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Abstract: We demonstrate a compact and low-power wavelength-division multiplexing
transmitter near a 1550-nm wavelength using silicon microrings. The transmitter is imple-
mented on a silicon-on-insulator photonics platform with a compact footprint of 0.5 mm2. The
transmitter incorporates 8 wavelength channels with 200-GHz spacing. Each channel
achieved error-free operation at 40 Gb/s, resulting in an aggregated data transmission
capability of 320 Gb/s. To our knowledge, this is the highest aggregated data rate demon-
strated in silicon wavelength-division multiplexing transmitters. Owing to the small device
capacitance and the efficient pn-junction modulator design, the transmitter achieves low
energy-per-bit values of 36 fJ/bit under 2.4 Vpp drive and 144 fJ/bit under 4.8 Vpp drive.
Comparisons are made to a commercial lithium niobate modulator in terms of bit-error-rate
versus optical signal-to-noise ratio.

Index Terms: Integrated optics devices, modulators, integrated optoelectronic circuits.

1. Introduction
Silicon photonics offers promising solutions to the demand of increasingly higher data transmission
capacity in applications ranging from short-reach optical interconnects [1] to long-haul telecom-
munications [2]. Wavelength-division multiplexing (WDM) system has attracted more and more
interests in the past several years for building high capacity optical network and optical intercon-
nects. Compared to other transmission schemes to aggregate more data rate on to one fiber
channel, WDM offers a good tradeoff between systems complexity, electronics overhead and
overall data throughput.

In silicon platforms, Mach-Zehnder based modulators have been employed to implement WDM
transmitters, in which a wavelength multiplexer is needed to combine different wavelength channels
into one output [3]–[5]. An alternative approach is to use microring modulators [6], which can offer
significantly smaller footprint and lower power consumption compared to Mach-Zehnder modula-
tors. Furthermore, ring resonator structures are wavelength-selective, allowing them to operate at a
set of wavelength channels with little cross-talk to each other. This in effect integrates the
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wavelength multiplexing function into the ring device itself. This feature is particularly suitable for
WDM operation in both transmitters and receivers [7], [8].

The WDM ring transmitter architecture studied in this work is illustrated in Fig. 1(a): a series of
ring modulators are coupled to a common bus waveguide and the bus waveguide is connected to
the optical input and output of the WDM transmitter. All the laser wavelengths utilized in the
transmitter are present on this bus waveguide, while each ring modulator selectively modulates only
the wavelength that its resonance is aligned to. The multiple laser wavelengths can come from a
comb laser source [9] or multiple single-wavelength lasers pre-multiplexed together [10]. One key
design consideration with ring modulators is that its resonance wavelength is sensitive to fabrication
and temperature variations. The sensitivity is approximately 0.5-nm resonance shift per 0.5-nm
device dimensional change [11] and 80 pm=�C [12], respectively. Therefore, a key requirement on
the ring modulators is that they can be tuned to compensate for such resonance drift, so that the
resonance can be aligned with the WDM wavelength grid. This is a feature lacking in early work in
silicon WDM ring transmitters [13]–[15]. In this paper,we present an 8 � 40 Gb/s WDM transmitter
using thermally tunable silicon microring modulators. To the best of our knowledge this demon-
strates the highest aggregated data transmission capability in silicon WDM transmitters, and is a
significant improvement over prior art [8], [10], [13]–[16] in terms of channel rate as well as aggre-
gated throughput. Owing to the high modulation efficiency of the modulators at 40 Gb/s, we
demonstrate 36 fJ/bit modulation power efficiency under 2.4 Vpp drive and 144 fJ/bit under 4.8 Vpp

drive. The core devices and metal wiring occupy less than 0.5 mm2 chip area, as shown in Fig. 1(b),
while the ring modulators themselves have a much more miniaturized footprint, offering the possi-
bility of large-scale dense integration.

2. Ring Modulator Design and Characterization
The key element in the transmitter is the thermally tunable ring modulators. The ring modulators are
formed by ridge waveguide of 500-nm width, 90-nm slab height and 7.5 �m radius resulting a free
spectral range (FSR) of 12.8 nm. Approximately 75% of the waveguide was doped with pn junction
for high-speed modulation as shown in Fig. 2(a). As illustrated in the cross-section view in Fig. 2(b),
the pn junction is formed in the center of waveguide with doping level near 2� 1018 cm�3. The ring-
to-bus coupling region is doped n-type forming a resistor of 550 � for thermal tuning. The WDM
transmitter reported here was fabricated at the Institute of Microelectronics (IME), A�STAR,
Singapore, through an OpSIS multi-project-wafer run [17]. The fabrication process enables mono-
lithic integration of both modulators and photodetectors [18], therefore it is straightforward to
incorporate the designed modulator in building larger systems [19].

Fig. 1. WDM ring transmitter. (a) Architecture diagram. (b) Chip photo.
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The high-speed portion of the ring modulator can be viewed as a simple RC circuit, as shown in
Fig. 3(c). Cpad represents the fringing capacitance between the signal and the ground pad. The
branch of Rpn and Cpn is the key signal path, where Cpn is the junction capacitance and Rpn is the
series silicon resistance from the electrodes to the pn junction. The branch of substrate resistance
Rsub and device-to-substrate capacitance Csub represents the electrical path from the signal pad
through the substrate to the ground pad. By fitting RF S11 parameter of the device [Fig. 3(a) and (b)]
we extracted that Cpad is 5 fF, Cpn is 25 fF and Rpn is 60 �. Owing to the high resistivity of the silicon
substrate (750 �-cm), the branch of Rsub and Csub presents more than a factor of 10 higher
impedance than the branch of Rpn and Cpn in the frequency range of interest. Therefore, Rsub and
Csub have little effect in the frequency response of the device and are omitted in the fitting model.
Based on the extracted circuit model, we calculated that when the ring modulator is connected with
a 50 � source, from the input to Cpn, an electrical 3-dB bandwidth of approximately 50 GHz is
supported.

The optical modulation efficiency is largely determined by the resonator quality factor Q and the
tunability of the pn junction. Given the wide RC bandwidth, we choose the Q to be 5,000 providing
optical bandwidth of 25 GHz [20], sufficient to support 40 Gb/s operation. The ring modulator pn
junction tunability ðd�=dV Þ is measured to be 25 pm/V near 0 V bias, as shown in Fig. 4. The phase
shifter modulation efficiency in terms of V�L is 1.23 V-cm, calculated using V�L ¼ ð�2=2ngÞ �
ð1=ðd�=dV ÞÞ. Using the resistive heater mentioned earlier, the ring resonance can be thermally
tuned to compensate for fabrication and temperature variations. The thermal tunability is measured
to be 217 pm/mW (i.e., 59 mW/FSR) implying an thermal resistance of 2.8 �C/mW.

The small-signal electro-optical (EO) modulation bandwidth was characterized by S-parameter
measurements, using a 67-GHz bandwidth vector-network-analyzer (VNA) and a 70-GHz band-
width photodetector. The device is probed using a standard 40-GHz rated GS RF probe. The pn
junction is biased at 0 V. The EO bandwidth of microring is highly dependent on the wavelength
offset from the resonance [21], [22]. We chose to report the EO S21 bandwidth when the output

Fig. 2. Ring modulator. (a) Device photo. (b) Phase-shifter cross-section diagram.

Fig. 3. Ring modulator circuit model parameter extraction based on S11 fitting. (a) S11 phase fit. (b) S11
magnitude fit. (c) Circuit model with extracted parameters.
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power of the ring resonator is 6 dB below its off-resonance level. This is the optical operating point
that provides the sharpest slope for modulation [23]; therefore it is close to the condition that
maximizes the optical modulation amplitude (OMA). In the data transmission measurements that
will be discussed in later sections, we maintained similar offset from the resonance. At this B�6 dB[
offset point, the modulation response peaking caused by intra-cavity dynamics is not significant but
it still enhances EO bandwidth. The measured EO S21 traces from each of the 8 ring modulators in
the WDM transmitter are shown in Fig. 5. The 8 ring modulators in the transmitter showed very
similar bandwidth of around 27 GHz.

Overall, the ring modulator exhibits performance metrics comparable to the state-of-the-art in
silicon using lateral pn junctions [24], while incorporated in-device thermal tuning. Better pn junction
wavelength tunabilities can be achieved utilizing interdigitated junctions [25], [26], zigzag junctions
[27] or vertical pn junctions with microdisk resonators [20], [28]. However, as discussed in [6], the
improved tunability should be carefully traded off with a reduced modulation per capacitance as well
as more complicated fabrication processes.

3. WDM Transmitter Design and Characterization
The WDM transmitter architecture was briefly discussed in Section 1. Fig. 1 shows the diagram and
the photo of the fabricated device. In the WDM transmitter, the radii of the rings are designed to be
slightly different so that the spacing between the resonance peak of two adjacent rings is 1.6 nm,
i.e., an eighth of the FSR, in order to achieve cyclic operation with minimum tuning power. In the
testing, grating couplers (GC) were used to couple laser on and off chip. A fiber array was attached
to the silicon chip using epoxy, which made the optical coupling more stable during the testing. The

Fig. 4. PN junction tuning efficiency. (a) Spectra vs voltage. (b) Fitted peak shift vs voltage.

Fig. 5. Measured EO S21 of the 8 ring modulators in the WDM transmitter. Optical operating point is 6 dB
below off-resonance level.
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coupling loss per GC is estimated to be 5 dB. When the fiber-to-GC alignment is optimized, this
loss can be reduced to approximately 3.5 dB. The overall on-chip insertion loss is 12 dB, including
0.9 dB from each ring modulator, and 5 dB due to unexpected high loss of 2 mm long routing
waveguide covered by lower level metal interconnects. The 0.9 dB loss from the ring modulator is
due to three main sources: the single-pass loss of the ring resonator, the loss due to the closely
spaced directional coupler and the heavily doped thermal tuner in the coupler region. The latter two
can be improved in future designs.

In the experiments, we first thermally tuned the 8 rings so that their resonance peaks were evenly
distributed with the target 1.6-nm channel-spacing. The overall tuning power was 17 mW. The
spectra before and after tuning is shown in Fig. 6. It is worth noting that before the tuning the
8 channels were already roughly evenly spaced owing to the pre-scaled ring radii and consistent
dimensions of closely located devices. This helped reducing tuning power. Additional tuning power
is required to align the resonance comb to a pre-defined laser wavelength grid in actual WDM
systems. Because of the unidirectional nature of thermal tuning, the worst case scenario occurs
when the comb is blue-shifted approximately one channel-spacing. Based on the thermal tuning
efficiency, this entails 59 mW total tuning power. From a statistical standpoint [11], on average each
ring only needs to be tuned a fraction (�60%) of one channel-spacing in a cyclic configuration,
which implies 36 mW total tuning power in our design.

EO S-parameters characterize device bandwidth in small-signal regime and provide useful
information that validates device design and modeling accuracy. The large-signal dynamic
performance of the device in actual high-speed data transmission was evaluated by bit-error-rate
(BER) versus optical signal-to-noise ratio (OSNR) measurements. Due to the high loss of the fiber
coupling, erbium-doped fiber amplifiers (EDFA) needed to be inserted in the link in our experiments.
Therefore, OSNR is used to characterize channel quality and to yield a fair comparison of the
transmitters themselves. The experiment setup is shown in Fig. 7. Non-return-to-zero (NRZ)
pseudo-random-bit-stream (PRBS) with 231 � 1 pattern at 10 Gb/s was generated by an Anritsu
pulse pattern generator (PPG) and then 4-way split and delayed before being multiplexed into a
40 Gb/s bit-stream using an SHF 24210A module. The 40 Gb/s output was amplified by a
Centellax OA4MVM3 driver amplifiers, then attenuated to the desired amplitude by passive atte-
nuators. The driving signal was applied to the device through an high-speed bias-tee and a GS RF
probe with 50 � in-probe termination. The terminated probe is to avoid large RF reflections that
could damage the driver amplifier.

To operate each channel, a tunable continuous-wave (CW) laser was aligned to each of the
evenly spaced resonance peaks with proper offset to reach the aforementioned �6 dB optical
operating point. The modulated light was combined with tunable ASE noise loading that varied the
OSNR in the experiments and then passed through an EDFA. The output optical signal was passed
through an optical band-pass-filter with 6-nm bandwidth and then split into two branches. One

Fig. 6. Bus waveguide spectra before and after thermal tuning.
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branch was fed into an optical spectrum analyzer (OSA) for OSNR monitoring and the other was
sent to a u2t DPRV 2022A receiver (AC coupled, �10 dBm sensitivity) with differential outputs.
During the experiments the OMA into the receiver was maintained to be near 0 dBm, well above its
sensitivity. One of the receiver output was connected to an Agilent 86100B digital communication
analyzer (DCA) for capturing eye-diagrams. The other output was connected to an SHF 34210A 1 : 4
demultiplexer followed by an SHF 58210A selector. The demultiplexed and selected tributary was
sent to an Anritsu MU181040A error-detector for BER test. The reported BER is an average of all 4
tributaries.

We carried out the BER versus OSNR measurement on each of the 8 channels in the silicon
WDM transmitter and a commercial lithium niobate 40-Gb/s modulator that has 5.9 V� for
comparison. The lithium niobate modulator is driven with 5.5 Vpp, which was the maximal available
drive voltage from the driver amplifier due to limited output voltage from the multiplexer. The silicon
ring modulator was tested with two different driving configurations: (1) Bhigh drive[: 4.8 Vpp drive
with 2.7 V reverse bias and (2) Blow drive[: 2.4 Vpp drive with 1.1 V reverse bias. The device
junction modulation power consumption can be calculated using CpnV 2

pp=4 [29]. The two configu-
rations correspond to 144 fJ/bit and 36 fJ/bit, respectively. For a complete transmitter, additional
power is needed due to thermal tuning and driver circuits. At high data rates, with less advanced
CMOS processes, driver circuits can consume more than an order of magnitude higher power
compared to the power dissipated in charging and discharging the device capacitance [30].
However, with low-parasitic integration and advanced CMOS processes, CMOS inverter drivers
have been demonstrated with under 100 fJ/bit [16]. In this case, an efficient modulator with low
energy-per-bit is the key to improving overall power consumption.

The BER-OSNR measurement results are shown in Fig. 8. All of the 8 channels showed
consistent performance with a OSNR penalty variation approximately 1.5 dB. On average, a 3.5-dB
OSNR-penalty is observed between Bhigh drive[ ring modulator and lithium niobate modulator, and
an additional 2.7-dB OSNR-penalty is observed between Bhigh drive[ and Blow drive[ cases.
Because the receiver is AC coupled, an extinction ratio (ER) measurement was not readily available
on the DCA. We measured the conversion gain of the receiver under various power levels and
recorded the average power into the receiver in each experiment. Based on these measurements,
we calculated that ER is 10 dB in the measurement of the lithium niobate modulator and the ER
is 5 dB and 3 dB in WDM ring modulators with Bhigh drive[ and Blow drive,[ respectively. We found
that once we take into account the ER differences, the WDM ring modulators shows only 1.5–2 dB
excess OSNR penalty. The excess OSNR penalty is attributed to ring modulator nonidealities, such
as limited bandwidth, non-symmetric eye waveforms and etc. Incidentally, under Bhigh drive[
condition the test system had sufficient OSNR to reach error-free ðBER G 10�12Þ. The error-free eye-
diagrams were recorded and are presented in Fig. 9.

Fig. 7. Measurement setup for BER and eye-diagrams. (PPG: pulse pattern generator, VOA: variable
optical attenuator, ASE: amplified spontaneous emission, BPF: optical bandpass filter, OSA: optical
spectrum analyzer.)
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4. Conclusion
We report the design and characterization of an 8 � 40 Gb/s WDM transmitter in silicon. The
transmitter is based on high-speed thermally-tunable ring modulators and achieves a compact
footprint of 0.5 mm2. The tuning power to achieve cyclic and evenly distributed wavelength
channels is 17 mW. Owing to the small device capacitance of 25 fF and high pn-junction tunability
of 25 pm/V, the transmitter demonstrates a low energy-per-bit of 36 fJ/bit at 40 Gb/s. All 8 channels
showed consistent device characteristics as well as BER-OSNR performance and achieved error-
free ðBER G 10�12Þ operation when given sufficient OSNR. To our knowledge, this work demon-
strates the highest aggregated data rate in silicon WDM transmitters.
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