Þ, and unknown scalar function
Wm

K ð�Þ as

Fm
K ðv ; �Þ ¼

vT D1
K

� �T
A1
K ð�Þv ; m ¼ 1

vT D2
K

� �T
A2
K ð�Þv � 2 � vT D2

K

� �T
B2
K ð�Þ u2

h

� �þW 2
K ð�Þ; m ¼ 2

vT D3
K

� �T
A3
K ð�Þv � 2 � vT D3

K

� �T
B3
K ð�Þ u2

s�1

� �þW 3
K ð�Þ; m ¼ 3.

8>>><
>>>:

(24)
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By substituting the quadratic expression (24) for each Fm
K ðv ; �Þ into the recurrence equation (23)

and algebraically carrying out the essential quadratic optimization over the field um
K , the iterative

relations for the ðM � 1Þ � ðM � 1Þ coefficient matrices Am
K ð�Þ, Bm

K ð�Þ and the iterative relation
for the ðM � 1Þ � 1 column field um

K in each region �m can be derived:

Am
K ð�Þ ¼ I � Dm

K þQm
K þGm

K ð�Þ þ Dm
Kþ1

� �TAm
Kþ1ð�Þ

� ��1
Dm

K

� �
; K 2 �m; m ¼ 1;2; 3

A1
N ¼ I; A2

h ¼ I; A3
s�1 ¼ I

Bm
K ð�Þ ¼ I � Am

K ð�Þ
� �

Bm
Kþ1ð�Þ; K 2 �m; m ¼ 2; 3

B2
h ¼ I; B3

s�1 ¼ I

um
K ¼

I � A1
K ð�Þ

� �
u1
K�1

� �
; m ¼ 1; ðh þ 1Þ � K � ðN � 1Þ

I � A2
K ð�Þ

� �
u2
K�1

� �þ B2
K ð�Þ u2

h

� �
; m ¼ 2; ðsÞ � K � ðh � 1Þ

I � A3
K ð�Þ

� �
u3
K�1

� �þ B3
K ð�Þ u3

s�1

� �
; m ¼ 3; 1 � K � ðs � 2Þ.

8>><
>>: (25)

The iterative relation for the field um
K in each slab waveguide region �m can be connected via

considering the field continuities at the interfaces between the slab waveguide regions, i.e., the
conditions shown in (19) and (20). In the discrete variational model shown in (17)–(21), the field
um
K defined in (21) naturally satisfies the condition (19), i.e., u2

h ¼ E1
ði ;jÞ2L12 ¼ E2

ði ;jÞ2L12 , and

u3
s�1 ¼ E2

ði ;jÞ2L23 ¼ E3
ði ;jÞ2L23 . Meanwhile, the magnetic fields at the interfaces of the slab wave-

guide regions can be derived by employing the finite-difference method on the wave equation
(10) in order to express the first derivative of the electric modal field at the interfaces of the slab
waveguide region, i.e., @E1

y ðx ¼ ‘12; yÞ=@x , @E2
y ðx ¼ ‘12; yÞ=@x , @E2

y ðx ¼ ‘23; yÞ=@x , and

@E3
y ðx ¼ ‘23; yÞ=@x , which are shown in (15) and (16) in terms of the discrete modal fields u1

hþ1,

u2
h , u

2
h�1, u

2
s , u

3
s�1, and u3

s�2:

@E1
y ðx ¼ ‘12; yÞ

@x
¼ 1

ð2�Þ P1 þ 1
4
Q1 "2i ;h

� �
� P2 � 2þ � � �ð Þ2

h i



� I þQ2 "2i ;h

� �
þ ð� � k0Þ2Q3 "2i ;h

� ��
u2
h þ 2u1

hþ1

�

@E2
y ðx ¼ ‘12; yÞ

@x
¼ ð�1Þ

ð2�Þ P1 þ 1
4
Q1 "2i ;h

� �
� P2 � 2þ ð� � �Þ2

h i



� I þQ2 "2i ;h

� �
þ ð� � k0Þ2Q3 "2i ;h

� ��
u2
h � 2u2

h�1

�

@E2
y ðx ¼ ‘23; yÞ

@x
¼ 1

ð2�Þ P1 þ 1
4
Q1ð"3i ;s�1Þ � P2 � 2þ ð� � �Þ2

h i



� I þQ2 "3i ;s�1

� �
þ ð� � k0Þ2Q3 "3i ;s�1

� ��
u3
s�1 þ 2u2

s

�

@E3
y ðx ¼ ‘23; yÞ

@x
¼ ð�1Þ

ð2�Þ P1 þ 1
4
Q1 "3i ;s�1

� �
� P2 � 2þ ð� � �Þ2

h i



� I þQ2 "3i ;s�1

� �
þ ð� � k0Þ2Q3 "3i ;s�1

� ��
u3
s�1 � 2u3

s�2

�
(26)

where the ðM � 1Þ � ðM � 1Þ constant matrices P1, P2, and the ðM � 1Þ � ðM � 1Þ matrices
Q1ð�Þ, Q2ð�Þ, Q3ð�Þ, which are the functions of the dielectric constants "2i ;h and "3i ;s�1 at the mesh
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points L12 ¼ fði�; j�Þj0 � i � M j ¼ hÞg and L23 ¼ fði�; j�Þj0 � i � M j ¼ s � 1Þg are given by

P1 ¼ ðP1Þp;q
h i

¼
�2; p ¼ q

1; jp � qj ¼ 1

0; otherwise

8<
: ; P2 ¼ ðP2Þp;q

h i
¼

1; p � q ¼ �1

�1; p � q ¼ þ1

0; otherwise

8<
:

Q1 "mi ; j

� �
¼diag

1
"mi ; j

"miþ1 � "mi�1

� �( )
; 1 � i � ðM � 1Þ; j ¼ h; ðs � 1Þ; m ¼ 2; 3

Q2 "mi ; j

� �
¼diag � 1

"mi ; j

� �2

"miþ1; j � "mi�1; j

2

� �2

þ 1
"mi ; j

"miþ1; j þ "mi�1; j � 2"mi ; j
� �8><

>:
9>=
>;

Q3 "mi ; j

� �
¼diag "mi ; j

n o
: (27)

By substituting the expressions of the magnetic modal fields shown in the equation (26) into the
conditions (20), we derive two auxiliary equations which illustrates the iterations of the modal
fields um

K at the interfaces of the slab waveguide regions, i.e., K ¼ h and K ¼ s � 1:

u1
hþ1 ¼ ahu2

h þ bhu2
h�1

u2
s ¼ as�1u3

s�1 þ bs�1u3
s�2

aj ¼
ð�1Þ P1þ 1

4
Q1 "2i ;h

� �
� P2� 2þ ð� � �Þ2

h i
� I þQ2 "2i ;h

� �
þ � � k0ð Þ2Q3 "2i ;h

� �
 �
; j¼h

ð�1Þ P1þ 1
4
Q1 "3i ;s�1

� �
� P2� 2þ ð� � �Þ2

h i
� I þQ2 "3i ;s�1

� �
þ � � k0ð Þ2Q3 "3i ;s�1

� �
 �
; j¼ðs�1Þ

8>>><
>>>:

bj ¼ � 1; j ¼ h; ðs � 1Þ: (28)

With the use of the above equations, the dependence of u2
h or u3

s�1 for the modal field iterations
(25) in the slab waveguide regions �2 and �3 can be eliminated and then an equivalent model
which illustrates the modal field iteration in the overall mesh � ¼ �1 [ �2 [ �3 can be character-
ized by the corresponding coefficient matrices Cequiv :

K ð�Þ:

um
K ¼ I � Cequiv :

K ð�Þ
� �

um
K�1; 1 � K � ðN � 1Þ; m ¼ 1; 2; 3

Cequiv :
K ð�Þ ¼

A1
K ð�Þ; ðh þ 1Þ � K � ðN � 1Þ

I þ ah � I þ A1
hþ1ð�Þ

� ��1ðbhÞ; K ¼ h

I � I þ B2
K ð�Þ � B2

Kþ1ð�Þ
� �1

n
� Cequiv :

Kþ1 ð�Þ � A2
Kþ1ð�Þ

� �o�1
I � A2

K ð�Þ
� �

; ðsÞ � K � ðh � 1Þ
I þ as�1 � I þ A2

sð�Þ
� ��1ðbs�1Þ; K ¼ ðs � 1Þ

I � I þ B3
K ð�Þ � B3

Kþ1ð�Þ
� �1

n
� Cequiv :

Kþ1 ð�Þ � A3
Kþ1ð�Þ

� �o�1
I � A3

K ð�Þ
� �

; 1 � K � ðs � 2Þ

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(29)

where Cequiv :
N ð�Þ ¼ I followed by the observation Cequiv :

N ð�Þ ¼ A1
N ¼ I in (25). The iterative relation

for modal field u3
0 and u3

1 can be written as ðI � Cequiv :
1 ð�ÞÞ�1u3

1 ¼ u3
0 ¼ 0, as followed by applying

the Dirichlet's boundary condition (18), i.e., u3
0 ¼ ðE3

i ;0Þ ¼ 0. Based on this equation, the varia-
tional quasi-TM mode problem shown in (11)–(16) can be solved by evaluating the ðM � 1Þ �
ðM � 1Þ coefficient matrix Cequiv :

1 ð�Þ in the first place. Then the exact value of the propagation
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constant � can be derived by solving the equation det½ðI � Cequiv :
1 ð�ÞÞ�1� ¼ 0. Once the final

value of � has been determined, the modal field u3
1 can be derived by solving the linear equation

ðI � Cequiv :
1 ð�ÞÞ�1u3

1 ¼ 0. Finally, the other modal fields um
K for K ¼ 2; . . . ; ðN � 1Þ can be derived

by employing (29).

4. Comparison in Algorithmic Performance to EIM, FDM, and FEM
The strategy used to solve the quasi-TM modal field in this paper, i.e., partition the original rib-
type waveguide structure into three slab waveguide regions in the first place, then solves the
part of the modal filed Em

y ððx ; yÞ 2 �mÞ in each slab waveguide region, and finally combines
them into the modal field defined in the entire computational window, is distinct from the one
used in the effective index method (EIM) [16], [22]. In case of the rib-type dielectric waveguide,
EIM assumes the modal field solution has the form of the separation of the variables, and thus
the original rib-type waveguide problem can be transformed into two slab waveguide problems
along the x-direction and the y-direction, respectively. However, such assumption causes EIM
actually analyzes the separable permittivity distribution, which differs from the original permittiv-
ity distribution "ðx ; yÞ in the computational window [16]. Such an error in the permittivity distribu-
tion substantially deteriorates the numerical accuracy in the evaluation of �, especially in the
case of the strongly guiding, rib-type waveguide [16]. On the other hand, The numerical calcula-
tion in Section 5 demonstrates that the quasi-TM method proposed in this paper, accurately
solves the local field Em

y ððx ; yÞ 2 �mÞ in each slab waveguide region, and then combines them
into the accurate modal field solution existable in the original permittivity distribution "ðx ; yÞ.
Therefore compared to EIM, the partitioning strategy used in this paper exhibits no error in the
evaluation of the modal field, and thus the modal indices �.

Meanwhile, we may compare the time complexity of the proposed mode solver with those of fi-
nite difference method (FDM) and finite element method (FEM) by evaluating the number of the
dominant matrix operations. Here we assume that these mode solvers use a common algorithm,
e.g., Gauss-Jordan method to carry out the dominant matrix operations. Then in the case of the
rectangular computational window, the total number of the mesh points determines the number
of the dominant matrix operations required by these mode solvers. For instance, the proposed
scalar mode solver (9) illustrates that, given a fixed computational window size � ¼ Lx � Ly
shown in Fig. 1, the corresponding the number of the mesh points ðM þ 1Þ � ðN þ 1Þ determines
the computational cost to carry out the matrix inverse operations until the coefficient matrix C1ð�Þ
in the nonlinear equation det½ðI � C1ð�ÞÞ�1� ¼ 0 is derived. If FDM or FEM is used to solve the
waveguide problem within the computational window � ¼ Lx � Ly , we assume that Gauss–
Jordan algorithm is used to diagonalize the resultant eigen-value matrix whose size is also the
function of the total number of the mesh points or the total number of the mesh elements.

Moreover, in the common case, given a fixed computational window size � ¼ Lx � Ly , all of
the above three mode solvers require a moderate to large number of the mesh points in order to
derive the convergent modal indices. That is, in the condition of the convergence of the modal
calculation, we can fairly evaluate the number of the dominant matrix operations required by
these mode solvers in terms of the Big-O notation as the function of the number of the mesh
points or the number of the mesh elements.

To evaluate the time complexity of the FDM, first, as shown in Fig. 1(b), it can be observed
that given a fixed computational window size � ¼ Lx � Ly , there requires ðM � 1Þ � ðN � 1Þ un-
knowns to describe the modal field within the boundary of the computational window, because
the modal field at the boundary points has been designated by the boundary condition. If we
apply FDM to calculate the modal indices and the modal field of the waveguide structure in
Fig. 1(b), there requires OððN � 1Þ3ðM � 1Þ3Þ matrix operations in order to compute the diago-
nalization of the resulting eigen-value matrix.

In the FEM case, if the same computational window � ¼ Lx � Ly shown in Fig. 1(a) is divided

into Me elements, each of which is described by Ne nodes, there requires OððNeÞ3ðMeÞ3Þ matrix
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operations in order to compute the diagonalization of the resulting eigen-value matrix. Therefore
it can be evaluated that in order to derive all convergent modal indices, FDM or FEM requires
the number of the dominant matrix operations which is about the sixth power of the amount of
the input data, i.e., ðN � 1Þ3ðM � 1Þ3 in the FDM case and ðNeÞ3ðMeÞ3 in the FEM case. Note
that the above evaluation of the number of the dominant matrix operations required by FDM or
FEM is obtained by treating the resultant eigen-value matrices as fully dense. In fact, the spar-
sity of the eigen-value matrix for FEM is highly associated with the order of the shape functions.
A highly sparse eigen-value matrix can be achieved by decreasing the order of the shape
function. Meanwhile, there indeed exists several other algorithms to diagonalize such sparse
eigen-value matrix more efficiently. However, decreasing the order of the shape function may
deteriorate the accuracy of the modal calculations.

Compared to FDM and FEM, the dominant matrix operations for the proposed scalar mode
solver (9) can be evaluated to be Oððn�ÞðN � 1ÞðM � 1Þ3Þ, where n� is the factor representing
the number of the Newton's like steps required to derive all modal indices in the nonlinear equa-
tion det½ðI � C1ð�ÞÞ�1� ¼ 0. That is, the single-mode or few-modes waveguide structure leads to
the small factor n�. The corresponding time complexity of the proposed scalar mode solver (9)

is about the fourth power of the amount of the input data, i.e., ðN � 1ÞðM � 1Þ3. However, in the
case of the multi-mode waveguide structure, to calculate all modal indices the required number
of the dominant matrix operations for the proposed mode solver (9) grows with the factor n�.

We can evaluate the space complexity of any of the above mode solvers as the storage size
required by the mode solver in order to calculate one modal index. Note that the proposed sca-
lar mode solver (9) shows that the modal indices can be derived via the calculation of the solu-
tion of the equation det½ðI � C1ð�ÞÞ�1� ¼ 0, which simply involves the coefficient matrix C1ð�Þ.
Equation (9) shows that the matrix C1ð�Þ can derived by sequentially evaluating each coefficient
matrix CK ð�Þ from the given matrix CNð�Þ ¼ I. This process implies that the proposed scalar
mode solver simply requires a common memory space to sequentially store ðM � 1Þ � ðM � 1Þ
matrix CK ð�Þ during the program execution. However, FDM or FEM requires a larger memory
space to store the eigen-value matrix with its size as large as ðM � 1ÞðN � 1Þ � ðM � 1ÞðN � 1Þ
in the FDM case or MeNe �MeNe in the FEM case during the computation of the matrix diago-
nalization. Thus the proposed method also improves the space efficiency by preventing the di-
agonalization of large matrix.

5. Numerical Results and Discussion
We numerically investigate the accuracy and the efficiency of the proposed method via the cal-
culation of the scalar and quasi-TM, guided modes in two rib-type, dielectric waveguides. The

Fig. 3. A rib-type rectangular waveguide for numerical demonstration in this study.
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cross section of the rib waveguide shown in Fig. 3 represents the computational window
� ¼ Lx � Ly for modal calculation. In this window, the rib width, the rib height, and the slab thick-
ness are denoted as W , H , and D respectively. Both waveguides have an air cap, and the re-
fractive indices nguiding and ncladding in the guiding layer and the cladding layer, respectively. The
first type of the rib waveguides is designated as a weakly-guiding, GaAs-on-AlGaAs hetero-
structure with the refractive indices nguiding ¼ 3:44 and ncladding ¼ 3:4 at 1.15 �m. The waveguide
appears to have a large cross section and have a single guided mode. The geometric parame-
ters designated are consistent with those shown in [24], i.e., W ¼ 3 �m, H ¼ 1 �m, and
D ¼ 0:6 �m. The second type of the rib waveguides is designated as a strongly guiding, silicon-
on-insulator (SOI) heterostructure with the refractive indices nguiding ¼ 3:44 and ncladding ¼ 1:46
at 1.55 �m. The geometric parameters are appropriately designated in order to satisfy the single
guided mode condition presented by Soref et al. [25]. The resulting rib waveguide also has a
large cross section with W ¼ H ¼ 5 �m, and D ¼ 4 �m. These two waveguides will be numeri-
cally analyzed by employing the proposed method and the commercial simulator BeamPROP,
respectively. Here the numerical results derived via the BeamPROP are considered as a bench-
mark to compare with the results obtained by the proposed method. The accuracy of the pro-
posed method is evaluated in terms of the relative error. Moreover, in the same computational
environment, we evaluate the efficiency of the proposed method by comparing the CPU times
spent by the proposed method and the BeamPROP.

To evaluate the scalar mode indices for the first type, weakly guiding GaAs-on-AlGaAs wave-
guide, it is realized that the mesh grid size �, which involves the discretization approximation of
the first derivatives of the modal field Eðx ; yÞ in the variation functional JðEðx ; yÞ; �Þ in (5) af-
fects the numerical accuracy of the modal calculation. In the numerical experiment, the compu-
tational window size is fixed to � ¼ Lx � Ly ¼ 8� 2 ð�mÞ2. Then the proposed method (9) is
used to calculate the scalar mode indices for the mesh grid size � varied from 0.04 �m (51 �
201 mesh points) to 0.0182 �m (111 � 441 mesh points), in order to determine the convergent
mode index. Table 1 shows the scalar mode indices neff calculated by using the proposed
method (9), the variational Fourier transform method [24], and the simulator BeamPROP. It
shows that the proposed method (9) with grid size � ¼ 0:0182 �m gives a convergent index.

TABLE 1

Scalar mode indices calculated by the proposed method, BeamPROP and the variational Fourier
transform method [24] for the GaAs-on-AlGaAs, rib-type waveguide. Relative error between the pro-
posed method and the variational Fourier transform method [24] is ð3:4137327� 3:41377096Þ=
3:41372428 ¼ 1:12� 10�5. Relative error between the proposed method and BeamPROP is
ð3:413730� 3:41377096Þ=3:41377096 ¼ 1:2� 10�5
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The calculated modal index values converge to 3.41377096, which is almost consistent to the
convergent index value derived by the variational Fourier transform method [24] or the Beam-
PROP, respectively. The relative error between the modal indices calculated by the proposed
method and the other two methods reaches 10�5 in the convergence case.

Table 1 also shows that the CPU time of about 0.843 sec is spent by the proposed method in
order to derive fundamental mode index whose relative error reaches 10�5. Compared to the
CPU time spent by BeamPROP, the proposed method spends much less CPU time to reach the
convergence of the modal calculation. The reason resulting in such an improvement in the algo-
rithmic efficiency can be explained as follows.

When the proposed method is utilized to calculate the scalar mode indices in the waveguide
structure in Fig. 3, the main computational burden comes from two sources. First, the dominant
matrix operations based on the sequential calculation of the coefficient matrices CK ð�Þ from
K ¼ N � 1 to K ¼ 1 must be carried out in order to derive the coefficient matrix C1ð�Þ in the non-
linear equation det½ðI � C1ð�ÞÞ�1� ¼ 0. Equation (9) shows that the calculation of each coefficient
matrix CK ð�Þ involves the inverse of a ðM � 1Þ � ðM � 1Þ matrix I þQ þGK ð�Þ þ CKþ1ð�Þ. Sec-
ond, once the coefficient matrix C1ð�Þ has been derived, there still requires an additional com-
putation work to find the roots � of the nonlinear equation det½ðI � C1ð�ÞÞ�1� ¼ 0.

Regarding the first source, if the matrix inversion takes place in terms of Gauss-Jordan elimi-

nation process, there totally requires OððN � 1ÞðM � 1Þ3Þ multiplications to invert all matrices

I þQ þGK ð�Þ þ CKþ1ð�Þ, K ¼ 1; 2; . . . ; ðN � 1Þ. The bottleneck term ðM � 1Þ3 is not considered
as an issue because it can be seen from the equation (9) that the dimension of each matrix I þ
Q þGK ð�Þ þ CKþ1ð�Þ to be inverted is ðM � 1Þ � ðM � 1Þ associated with the amount of the
mesh points along y -direction in Fig. 1(b). For the weakly guiding, GaAs-on-AlGaAs, rib-type
waveguide with an air cap, there exists a high refractive index contrast between the GaAs rib
and the air. The guided mode field at the top of the rib has an evanescent tail that extends a
very short distance into the air. That is, there requires few mesh points to describe this evanes-
cent tail that extends from the top of the rib to the edge y ¼ Ly of the computational window �.

Table 1 illustrates the connection between the dimension of each matrix I þQ þGK ð�Þ þ
CKþ1ð�Þ to be inverted and the efficiency of the proposed method in the scalar mode calculation
for weakly guiding waveguide. By using the matrices I þQ þGK ð�Þ þ CKþ1ð�Þ with small size,
e.g., about 99 � 99 in (9) to calculate each coefficient matrix CK ð�Þ, the scalar mode index cal-
culated by the proposed method can reach a high degree of precision, i.e., to the relative error
of 10�5 within 1 second. In fact, for each K , K ¼ 1; 2; . . . ; ðN � 1Þ, the symmetric matrix I þQ þ
GK ð�Þ in (9) can be made to be positively definite by appropriately choosing the mesh grid size
�. Then based on the symmetric, positive definite matrix CNð�Þ ¼ I at the initial step K ¼ N , the
matrix I þQ þGK ð�Þ þ CKþ1ð�Þ at the other steps K in (9) can be symmetric and positively defi-
nite. To invert such matrices there exists a more efficient algorithm, e.g., Cholesky based factor-
ization algorithm.

Regarding the second source impacting on the efficiency of the scalar mode calculation, it in-
volves the additional computation work to search the roots of the nonlinear equation

det½ðI � C1ð�ÞÞ�1� ¼ 0. In this paper a Newton-like algorithm is used to search the roots, and we
have characterized the computational work to search all roots of the nonlinear equation by the
factor n� in Section 4. Although the efficiency of such an algorithm significantly depends with
the initial guess to the value of �, the experimental result shows that the convergence to an ac-

curate solution of the nonlinear equation det½ðI � C1ð�ÞÞ�1� ¼ 0 is obtainable within a few itera-
tion steps if the initial value of � is suitably selected as the starting point.

To investigate the quasi-TM mode properties in the first type, weakly guiding GaAs-on-
AlGaAs waveguide, first, (29) is used to calculate the corresponding modal indices. Table 2
shows the modal indices neff calculated by the proposed quasi-TM method (29), the variational
Fourier transform method [24], and the simulator BeamPROP. It shows that the proposed quasi-
TM method (29) with the grid size � ¼ 0:02 �m (101 � 401 mesh points) gives a convergent
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mode index. The modal index values calculated by the proposed algorithm converge to
3.41209251, which is in good agreement with the convergent index value neff reported in [24]
and that obtained by BeamPROP. The relative error between the modal indices calculated by the
proposed method and the other two methods reaches 10�5 in the convergence case.

The proposed quasi-TM method in Section 3 shows that in addition to the approximation of
the first derivatives of the modal fields in the discretization of the variation functional (11), the
derivation of the auxiliary equation (28) for the purpose of the magnetic field matching (20) in-
volves the approximation of the second derivatives of the modal fields at the interfaces j ¼ h
and j ¼ s � 1, as described by (26) and (27). It might cause the numerical inaccuracy in the cal-
culation of the modal indices. However, the calculated results shown in Table 2 illustrate that
the convergent mode index is accurate so it can be inferred that the error caused by the discreti-
zation of second derivatives of the modal fields in (26) and (27) would not be magnified and

propagate toward the coefficient matrix Cequiv :
1 ð�Þ during the sequential calculation of the coeffi-

cient matrices Cequiv :
K ð�Þ, K ¼ 1; 2; . . . ; ðN � 1Þ.

Table 2 shows that the proposed method spends 2.090 sec. to derive a convergent, quasi-TM
mode index whose relative error reaches 10�5. Given a fixed computational window size
� ¼ Lx � Ly ¼ 8� 2 ð� mÞ2, and a fixed mesh size ðM þ 1Þ � ðN þ 1Þ ¼ 101� 401, BeamPROP
spends much more CPU time, i.e., 11.28 sec. to reach the convergence of the modal
calculation.

To verify the accuracy in the calculation of the corresponding modal field profile, we plot the
contour of the quasi-TM modal field based on (29). Fig. 4(a) shows the resulting contour at the
field levels of 10% to 90% of the maximum at an interval of 10%. The resulting field contour in
Fig. 4(a) is in good agreement with the one shown in Fig. 4(b), which is obtained by using
BeamPROP.

We apply the scalar mode method (9) and the quasi-TM mode method (29) to calculate the
modal indices and the corresponding modal fields for the strongly guiding, silicon-on-insulator,
rib-type dielectric waveguide, as shown in Fig. 3. As indicated by Soref et al. in [25], SOI based
rib waveguide with a cross section of several microns is allowed to have single- guided mode

TABLE 2

Quasi-TM mode indices calculated by the proposed method, BeamPROP and the variational
Fourier transform method [24] for the GaAs-on-AlGaAs rib-type waveguide. Relative error between
the proposed method and the variational Fourier transform method [24] is ð3:41209251 �
3:4119530Þ=3:4119530 ¼ 4:09� 10�5. Relative error between the proposed method and
BeamPROP is ð3:41209251� 3:411971Þ=3:411971 ¼ 3:56� 10�5
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only when the ratio of the rib width to rib height satisfies Soref's single-mode condition [25]. By
using the notations defined in Fig. 3, the SOI waveguide has a rib size of W ¼ H ¼ 5 �m, and a
slab thickness of D ¼ 4 �m. The corresponding ratio of the rib width to the rib height W=H sat-
isfies Soref's single mode condition. In the numerical calculation, given a fixed computational
window size � ¼ Lx � Ly ¼ 10� 6 ð�mÞ2, the proposed methods (9) and (29) are used to cal-
culate the mode indices for the mesh grid size � varied from 0.6 �m (11 � 18 mesh points) to
0.05 �m (121 � 201 mesh points), in order to determine the convergent mode index. Table 3
shows the scalar and quasi-TM mode indices neff calculated by using the proposed methods,
and the simulator BeamPROP.

Table 3 shows that both scalar mode method (9) and quasi-TM mode method (29) with the
same grid size � ¼ 0:12 �m (51 � 84 mesh points) give convergent indices. The scalar and
quasi-TM mode index values calculated by the proposed methods converge to 3.435536056
and 3.435337612, respectively, both of which are almost consistent to the convergent mode
index values calculated by the BeamPROP. The relative error between the convergent mode
indices calculated by the proposed methods and the BeamPROP reaches 10�6 in the conver-
gence case. Table 3 also shows a fact that for high index contrast waveguide, e.g., the SOI
waveguide mentioned here, the minimum size of the coefficient matrices, i.e., CK ð�Þ or
Cequiv :

K ð�Þ required to derive a convergent mode index is about 49 � 49. That is, in the case of
SOI waveguide, the dominant matrix operations required by the proposed methods (9) or (29)
simply involve the inverse of the small matrices. Thus Table 3 demonstrates that the proposed
methods have the capability to calculate the accurate modal indices of the SOI waveguide in
an efficient fashion.

Table 3 shows the proposed scalar and quasi-TM mode methods spend 0.032 sec. and
0.109 sec., respectively, to derive convergent mode indices. Given the same computational win-
dow size � ¼ Lx � Ly ¼ 10� 6 ð�mÞ2, and mesh size ðM þ 1Þ � ðN þ 1Þ ¼ 51� 84, BeamPROP
spends much more CPU time, i.e., 4.61 sec. and 5.55 sec., respectively, to derive convergent
mode indices instead.

Finally, to verify the accuracy in the calculation of the guided mode profile of the SOI wave-
guide, we plot the contour of the scalar mode field based on the field iteration equation (9).
Fig. 5(a) shows the resulting field contour at the field levels of 10% to 90% of the maximum at
an interval of 10%. The resulting field contour in Fig. 5(a) is in good agreement with the one
shown in Fig. 5(b), which is obtained by using BeamPROP.

The previous two examples show that the quasi-TM mode method (29) is applicable to calcu-
late the modal indices and the modal field contours for both weakly and strongly guiding, rib-
type dielectric waveguides. In fact, the quasi-TM mode method (29) can be suitably modified to
investigate the modal properties of the plasmonic waveguides. Here we apply the modified
method to calculate the hybrid guided field contour for a rib-type, conductor-gap-silicon (CGS)
plasmonic waveguide [26]. The schematic description of the CGS plasmonic waveguide is

Fig. 4. Quasi-TM mode contour with field levels at 10% to 90% of the maximum at an interval of
10% obtained by (a) the proposed method (101 � 401 points) and (b) BeamPROP.
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TABLE 3

(a) Scalar modal indices calculated by the proposed method and BeamPROP for the strongly guiding,
silicon-on-insulator rib-type waveguide shown in Fig. 3. Relative error is ð3:435536056� 3:435585Þ=
3:435585 ¼ �1:42� 10�5. (b) Quasi-TM modal indices calculated by the proposed method and the
BeamPROP for the same waveguide. Relative error is ð3:435337612� 3:435360Þ=3:435360 ¼
�6:52� 10�6
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shown in Fig. 6, where the waveguide cross section consists of a SiO2 slab and a metal-
dielectric rib. In particular, the metal-dielectric rib consists of a thin SiO2 layer sandwiched by a
Si layer and a thin Au layer.

In the numerical simulation, we designate the thickness of the SiO2 layer with the index
nSiO2 ¼ 1:44, the Si layer with the index nSi ¼ 3:48, and the Au layer with the dielectric constant
"Au ¼ �132 � 12:65 �~j ð~j ¼ ffiffiffiffiffiffiffi�1

p Þ to 70 nm, 330 nm, and 50 nm, respectively, while the width of
the metal-dielectric rib is fixed to 200 nm. These parameters are intentionally designated for the
purpose that we can investigate whether the calculated field contour possesses the same fea-
tures as those have been referred in [26]. Fig. 7(a) gives the calculated the magnitude of the
field contour of the hybrid guided mode at 1550 nm in the CGS plasmonic waveguide. Fig. 7(b)
shows the magnitude of the field contour along the y -direction at the center of the waveguide,
i.e., at x ¼ 0 ð�mÞ in Fig. 7(a). It shows that a gap mode appears inside the SiO2 gap layer.
The corresponding profile of the gap mode is in good agreement with the one shown in [26].
Furthermore, Fig. 7(c) shows the magnitude of the field contour along the x -direction at the in-
terface between the metal layer and SiO2 layer, i.e., at y ¼ 0:4 ð�mÞ in Fig. 7(a). The resulting
field contour is also in good agreement with the one shown in [26]. Both of the features men-
tioned in Fig. 7(b) and (c) reveal that the field contour calculated by the modified quasi-TM
mode algorithm has the same features as those of the hybrid guided mode in the CGS plas-
monic waveguide [26].

Fig. 5. Scalar mode contour with field levels at 10% to 90% of the maximum at an interval of 10%
obtained by (a) the proposed method (121 � 201 points) and (b) BeamPROP.

Fig. 6. A conductor-gap-silicon plasmonic waveguide for numerical demonstration in this study.
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In addition to the calculation of the field contours, we may apply the modified quasi-TM mode
method to investigate the modal indices of the CGS plasmonic waveguide. Table 4 shows that
given a fixed computational window size � ¼ Lx � Ly ¼ 0:6� 0:7 ð�mÞ2, the modified quasi-TM
method with the grid size � ¼ 0:0025 �m (284 � 243 mesh points) gives a convergent mode in-
dex. The corresponding mode index values calculated by the modified method converge to
neff ¼ 1:97598838� 0:00120489 �~j within 26.25 sec.

We apply the commercial tool COMSOL to investigate the modal properties of the conductor-
gap-silicon plasmonic waveguide structure shown in Fig. 6. The size of the computational win-
dow � ¼ Lx � Ly is fixed to 10� 10 ð�mÞ2 and the mesh is more finely spaced (we designate
the grid size to 0.1 nm) in the local regions near the metal-dielectric interface than the evanes-
cent regions (we designate the grid size to 100 nm). We apply 34853 elements in the computa-
tional window to calculate the modal field and the modal indices. As a result, the calculated
modal index reaches to neff ¼ 1:978129� 0:002028 �~j . Compared this result to Table 4, we can
see the relative error for both real and imaginary parts of the effective index can reach to 10�4.
Meanwhile, the field contour calculated by the COMSOL is in good agreement with Fig. 7 and
the one shown in [26].

6. Conclusion
An efficient method to calculate the modal indices and the modal fields for both scalar and
quasi-TM waveguide modes is proposed in this paper. The modal indices and the corresponding
modal fields of either a weakly guiding, GaAs-on-AlGaAs rib-type waveguide or a strongly guid-
ing, silicon-on-insulator rib-type waveguide calculated by the proposed methods have been
shown to be in a good agreement with the results referred in [24], [25] and/or those calculated

Fig. 7. (a) Quasi-TM hybrid guided mode contours with field levels at 3.3% to 100% of the maximum
at an interval of 3.3% obtained by the modified quasi-TM mode algorithm (284 � 243 points). The
thickness of the SiO2 gap layer is designated to 70 nm. (b) The magnitude of the field contour along
the y-direction at the center of the waveguide. (c) The magnitude of the field contour along the
x-direction at the interface between the metal layer and the gap layer.

TABLE 4

Quasi-TM modal indices calculated by the modified method for the conductor-gap-silicon, plasmonic
waveguide shown in Fig. 6
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by BeamPROP. The quasi-TM method is applied to investigate the modal properties of the con-
ductor-gap-silicon plasmonic waveguide. The feature of the hybrid guided mode profile pre-
sented in [26] is also observable from the field contour calculated by the quasi-TM method.

The semivectorial analysis of the today's complex waveguide structure, e.g., Si-based hybrid
plasmonic waveguide [26] or SOI nano-wire with a metal cap [27] has been widely used in the
past few years. The previous frameworks [26], [27] have shown that the field distribution of the
major component of the quasi-TM fundamental mode in these plasmonic waveguide structures
numerically calculated by employing the well-known FEM mode solver can accurately present
the characteristic of the nano-scale field enhancement in the thin-SiO2 layer. Thus the semivec-
torial mode solver still can be regarded as the useful tool to theoretically study the nano-scale
optical waveguide. Meanwhile, the numerical results presented in Fig. 7 demonstrate that the
proposed quasi-TM method is both accurate and efficient in the modal calculation of the hybrid
plasmonic waveguide [26]. Such accurate results have proved the presented method's useful-
ness to the today's nano-scale waveguide structures.

The content in Sections 2 or 3 describes a very general process to solve the optical wave-
guide problems. The stationary solutions of the functional (2) and (11) are the modal field solu-
tions of the corresponding wave equations (1) and (10) because their Euler–Lagrange
equations are identical to the wave equations (1) and (10) [23]. Once such variation functional
expression for any kind of waveguide problem (scalar/semivectorial/full-vectorial) is successfully
established, we can use the dynamic programming technique to derive the accurate stationary
solution in an efficient manner [17], [18]. Today, the variation functional expression with respect
to the full-vectorial wave equation has been fully established, it is very straightforward to solve
the stationary solution of the full-vectorial functional problem in terms of the dynamic program-
ming technique described in this paper.
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