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Abstract: This paper mainly focuses on efficient schemes for simulating propagation in
optical fibers. Various schemes based on split-step Fourier techniques to solve the non-
linear Schrödinger equation (NLSE), which describes the propagation in optical fibers,
are compared. In general, the schemes in which the loss operator is combined with non-
linearity operator are found to be more computationally efficient than the schemes in
which the loss is combined with dispersion. When the global error is large, the schemes
with variable step size outperform the ones with uniform step size. The schemes based
on local error and/or minimum area mismatch (MAM) further improve the computational
efficiency. In this scheme, by minimizing the area mismatch between the exponential
profile and its stepwise approximation, an optimal step size distribution is found. The op-
timization problem is solved by the steepest descent algorithm. The number of steps to
get the desired accuracy is determined by the local error method. The proposed scheme
is found to have higher computational efficiency than the other schemes studied in this
paper. For QPSK systems, when the global error is 10�8, the number of fast Fourier
transforms (FFTs) needed for the conventional scheme (loss combined with dispersion
and uniform step size) is 5.8 times that of the proposed scheme. When the global error
is 10�6, the number of FFTs needed for the conventional scheme is 3.7 times that of the
proposed scheme.

Index Terms: Optical fiber communication modeling, numerical simulation, nonlinear
Schrödinger equation (NLSE), split-step Fourier method (SSFM).

1. Introduction
The split-step Fourier method (SSFM) is widely used to solve the nonlinear Schrödinger equa-
tion (NLSE), which describes the evolution of optical field envelope in optical fibers [1]–[4]. In
SSFM, dispersion and nonlinearity operators are assumed to act independently over a small
step size. A pair of fast Fourier transforms (FFTs) is used to solve the NLSE when there is only
dispersion and/or loss and then, a phase shift is introduced to account for the nonlinear effects
when the dispersion is absent. Recently digital back propagation (DBP) has drawn significant at-
tention to mitigate the linear and nonlinear impairments [5]–[11]. In DBP, the NLSE is solved in
digital domain with the reversed signs of dispersion, loss and nonlinear coefficients. Therefore,
efficient algorithms to solve the NLSE have become even more important.
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In solving the NLSE, smaller step size leads to results closer to the exact solution, but it takes
more computational time. Thus, there is a trade-off between the accuracy and computational
cost. The objective of this paper is to compare the accuracy of various SSFMs for the given
computational cost. In the conventional approach [2], the linear operator, D̂ takes into the ac-
count of dispersive and loss effects while the nonlinear operator, N̂ takes into account only the
Kerr effect. Instead, it is possible to include the loss effect along with the Kerr effect in N̂ and
we find that this scheme has higher computational efficiency than the conventional approach. It
is because the path-averaged nonlinear phase shift is introduced which takes into account the
power attenuation due to fiber loss within the step while in the conventional scheme, nonlinear
phase shift is determined by the power at the beginning or the middle of the step. If the losses
were to vary with frequency, introducing losses into the nonlinear operator would not be a sim-
ple task. For optical waveguides, the losses change across the relevant spectrum of the optical
signal and hence, this scheme is not suitable. However, for optical fibers, over the simulation
bandwidth, the loss is nearly constant.

In the presence of fiber loss, the uniform step size is not optimum since the nonlinear phase
shift accumulated in each step decreases exponentially with distance due to loss. The step size
distribution can be optimized using the local error method [4] or minimum area mismatch (MAM)
[12]–[14] or the combination of both. Local error method is a powerful technique to solve the
NLSE, in which the step size is adaptively chosen so as to bound the relative local error. In
MAM, the step size distribution is optimized by minimizing the area mismatch between the expo-
nential curve and its stepwise approximation. In this paper, a novel scheme that combines the
merits of local error method and MAM is introduced. Using this approach, the computational effi-
ciency can be improved by a factor 2.5 to 5, and a factor 1.6 to 3.1 as compared to the conven-
tional and local error methods, respectively, when the global error is in the range of practical
interest.

2. Theory

2.1. Principle of the Split-Step Fourier Method (SSFM)
The NLSE is used to describe the optical pulse propagation in fibers. When the pulse width is

large (> 5 ps) and the higher order dispersion and the delayed nonlinear response are ne-
glected, the NLSE can be written as

@A
@z

¼ ��

2
A� i

2
�2

@2A
@T 2 þ i�jAj2A (1)

where A is the complex field envelope, and �, �2, and � are loss coefficient, second order dis-
persion parameter, and nonlinear coefficient. Equation (1) has an analytical soliton solution for a
specific case when �2 G 0. However, for most cases, it has to be solved numerically. SSFM is
extensively used to solve the NLSE numerically. To explain the SSFM clearly, it's convenient to
write (1) in the following form:

@A
@z

¼ D̂ þ N̂ðAÞ
h i

A: (2)

Here, D̂ and N̂ are the operators that account for dispersion and nonlinearity, respectively. If we
neglect the fiber loss

D̂ ¼ � i
2
�2

@2

@T 2 ; N̂ðAÞ ¼ i�jAj2: (3)

The cases when the fiber loss is taken into account will be discussed later. In fibers, dispersion
and nonlinearity act simultaneously, but they can be roughly treated as being independent in a
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very small distance. If the unsymmetric split-step scheme is employed, (2) has an approximate
solution as [2]

Aðz þ h;T Þ � expðhD̂Þexp
Zzþh

z

N̂ðz 0Þdz 0

0
@

1
AAðz;T Þ: (4)

In the symmetric scheme, (2) can be approximated as

Aðz þ h;T Þ � exp
h
2
D̂

� �
exp

Zzþh

z

N̂ðz 0Þdz 0

0
@

1
Aexp

h
2
D̂

� �
Aðz;T Þ: (5)

Equations (4) and (5) are not the exact solutions of (2) since D̂ and N̂ don't commute. Using
Baker-Hausdorff formular [15], the dominant error term of (4) is of the order h2, and the leading
error of (5) is of the order h3. Since the symmetric scheme is more accurate than the unsym-
metric one, it has been utilized in the numerical calculation throughout this paper. The operation
expðhD̂=2ÞAðz;T Þ can be realized using a pair of FFTs and hence, the computational cost of a
single-step symmetric scheme is approximately twice that of the unsymmetric scheme. How-
ever, after multiple steps, the computational cost is approximately the same. This can be seen
by dividing the fiber length into m steps and the optical field envelope after m steps is obtained
by concatenation of operators in (5), [2]

Aðz þmh;T Þ ffi exp
h
2
D̂

� �
exp ih� A z þ ðm�1Þh;Tð Þj j2

� �
expðhD̂Þexp ih� A zþðm�2Þh;Tð Þj j2

� �

. . .� expðhD̂Þexp ih� Aðz;T Þj j2
� �

exp
h
2
D̂

� �
Aðz;T Þ: (6)

To evaluate (6), we need only ðm þ 1Þ FFT pairs since the dispersion operators of the neighbor-
ing steps are combined while the unsymmetric scheme requires m FFT pairs. Throughout this
paper, we combine the dispersion operators of the neighboring steps whenever it is feasible,
which reduces the computational cost by a factor of 2.

When the fiber loss is included, there are two options. It could be included with dispersion or
with nonlinearity. For the first case (see Sections 2.2 and 2.4), (3) is modified as

D̂1 ¼ � i
2
�2

@2

@T 2 �
�

2
; N̂1ðAÞ ¼ i�jAj2: (7)

For the latter case, we have (see Sections 2.3 and 2.5)

D̂2 ¼ � i
2
�2

@2

@T 2 (8)

N̂2ðAÞ ¼ i�jAj2 � �

2
: (9)

The efficiency of the scheme depends on whether the loss is included with dispersion or nonlin-
earity. Also, the step size distribution can affect the scheme performance. In the following sub-
sections, several schemes of SSFM to solve the NLSE will be reviewed and a novel scheme
based on MAM and local error method will be proposed.

2.2. Uniform Step Size, Loss With Dispersion (Scheme Ia)
The simplest way to realize the SSFM is to introduce uniform step size, in which the accuracy

can be improved by selecting a smaller step size. In scheme Ia, the loss is combined with
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dispersion [see (7)]. Using the rectangular rule for the integrals in (4) and (5), they become

Aðz þ h;T Þ � expðhD̂1Þexp ih� Aðz;T Þj j2
� �

Aðz;T Þ (10)

Aðz þ h;T Þ � exp
hD̂1

2

 !
exp ih� Al1 z þ h

2
;T

� �����
����
2

 !
exp

hD̂1

2

 !
Aðz;T Þ (11)

where Al1ðz þ h=2;T Þ ¼ expðhD̂1=2ÞAðz;T Þ.
For a certain nonlinear phase rotation �NL, the step size is determined by

h ¼ �NL

�Ppeak
(12)

where Ppeak is the peak power of the optical signal launched to a fiber span. The same step
size is used in the following steps within the span.

Using the Baker-Hausdorff formular, the leading error term is found to be (see Appendix A)

EI ¼ i
24

�2�
2jAl1j4 @2

@T 2 �
i
12

�2�
2jAl1j2 @2

@T 2 jAl1j2 � i
48

�2
2�

@2

@T 2 jAl1j2 @2

@T 2

�

þ i
96

�2
2�

@4

@T 4 jAl1j2 þ i
96

�2
2�jAl1j2 @4

@T 4 þ
i
24

�2�
2 @2

@T 2 jAl1j4
�
h3Að0;T Þ (13)

2.3. Uniform Step Size, Loss With Nonlinearity (Scheme IIa)

This scheme is almost the same as scheme Ia except that the fiber loss is included in N̂ [see
Eqs. (8) and (9)]. Let us first ignore the operator D̂ in (2). Using (9) for N̂ , we find

dA
dz

¼ i�jAj2 � �

2

� �
A: (14)

Let

A ¼ jAjei�: (15)

Substituting Eq. (15) in Eq. (14) and separating the real and imaginary parts, we find

d jAj
dz

¼ � �

2
jAj (16)

d�
dz

¼ �jAj2: (17)

Solving Eqs. (16) and (17), we obtain

Aðz þ h;T Þ ¼ exp ��

2
h þ i�heff Aðz;T Þj j2

� �
Aðz;T Þ (18)

where

heff ¼ 1� expð��hÞ
�

: (19)
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Therefore, (4) and (5) are modified as

Aðz þ h;T Þ � expðhD̂2Þexp ��

2
h þ i�heff Aðz;T Þj j2

� �
Aðz;T Þ (20)

Aðz þ h;T Þ � exp
h
2
D̂2

� �
exp ��

2
h þ i�heff Al2 z þ h

2
;T

� �����
����
2

 !
exp

h
2
D̂2

� �
Aðz;T Þ (21)

where Al2ðz þ h=2;T Þ ¼ expðhD̂2=2ÞAðz;T Þ.
For this scheme, the leading error is found to be (see Appendix A)

EII ¼ i
24

heff�2�
2jAl2j4 @2

@T 2 �
i
12

heff�2�
2jAl2j2 @2

@T 2 jAl2j2 � i
48

h�2
2�

@2

@T 2 jAl2j2 @2

@T 2

�

þ i
96

h�2
2�

@4

@T 4 jAl2j2 þ i
96

h�2
2�jAl2j2 @4

@T 4 þ
i
24

heff�2�
2 @2

@T 2 jAl2j4
�
hheff Að0;T Þ: (22)

As we will show later, given the same step size, the performance of the scheme when loss is
clubbed with nonlinearity is better than that when loss is with dispersion, especially when the
field change due to loss within the interval ½z; z þ h� is larger than that due to dispersion. This is
because the operator N̂2 in (21) represents the mean nonlinear phase shift in the interval
½z; z þ h� taking into account the power loss in that interval. In contrast, the operator N̂1 in
Eqs. (10) or (11) includes only the power jAðz;T Þj2 at the beginning or the middle of the step
and it ignores the nonlinear phase variations within the step due to fiber loss. Although it is
possible to set up an iterative procedure to approximate the integrals in (4) and (5) instead of
the rectangular rule [2], we have found that the computational efficiency (computational cost
for the given accuracy) is lower for the schemes based on the iterative procedure.

2.4. Variable Step Size, Loss With Dispersion (Scheme Ib)
The disadvantage of scheme Ia is that the nonlinear phase accumulated over a step de-

creases with distance due to fiber loss and the step size determined by the fiber launch power
[see (12)] is too small for steps closer to the end of the span. If we ignore the pulse broaden-
ing due to dispersion, the peak power decreases exponentially with distance. So, (12) is modi-
fied as

hmþ1 ¼ �NL

�Ppeake��zm
; m ¼ 0; 1; 2; . . . (23)

where hm is the step size at zm, z0 ¼ 0 and zm ¼Pm
k¼1 hk . In this scheme, loss is combined

with dispersion and, D̂ and N̂ are given by Eqs. (7).

2.5. Variable Step Size, Loss With Nonlinearity (Scheme IIb)
In this scheme, the selection of step size is the same as that of scheme Ib. In each step, loss

is combined with nonlinearity, and D̂ and N̂ operators are given by (8) and (9), respectively.
This scheme brings both the advantages of loss with nonlinearity and an efficient step size
distribution.

2.6. Local-Error Method (Scheme III)
The method developed in [4] is summarized as follows. Suppose the field A at z is known.

The field at z þ 2h can be obtained using (5) as

Acðz þ 2hÞ ¼ expðhD̂1Þexp
Zzþ2h

z

N̂1ðz 0Þdz 0

0
@

1
AexpðhD̂1ÞAðzÞ ¼ Aexactðz þ 2hÞ þ e1: (24)
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For the symmetric SSFM, the error e1 is of the order ð2hÞ3 and hence, (24) may be written as

Acðz þ 2hÞ ¼ Aexactðz þ 2hÞ þ Cð2hÞ3 þOðh4Þ; (25)

where Acðz þ 2hÞ and Aexactðz þ 2hÞ represent the coarse and exact solutions at z þ 2h, respec-
tively, and C is a constant. The solution at z þ 2h can also be obtained by using (5) twice with a
step size of h, which we call the fine solution Af

Af ðz þ 2hÞ ¼ exp
h
2
D̂1

� �
exp

Zzþ�2h

zþh

N̂1ðz 0Þdz 0

0
@

1
AexpðhD̂1Þexp

Zzþ�h

z

N̂1ðz 0Þdz 0

0
@

1
Aexp

h
2
D̂1

� �
AðzÞ

¼Aexactðz þ 2hÞ þ e2 (26)

where the error e2 is of the order 2h3. Equation (26) may be rewritten as

Af ðz þ 2hÞ ¼ Aexactðz þ 2hÞ þ 2Ch3 þOðh4Þ: (27)

By taking appropriate linear combination of Ac and Af , the term proportional to h3 can be elimi-
nated so that the leading order error is Oðh4Þ, i.e.,

A4ðz þ 2hÞ ¼ 4
3
Af ðz þ 2hÞ � 1

3
Acðz þ 2hÞ ¼ Aexactðz þ 2hÞ þOðh4Þ: (28)

A4ðz þ 2hÞ is the solution at z þ 2h with a higher accuracy and used as the input of the next
step. The local error in the coarse solution relative to the fine solution is a measure of the rela-
tive local error, defined as

e ¼ Af ðz þ 2hÞ � Acðz þ 2hÞk k2
Af ðz þ 2hÞk k2

(29)

and k � k is the norm that equals to ðR j � j2dtÞ1=2. The main principle of this method is that, given
a target local error etarget, if the current relative local error is larger than the target error, the next
step size should be reduced accordingly and vice versa. Although the local-error method intro-
duces additional computational cost while calculating the local error, it's still a very efficient
method to control the local error in a certain range, especially when the target global error is
very small.

2.7. MAM Combined With Local-Error Method (Scheme IV)
In order to further increase the efficiency, we propose a novel scheme by roughly bounding

the local error of the first step, fixing the total number of steps M per span, and then using an
optimal distribution of the dispersion operator and nonlinear operator in SSFM. The optimal step
size distribution has an elegant feature that the local error within a fiber span has a relatively
less variance, so that the local error of the first step is a rough estimate of those of the following
steps.

Before describing the novel scheme in detail, we will present the principle and technique to
optimize the D̂ and N̂ operator. To explain the method more clearly, it's better to transform the
NLSE into its lossless form by the transformation

Aðz;T Þ ¼ e��z=2Uðz;T Þ (30)

to obtain

@U
@z

¼ � i
2
�2

@2U
@T 2 þ i�0jU j2U (31)
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where

�0 ¼ �expð��zÞ: (32)

�0 is the effective nonlinear coefficient that exponentially decreases with the distance. In the nu-
merical methods like SSFM, the efficient way is to divide the fiber into several segments with
fixed dispersion and effective nonlinear coefficients. As a result, the effective nonlinear coeffi-
cient is an approximated stepwise nonlinearity-decreasing curve instead of an ideal exponential
one. If the total number of steps M is sufficiently large, these two curves will almost coincide.
Define the nonlinear multiplication factor Kj ; j ¼ 1; 2; . . . ;M , for each step, and the stepwise ef-
fective nonlinear coefficient is

�0j ¼ Kj�: (33)

Fig. 1(a) shows the ideal exponential curve and its stepwise approximation ðKjÞ as a function
of distance for M ¼ 3, and Fig. 1(b) shows a more general case for the k th step. The split-step
algorithm may be written as

Uðz þ ljÞ ¼ exp
lj
2
D̂2

� �
exp iKj� Ul z þ lj

2

� �����
����
2

lj

 !
exp

lj
2
D̂2

� �
UðzÞ (34)

where Ulðz þ lj=2Þ ¼ expðlj D̂2=2Þ � UðzÞ. We have 2M � 1 adjustable parameters, namely,
K1;K2; . . . ;KM and l1; l2; . . . ; lM�1. The parameters could be so chosen that the global error is
minimum. Alternatively, these parameters can be determined using the MAM technique [12]–
[14]. In Section 3, it will be shown that the optimum step size determined using the minimum
area mismatch technique minimizes the global error, for the case of M ¼ 2 . In Fig. 1(a), the
absolute area mismatch between the area under the ideal exponential curve (solid line) and
its stepwise approximation (dashed line) is � ¼P3

j¼1ðAj þ A0
jÞ with Aj > 0 and A0

j > 0. lj and
Kj are so chosen that the total area under the exponential curve should be the same as that
under its stepwise approximation curve and the area mismatch � should be minimum. So,
we have

ZLa
0

expð��zÞdz ¼
XM
j¼1

Kj lj : (35)

Equation (35) states that the total nonlinear phase shift accumulated over a span of length La
should be equal to the sum of the nonlinear phase shifts in each step lj . This is an optimization

Fig. 1. Stepwise approximation of the effective nonlinear coefficient. (a) The case when M=3.
(b) The general case. Aj and A0

j denote area mismatch of the j th section.
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problem with 2M � 2 parameters. The number of parameters can be reduced by a factor of 2 if
we impose a constraint that Kj is the mean of exponential function in the segment lj , i.e.,

Kj ¼ 1
lj

Zzj
zj�1

expð��zÞdz ¼ expð��zj�1Þ � expð��zjÞ
�lj

(36)

where

zj ¼
Xj
k¼1

lk (37)

z0 ¼ 0, zM ¼ La, and La is the fiber span length. Now, we consider the optimization problem with
M � 1 unknown parameters ðzj ; j ¼ 1; 2; . . . ;M � 1Þ with the condition that � should be minimum.
We solve this problem using the steepest descent algorithm [16]. In Fig. 1(b), let x be the dis-
tance at which the exponential curve and its stepwise approximation line intersect. So, we have

Kk ¼ expð��xÞ: (38)

The area mismatch Ak and A0
k are given by

Ak ¼ e��zk�1 � Kk

�
� Kk ðx � zk�1Þ (39)

A0
k ¼Kk ðzk � xÞ � Kk � e��zk

�
: (40)

Using (36), we have Ak ¼ A0
k .

We randomly choose an initial set of zk , k ¼ 1; 2; . . . ;M � 1, and iteratively update the value
of every zk towards the inverse gradient direction until the optimum points are reached. So, tak-
ing the derivative of the total mismatch area � with respect to zk , we find

@�

@zk
¼ 2

lnKk

�
þ zk�1

� �
e��zk

zk � zk�1
� e��zk�1 � e��zk

�ðzk � zk�1Þ2
" #

þ 2
lnKkþ1

�
þ zk

� �
� e��zk

zkþ1 � zk
þ e��zk � e��zkþ1

�ðzkþ1 � zk Þ2
" #

� 2e��zk þ 2Kkþ1: (41)

Then use the following iterative procedure to update zk

zðnþ1Þ
k ¼ zðnÞ

k � @�

@zk
�k ; k ¼ 1; 2; . . . ;M � 1 (42)

where zðnÞ
k is the value of zk in the nth iterative step and �k is the step size of the steepest de-

scent algorithm. Once the optimum values of zk are found, (36) and (37) can be used to obtain
the best distribution of the nonlinear multiplication factor Kj and the segment length lj .

The constraint of (36) is not really essential. If we do not impose this constraint, computational
complexity of the steepest descent algorithm increases roughly by a factor of 2. However, the
improvement in accuracy (in terms of global error) is only marginal and hence, the simulation re-
sults of Section 3 are obtained by imposing the constraint of (36).

The steepest descent algorithm converges quickly and Table 1 shows the look-up table for
the optimum segment lengths when � ¼ 0:2 dB/km and La ¼ 80 km. One of the advantages of
this method is that the optimum segment lengths neither depend on the launch power nor on
the nonlinear coefficient. Once the look-up table such as that shown in Table 1 is made for a
particular fiber type, it can be used for a range of launch powers and other system parameters.
Using (34), the optical field at the end of the link can be calculated for the given M . However, M
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is undetermined. To relate M with the desired accuracy, we introduce a technique that combines
the local error method with the MAM.

Given an initial M and a target local error etarget, calculate the relative local error for the first
step e1 by (29). If e1 is larger than 10etartget, M will be updated by 2M . Else if e1 is larger than
etarget and less than or equaling to 10etarget, then M will be replaced byd21=3Me. Here, dxe rounds
the element of x to the nearest integer towards infinity. If e1 is less than or equal to etarget=10, M
will be decreased to bM=21=3c, where bxc rounds the element of x to the nearest integer towards
minus infinity. Finally, if e1 is in the target range which is ðetarget=10;etarget�, that M will be used
to find the optimal parameters in the look-up table, which will be used to model the pulse
propagation.

In our scheme, the local error for each step will not have a large fluctuation since the step
size distribution is optimized for every M . As a result, we can roughly bound the local error by
controlling that of the first step. The implementation for our scheme is different from the local-
error method in that we find the total number of steps as well as the step size distribution at the
very beginning, instead of adjusting the step size along the fiber length, which saves the compu-
tational cost. Since we can combine the dispersion operator [the same way as in (6)] of the
neighboring steps, the computational cost can further be reduced by a factor of 2. We will dis-
cuss the simulation results in the later section. Since we do not make any assumptions about
the system configuration, or the modulation format of the signal, this scheme is system indepen-
dent and can be widely used for various cases with high efficiency.

3. Comparison of Schemes
In this section, we compare the performance of the different schemes described in Section 2 of
the SSFM. The system schematic is shown in Fig. 2, which includes a transmitter, a fiber-optic
link consisting of N spans of fibers and amplifiers, and a chromatic dispersion (CD) compensa-
tor. The amplifier compensates for the fiber loss exactly, without adding noise. Before imple-
menting the schemes, we simulate a signal propagation in the fiber by the split-step method
using a very small step size with the nonlinear phase accumulated per step of 0.00001 radians,

Fig. 2. Schematic of a fiber-optic transmission system.

TABLE 1

Look-up table for the optimal step size distribution � ¼ 0:2 dB/km, La ¼ 80 km
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such that the fiber output is very close to the exact solution of NLSE. This output is the refer-
ence signal with which we compare the outputs of various schemes. Then, using the same fiber
input signal as that used to obtain the reference signal, NLSE is solved by different schemes,
and the accuracy and the computational cost are compared. To measure the accuracy, we de-
fine the global error by

eglobal ¼ kAn � Aref k2
kAref k2

(43)

where An is the numerical result for scheme n, and Aref is the reference signal. Note that we
use the square of the norm instead of the norm itself in (43). We use the number of FFTs as a
measure of computational cost since the computational time is roughly proportional to the num-
ber of FFTs.

At first, we simulate a fiber-optic system shown in Fig. 2 for 32 quadrature amplitude modula-
tion (QAM) at a symbol rate 25 Gbaud. The following parameters are used throughout this paper
unless otherwise specified. A random symbol sequence consisting of 8192 raised-cosine pulses
with a roll-off factor of 0.8 is launched to the fiber. The fiber-optic link consists of 10 fiber spans,
each 80 km long, and 10 amplifiers. The parameters of the fibers are as follows, the loss coeffi-
cient � ¼ 0:046 km�1, the dispersion parameter �2 ¼ 5 ps2=km, and the nonlinear coefficient
� ¼ 2:2 W�1km�1. We employed different schemes in Section 2 to carry out the SSFM. After
that, a CD compensator is introduced right after the fiber link. Finally, the global error of each
scheme is calculated using (43).

Table 2 shows the error in a single step for 10 Gbaud and 25 Gbaud systems, respectively.
When the loss is combined with nonlinearity (scheme IIa or b), the single-step error is signifi-
cantly lower for 10 Gbaud as compared to the case when the loss is combined with dispersion
(scheme Ia or b). However, for 25 Gbaud, scheme II has a lower error only when h G 40 km.
When h is larger, scheme II does not perform better because of larger variation of the optical
field within the step size due to dispersion.

Fig. 3(a) and (b) show the computational cost (in units of number of FFTs) as a function of the
global error for schemes Ia, IIa, Ib, and IIb when the fiber launch power is 0 dBm and 3 dBm, re-
spectively. As can be seen, when the global error is greater than 10�7, scheme IIb (loss com-
bined with nonlinearity and variable step size) is the most efficient scheme of the four schemes.
When the global error is large, it corresponds to small number of steps. In this case, uniform

TABLE 2

Single-step error versus step size

Vol. 6, No. 4, August 2014 7200515

IEEE Photonics Journal Comparison of Split-Step Fourier Schemes



step size is not a good choice because the nonlinear phase shift accumulated in a low power re-
gion is small and the step size is unnecessarily large wasting the computational resources.
When the global error is 10�5, the number of FFTs required for scheme IIb is reduced by a fac-
tor of 2 as compared to scheme Ia when the launch power equals to 0 dBm. However, when the
global error is less than 10�7, scheme IIa (loss combined with nonlinearity and uniform step
size) is the most efficient scheme of the four schemes and it is marginally better than scheme IIb.
In either case, schemes in which loss is combined with nonlinearity (schemes IIa and b) outper-
form the schemes in which the loss is combined with dispersion (schemes Ia and b). For the
simulation of fiber-optic transmission system, the region of most practical interest corresponds
to a global error in the range of 10�8 � 10�2. Typically, practical power of telecom systems
range from �6 dBm to 3 dBm depending on the reach and modulation format. The purpose of
simulations with higher power (3 dBm) is to evaluate the effect of stronger nonlinear effect in
various schemes.

Fig. 4 shows the area mismatch and global error [calculated using (43)] as a function of l1, for
M ¼ 2. As can be seen, the value of l1 that minimizes the area mismatch ð�Þ also corresponds
to minimum global error.

Next, we consider the performance of the local error method (scheme III) and MAM combined
with local error method (scheme IV). The results are shown in Fig. 5(a) and (b). Scheme III

Fig. 3. Plot of the number of FFTs vs global error of the 32QAM system for the schemes Ia, IIa, Ib,
and IIb. (a) 0 dBm and (b) 3 dBm.

Fig. 4. Area mismatch vs l1 and global error vs l1 for the case when M ¼ 2, launch power ¼ 0 dBm.
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gives a better performance than the schemes Ia, IIa, Ib, and IIb when the global error is less
than 10�8, and it has a flatter slope, which means the required additional computational cost to
achieve a smaller error is the minimum. However, when the global error is large ð> 10�8Þ, the
local error method is not efficient. Similar results are found in [4] in which the efficiency of
the local error method is comparable to the other schemes when the global error is large.
Fig. 5(a) and (b) show that the MAM combined with local error method is the most efficient one
in that, for obtaining the same error, it needs the least number of FFTs. In Fig. 5(a), when the
global error is 10�8, the number of FFTs needed for scheme Ia is 4.4 times that of scheme IV,
and the number of FFTs required for scheme III is 3.1 that of scheme IV. When the global error
is 10�6, the number of FFTs needed for scheme Ia is 2.7 times that of scheme IV and the num-
ber of FFTs required for scheme III is 2.5 times that of scheme IV. Comparing Fig. 5(a) and (b),
we find that the proposed scheme is the most efficient scheme even at higher launch power.
Fig. 6 shows the computational time as a function of the global error. Comparing Figs. 5 and 6,
we find that the number of FFTs is a good measure of the computational cost.

Fig. 7 shows the relative local error as a function of distance when the launch power is 0 dBm
and the number of steps per span is 5. Dashed and solid lines in Fig. 7 show the results for the
case of uniformly distributed step size (scheme Ia) and an optimally distributed step size using
MAM (scheme IV), respectively. Both curves show a periodic characteristic due to the system
configuration. When the uniformly distributed step size is utilized, the local error is the maximum
at the beginning and decreases with distance in each span. This is because the accumulated
nonlinear phase per step decreases exponentially with distance in each span due to fiber loss
and, smaller accumulated nonlinear phase leads to a more accurate result. In the case when
the step size is distributed through the MAM technique, the nonlinear phase accumulated is op-
timized such that the local error will be smaller and has less variation. From Fig. 7, we see that
the local error fluctuation for scheme IV is about one or two orders of magnitude smaller than
that for scheme Ia.

Fig. 5. Plot of the number of FFTs vs global error of the 32QAM system for the schemes I-IV.
(a) 0 dBm and (b) 3 dBm.

Fig. 6. Plot of the time vs global error of the 32QAM system for the schemes I-IV. (a) 0 dBm and
(b) 3 dBm.
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As a next example, we have simulated a fiber-optic system based on quadrature phase shift
keying (QPSK). The system configuration and all the parameters of the system are the same
as the previous ones. Fig. 8 shows the number of FFTs as a function of global error for all the
schemes. Fig. 8(a) and (b) are obtained when the launch power is 0 dBm and 3 dBm, respec-
tively. In Fig. 8(a), when the global error is 10�8, numbers of FFTs needed for scheme Ia and
scheme III are 5.8 and 2.5 times that of scheme IV, respectively. When the global error is
10�6, the numbers of FFTs required for scheme Ia and scheme III are 3.7 and 2.4 times that
of scheme IV, respectively. Similar results are obtained when the launch power is 3 dBm [see
Fig. 8(b)].

4. Conclusion
In this paper, we have studied various schemes using SSFM to solve the NLSE for a fiber-optic
system based on two different modulation formats and compared their performances. We pro-
posed a novel scheme combining the local error method with the method based on minimum
area mismatch (MAM). The optimum step size for the given number of steps ðMÞ is found by
minimizing the area mismatch between the exponential curve and its stepwise approximation.
The steepest descent algorithm is used for this optimization. The number of steps to have the
desired accuracy is determined using the local error method. The advantage of this scheme is
that the local error is not calculated at each step which saves the computational cost. The step
size distribution is pre-determined by the steepest descent algorithm so that the dispersion op-
erators of the neighboring steps can be combined. The simulation results show that the pro-
posed scheme outperforms the other schemes.

Fig. 7. Local error as a function of distance for schemes Ia and IV for 32QAM system when the
launch power is 0 dBm and the number of steps per span M ¼ 5.

Fig. 8. Plot of the number of FFTs vs global error of the QPSK system for the schemes I-IV.
(a) 0 dBm and (b) 3 dBm.
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In general, the schemes in which the fiber loss is combined with nonlinearity have higher
computational efficiency than the schemes in which the fiber loss is combined with dispersion.
When the global error is large ð> 10�7Þ, the schemes with variable step size outperform the
schemes with uniform step size. As for the local error method, it has a flatter slope and outper-
forms the schemes with uniform or variable step size distribution, especially when the global er-
ror is very small.

Appendix A
The derivation of the error per step for scheme I and II is as follows. The Baker-Hausdorff form-
ular for two noncommuting operators â and b̂ is [2]

expðâÞexpðb̂Þ ¼ exp âþ b̂ þ 1
2
½â; b̂� þ 1

12
â� b̂; ½â; b̂�
h i

þ . . .

� �
(A.1)

where ½â; b̂� ¼ âb̂ � b̂â. By using the Baker-Hausdorff formular twice, we obtain

exp
â
2

� �
expðb̂Þexp â

2

� �
¼ exp âþ b̂ þ 1

12
b̂b̂â� 1

6
b̂âb̂ þ 1

12
âb̂â� 1

24
ââb̂ � 1

24
b̂ââþ 1

12
âb̂b̂

� �
:

(A.2)

Let us set the right hand side of (A.2) equal to expðH þ EÞ, where

H ¼ âþ b̂ (A.3)

E ¼ 1
12

b̂b̂â� 1
6
b̂âb̂ þ 1

12
âb̂â� 1

24
ââb̂ � 1

24
b̂ââþ 1

12
âb̂b̂: (A.4)

In the symmetric SSFM, let

â ¼ hD̂; b̂ ¼ hN̂ : (A.5)

From (A.4), we find that E / h3. Using Taylor expansion, we find

expðH þ EÞ ¼ 1þ ðH þ EÞ þ ðH þ EÞ2
2!

þ ðH þ EÞ3
3!

þ . . .

¼ 1þ H þ H2

2!
þ H3

3!

� �
þ E þ 1

2
ðE2 þ HE þ EHÞ

�

þ 1
6
ðE3 þ HE2 þ H2E þ EH2 þ E2H þ HEH þ EHEÞ

�
þ . . .

� expðHÞ þ E þOðh4Þ: (A.6)

In (A.6), E is Oðh3Þ and the higher order terms such as E2 and HE are Oðh6Þ and Oðh4Þ, re-
spectively. So the leading error term for symmetric SSFM is E . When loss is with dispersion
(scheme I)

â1 ¼ D̂1h ¼ � i
2
�2

@2

@T 2 �
�

2

� �
h (A.7)

b̂1 ¼ N̂1h ¼ i�jAl1j2h (A.8)
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and the leading error is

EI ¼ 1
12

b̂1b̂1â1 � 1
6
b̂1â1b̂1 þ 1

12
â1b̂1â1 � 1

24
â1â1b̂1 � 1

24
b̂1â1â1 þ 1

12
â1b̂1b̂1

� �
Að0;T Þ

¼ i
24

�2�
2jAl1j4 @2

@T 2 �
i
12

�2�
2jAl1j2 @2

@T 2 jAl1j2 � i
48

�2
2�

@2

@T 2 jAl1j2 @2

@T 2

�

þ i
96

�2
2�

@4

@T 4 jAl1j2 þ i
96

�2
2�jAl1j2 @4

@T 4 þ
i
24

�2�
2 @2

@T 2 jAl1j4
�
h3Að0;T Þ: (A.9)

When loss is with nonlinearity (scheme II), let

â2 ¼ D̂2h ¼ � i
2
h�2

@2

@T 2 (A.10)

b̂2 ¼ � �

2
h þ i�heff jAl2j2 (A.11)

and the leading error now is

EII ¼ 1
12

b̂2b̂2â2 � 1
6
b̂2â2b̂2 þ 1

12
â2b̂2â2 � 1

24
â2â2b̂2 � 1

24
b̂2â2â2 þ 1

12
â2b̂2b̂2

� �
Að0;T Þ

¼ i
24

heff�2�
2jAl2j4 @2

@T 2 �
i
12

heff�2�
2jAl2j2 @2

@T 2 jAl2j2 � i
48

h�2
2�

@2

@T 2 jAl2j2 @2

@T 2

�

þ i
96

h�2
2�

@4

@T 4 jAl2j2 þ i
96

h�2
2�jAl2j2 @4

@T 4 þ
i
24
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@T 2 jAl2j4
�
hheff Að0;T Þ: (A.12)
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