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Abstract—Spectral efficiency (SE) and energy efficiency (EE)
are two main metrics for the transmit design in Visible Light
Communications (VLC). However, the SE-optimal and EE-
optimal strategies may be in conflict with each other to some
extent. In this paper, we investigate the the tradeoff between
EE and SE in rate splitting multiple access (RSMA)-aided VLC
systems to maximize the system resource efficiency (RE) taking
both perfect and imperfect channel state information (CSI) into
consideration. For the scenarios with perfect CSI, we explore the
joint precoding design and common rate allocation to maximize
the RE of RSMA-aided VLC systems under the constraints
of quality of service (QoS) and linear operation region (LoR)
of LED, and propose a primal-dual-gradient-based precoding
strategy. Furthermore, in the presence of CSI estimation errors,
we propose a worst-case robust precoding design by exploiting
quadratic transform and S-Procedure. Numerical results indicate
that the proposed resource efficient RSMA algorithm achieves the
tradeoff between EE and SE.

Index Terms—Rate splitting multiple access, resource effi-
ciency, energy efficiency, spectral efficiency, tradeoff.

I. INTRODUCTION

W IRELESS data traffic is exponentially growing, with
most of which is generated in indoor spaces such as

homes and office buildings [1]. Moreover, the ongoing issues
of the spectrum resource scarcity in conventional radio fre-
quency (RF) communications necessitate the development of
innovative wireless technologies. Visible light communications
(VLC), with its inherent security features, resistance to elec-
tromagnetic interference, and access to abundant unlicensed
spectrum, is viewed as a viable and effective complement to
RF communications [2].

Despite these remarkable benefits of VLC, the limited mod-
ulation bandwidth and low optical power of commercial LEDs
impede the realization of VLC system’s full potential [3].
Therefore, both academic and industry scientists have made
significant efforts to overcome the LED constraints, with the
aim to improve spectral efficiency (SE) and energy efficiency
(EE) of VLC systems. The design of effective multiple access
schemes paves the way for achieving higher efficiency in VLC
systems [4].
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To enhance the system SE and EE, the concept of rate
splitting multiple access (RSMA) was introduced in RF com-
munications [5]–[7]. RSMA operates by dividing the message
of each user into public and private components. Subsequently,
all the public components are encoded together into a unified
stream for decoding by all receivers, while the private com-
ponents are exclusively decoded by their respective users. Re-
search has demonstrated that RSMA is capable of reducing the
complexity of both BS and users while outperforming space
division multiple access (SDMA) and non-orthogonal multiple
access (NOMA) regardless of channel state information (CSI)
accuracy and network load [7], [8].

To harness the advantages of RSMA in RF communica-
tions, researchers have devoted extensive efforts in resource
allocation, transmission design and application extension. In
general, there are three lines of research for RSMA, namely
SE optimization, EE optimization and EE-SE tradeoff. In the
literature, much attention has been dedicated to dealing with
SE optimization problem. For example, a linear precoding
strategy is proposed in [9] to maximize the system SE in
downlink MIMO, where the LogSumExp technique is adopted
to convert the primal problem into a tractable problem of
maximizing the sum of generalized Rayleigh quotients. The
authors in [10] consider the sum-rate maximization problem
and propose a fractional programming (FP) and fixed point
iteration based algorithm. Although SE metric plays a crucial
part in system design, we have to notice that the EE metric
has attracted much attention due to the energy dilemmas and
global warming concerns. The paper [11] investigates the
EE of RSMA-aided downlink MISO systems and proposes
an SCA-based beamforming design to address the EE max-
imization problem. The joint precoding and reconfigurable
intelligent surfaces (RIS) control problem is considered in [12]
to optimize the system EE, and a two-stage scheme based on
SCA is proposed to tackle this non-convex fractional problem.
Compared to the aforementioned works that concentrate on a
single optimization criteria, fewer researchers investigate the
EE-SE balance. In [13], the authors transform the joint EE
and SE multi-objective optimization into a single-objective
problem by weighted-power and weighted-sum approaches,
and propose an SCA-based iterative algorithm to achieve the
EE-SE tradeoff. Authors in [14] investigate an integration of
RSMA and active RIS to strike a desired EE-SE tradeoff, and
a two-stage alternating optimization scheme is proposed to
tackle the tradeoff issue. It is worth noting that the mentioned
studies are architected for RF communications, however, can
not be directly transposed to VLC networks because of the
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characteristics of intensity modulation and direct detection
(IM/DD).

Moreover, research on RSMA for VLC networks is cur-
rently in early stages. For VLC systems, a closed-form ex-
pression of achievable rate lower bound for RSMA-based VLC
systems is derived in [15] and the authors propose an iterative
precoding design based on CCCP technique to enhance the
spectral efficiency under both the electrical power and optical
power constraints. Building upon the lower bound in [15],
[16] and [17] investigate the spectral efficiency maximization
problem and propose two different coordinated transmission
strategies for multi-cell VLC systems. A linear precoding
design is developed in [18] to enhance spectral efficiency
and the performance between RSMA scheme and NOMA
scheme is compared in multi-cell VLC networks. The authors
in [19] consider the optimization problem of energy efficiency
in both single and multi-cell scenarios, and propose an SCA-
based precoding strategy for single-cell scenarios and a zero-
forcing (ZF)-based precoding design for multi-cell scenarios,
respectively.

A comprehensive review highlights RSMA’s superior per-
formance over SDMA and NOMA in various application
scenarios. However, research on implementing RSMA in VLC
is still in very early stages. Additionally, the aforementioned
works only focus on a single criterion. The dynamic resource
supply and demand differences among users result in that
users’ preference for SE and EE performance differs from each
other. Unfortunately, the EE-optimal strategies and SE-optimal
ones may conflict to some extent [20]. Thus, it is worthwhile
to investigate how to strike an EE-SE balance in precoding
design for achieving a more practical system performance.

Furthermore, note that successive interference cancellation
(SIC) technique is employed in RSMA. The accuracy of CSI
significantly influences the system performance, especially
for SIC-dependent systems. In practice, the CSI estimation
errors may result in residual interference and potential error
propagation during SIC processing. Hence, designing robust
RSMA holds significant importance for practical VLC net-
works. However, all the previous studies [16]–[19] for RSMA-
aided VLC systems do not consider CSI estimation errors.

In view of the above problems, we investigate the tradeoff
problem between EE and SE for RSMA-aided MISO VLC
downlink systems with error bounded CSI. We adopt a flexible
metric, termed as resource efficiency (RE) [20] [21], and
explore the RE optimization to achieve a desired EE-SE
balance. In conclusion, the principal contributions of this work
can be outlined as follows.
• We explore the RE maximization problem to achieve

an EE-SE balance under the quality of service (QoS)
constraints and LED linear operation region constraints.
To the best of our knowledge, this paper is the first to
jointly optimize the system EE and SE and investigate
the integration of RSMA into VLC systems. Note that
RSMA provides a novel framework for multi-antenna
networks, encompassing NOMA and SDMA as extreme
schemes [8]. As a result, investigating the EE-SE tradeoff
problem for RSMA-assisted VLC systems simultaneously
addresses the EE-SE tradeoff issues for NOMA and

SDMA-based systems.
• In scenarios with perfect CSI, we jointly optimize the

precoding and common rate allocation to maximize the
RE of RSMA-aided VLC networks, while satisfying the
QoS constraints and the LED linear operation range
constraints. To solve this fractional problem, we first
adopt the quadratic transformation technique to convert
the fractional objective function to a concave one. Sub-
sequently, fractional programming (FP) is adopted to
transform the non-convex problem into a tractable one.
Finally, by introducing auxiliary variables and penalty
function, the problem is addressed by the primal-dual-
gradient-based algorithm.

• To overcome the practical challenges posed by imperfect
CSI in VLC systems, we propose an SCA-based robust
algorithm for the worst-case transmission design while
ensuring the QoS performance of the systems. To address
the issue of robust optimization, SDR technique com-
bined with S-lemma are adopted to transform non-convex
constraints into a series of linear matrix inequalities
(LMI). Finally, the worst-case robust precoding design
and common rate allocation problem is effectively settled
by the introduced SCA-based algorithm.

• The simulation results demonstrate that the proposed
precoding strategy for RSMA-based VLC systems sur-
passes the existing baseline schemes. More specifically,
the proposed RE algorithm achieves a well-balanced
tradeoff between EE and SE. Furthermore, the RSMA-
based scheme always exhibits a higher resource efficiency
than NOMA and SDMA. In scenarios with imperfect CSI,
the proposed worst-case RSMA scheme outperforms non-
robust designs in terms of resource efficiency.

The remainder of this work is structured as follows. Section
II provides a characterization of the RSMA-aided VLC system
model and introduces the RE metric. In Section III, we explore
the joint precoding design and common rate allocation for
optimizing RE in perfect CSI scenarios while Section IV
investigates the worst-case robust precoding strategy under
imperfect CSI. Simulation results are presented in Section V,
followed by a conclusion in Section VI.

II. SYSTEM MODEL

A. Signal Model

In this paper, we investigate a downlink VLC system,
which applies RSMA to eliminate multi-user interference. The
system comprises of one VLC base station (BS) with N LEDs
and K users each equipped with a single photodetector. The
concept of RSMA-VLC is depicted in Fig. 1. Specifically,
the intended message Uk for kth user is divided into two
components, namely a common component Uc,k and a private
component Up,k. All users’ common components are super-
imposed and encoded together into a shared common stream
s0. The private components Up,k are separately encoded into
the private streams sk for each user. Asssuming that sk is
normalized to the range [-1, 1] with zero mean and σ2

s

variance.
At the VLC BS, the transmitted signal is given by
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Fig. 1: Diagram of RSMA-based VLC systems.

x = w0s0 +

K∑
j=1

wjsj + Idc (1)

where w0 denotes the precoding vector of common signal
s0 and wk denotes the precoding vector of private signal
sk. Idc = [Idc, · · · , Idc]T is the direct current (DC) bias to
ensure a positive electrical signal, which is essential for LEDs.
To meet the dynamic operation range and the illumination
requirements of LED, the constraints on precoding matrix
W = [w0,w1, · · · ,wK ] are expressed by

‖W(n, :)‖1 ≤ min {Idc − Imin, Imax − Idc}
4
= I, ∀n (2)

where Imin and Imax are the minimum and maximum allow-
able current in the LED linear operation range, respectively.

The DC bias, which does not carry any information, can be
removed through alternating current (AC) coupling. Once the
DC-offset has been eliminated, the kth user’s received signal
can be represented as follows:

yk = hTk

K∑
j=0

wjsj + nk (3)

where hk denotes the channel matrix between the VLC BS and
the kth receiver. nk denotes the received noise which follows
Gaussian distribution with the variance of σ2

k.
The shared common signal s0 is firstly decoded by regarding

all the other private signals as noise. The SINR of decoding
common rate for kth user is expressed by

Γk,c =

∣∣hTkw0

∣∣2∑K
j=1

∣∣hTkwj

∣∣2 + σ2
k/σ

2
s

=
Sk,c
Tk,c

. (4)

Note that the closed-form expression of channel capacity for
IM/DD channel remains a mystery. In this paper, we adopt
a lower bound on achievable rate as presented in [22]. The
achievable common rate for kth user is expressed by

Rk,c =
1

2
log

(
1 +

6

πe
Γk,c

)
. (5)

To guarantee that the shared common signal s0 is successfully
decoded by all receivers, the common rate should choose the
worst-case common rate, given by

RC = min
k
{Rk,c} . (6)

In RSMA, all the users share the common rate RC such that
K∑
k=1

Ck = RC (7)

where Ck denotes the part of the shared common rate assigned
to the kth user. Once the common signal s0 is successfully
decoded, user k then adopts SIC to remove common signal,
and decodes its desired private signal sk by treating the
remaining private signals intended for other users as noise.
Then, the SINR of decoding private rate for kth user is
calculated by

Γk,p =

∣∣hTkwj

∣∣2∑
j 6=k

∣∣hTkwj

∣∣2 + σ2
k/σ

2
s

=
Sk,p
Tk,p

(8)

and the private rate is given by

Rk,p =
1

2
log

(
1 +

6

πe
Γk,p

)
. (9)

B. Channel and Noise Modeling

The VLC systems employ intensity modulation at the trans-
mitter, where the information is carried by the intensity of the
light. This means that the transmitted signal must be real and
non-negative. At the receivers, the optical signal is detected
and converted into a proportional electrical signal through
photodiode.
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For the indoor scenarios, research [23] indicates that the
line-of-sight (LOS) link contributes over 95% to the received
power. Consequently, it is practical to concentrate on the LOS
link when designing indoor VLC systems. Based on Lambert
emission model, the equivalent channel coefficient between
the kth receiver and the nth LED array is calculated by [19],
[23], [24]

hkn =
(m+ 1) ηdηlAr

2πd2
kn

cosm (φkn) cos (ϕkn)Γ (ϕkn) (10)

where m = − ln 2/ ln cos
(

Φ 1
2

)
denotes the Lambert order

with Φ 1
2

being the LED semi-angle. ηd and ηl denote the
the detector responsivity and the LED conversion factor. Ar
stands for the receiving area of the photodetector, dkn is the
distance between the nth LED array and the kth receiver’s
photodetector, φkn and ϕkn are respectively the emission
angle and the incidence angle. Γ (ϕkn) denotes the optical
concentrator gain obtained by

Γ (ϕkn) =

{
n2

sin2(Ψ)
, ϕkn ≤ Ψ

0, ϕkn > Ψ
(11)

where n denotes the refractive coefficient and Ψ represents
the field-of-view (FoV) of the photodetector.

The acquisition of accurate CSI is indeed challenging be-
cause of the errors in channel estimation. To characterize the
estimation inaccuracy, this paper employs a norm-bounded
error CSI model [25]. In particular, the actual channel for kth
user is modeled as follows

hk = ĥk +4hk (12)

where ĥk and 4hk represent the estimated CSI vector and the
bounded CSI estimation error vector, respectively. According
to [26] and [27], the CSI uncertainty set can be characterized
by an ellipsoid, given by

hk ,
{
4hk | 4hTkEk4hk ≤ ε2k

}
(13)

where Ek � 0 controls the orientation of the ellipsoidal region
and specifies the quality of CSI. The parameter ε2k presenting
the uncertainty controls the size of hk.

For the kth receiver, the Gaussian noise nk mainly comes
from thermal disturbances, shot noise and relative-intensity
fluctuations. Given the parameters mentioned above, σ2

k can
be calculated as [19], [23], [24]

σ2
k = 2eB (Po,k + 2πArχamp (1− cos (Ψ))) + i2ampB (14)

where e denotes the electron’s charge, Po,k =
∑N
n=1 hknIdc

represents the average received optical power at the kth
receiver, and B represents the system bandwidth. χamp and
iamp denote the photocurrent of ambient light and the density
of noise current caused by the pre-amplifier, respectively.

C. The Definition of Resource Efficiency

The traditional system design typically focuses on SE to
increase the transmission rate at all costs. The system SE
refers to the amount of total throughout achieved over a limited
bandwidth, with the unit of bits/s/Hz. The definition of SE
is given by

SE =

K∑
k=1

(Ck +Rk,p) . (15)

The exponential growth of mobile data traffic leads to a
rapid surge in the release of greenhouse gases and energy
consumption. In the meanwhile, the shrinking size of terminals
imposes strict limitations on battery capacity. Hence, the
EE optimization has received significant research interest in
practical VLC network designs, which refers to the ratio of
SE to system power consumption. The system EE with the
unit of bits/Joule/Hz, is expressed by

EE =
SE

Ptot
(16)

where Ptot is the total system power consumption at the VLC
BS, which is approximated as Ptot = ζ

∑K
k=0 ‖wk‖22 +PV LC .

Moreover, ζ ≥ 1 denotes the coefficient of power amplifier,
PV LC is a constant representing the power consumption of
LEDs circuit and DC bias.

Both SE and EE metrics play an important role in com-
munication system design. In certain scenarios, both SE and
EE metrics should be jointly considered in communication
system design. Nevertheless, EE is maximized by utilizing
a portion of transmit power budget while SE uses the full
transmit power budget in the moderate and high SNR regimes,
which leads to a conflict. Therefore, striking a balance between
them is worth considering and remains an open problem in
RSMA-aided VLC systems. To this end, we consider a joint
SE and EE optimization to achieve a tradeoff by maximizing a
weighted sum of these two metrics. In particular, an RE metric
is adopted in this paper, which is defined as [20], [28]

RE =EE + β
SE

Psum

=

(
1

Ptot
+

β

Psum

) K∑
k=1

(Ck +Rk,p) (17)

where β is a weight coefficient characterizing the priority
assigned to EE and SE. 1

Psum
is the normalization factor,

and Psum is a constant denoting the total VLC power budget
modeled as

Psum = ζPmax + PV LC (18)

where Pmax is VLC BS transmitting power budget and ζ
denotes the coefficient of power amplifier. It can be verified
that the simple RE maximization equals to solve multi-
objective optimization (MOO) of the EE-SE problem [20].
We can obtain various EE-SE tradeoff through adjusting the
value of β. Specifically, the system designer can select a
weighting factor β approaching 0 to prioritize EE while close
to infinity for β when SE is given priority. Note that RE
metric contains EE and SE as extreme metrics. Consequently,
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investigating the EE-SE tradeoff problem for RSMA-assisted
VLC systems simultaneously addresses the EE maximization
and SE maximization problems.

In contrast to the previous papers solely focusing on either
SE or EE, here we aim to strike a tunable balance between
them. In the next sections, we explore the joint precoding
design and common rate allocation for RSMA-based VLC
downlink transmission to maximize the system RE in both
perfect and imperfect CSI scenarios.

III. RE MAXIMIZATION WITH PERFECT CSI

The perfect CSI scenario is considered in this section, where
the precoding design and common rate allocation for maxi-
mizing RE is studied. Mathematically, the RE maximization
problem for RSMA-aided VLC systems can be formulated as

P1 : max
W,C

(
1

Ptot
+

β

Psum

) K∑
k=1

(Ck +Rk,p) (19a)

s.t.

K∑
k=1

Ck ≤ Rk,c, Ck ≥ 0,∀k (19b)

Ck +Rk,p ≥ Rmin
k ,∀k (19c)

‖W (n, :)‖1 ≤ min {Idc − Imin, Imax − Idc} ,∀n
(19d)

where condition (19b) ensures all receivers can successfully
decode the shared common stream and guarantees a non-
negative achievable common rate. Eq. (19c) indicates that
all users must meet the QoS requirements. Constraint (19d)
ensures the LEDs work in the linear region.

The formulated problem P1 poses a challenge due to its
non-convex fractional nature. In this following, we propose a
primal-dual-gradient-based joint precoding and common rate
allocation algorithm to tackle this non-convex problem effec-
tively. To achieve this, we reconstruct the primal problem by
means of quadratic transform and Lagrangian dual transform
methods.

To deal with the complex form of Rk,p and Rk,c in the
definition of RE, an auxiliary variable tk is introduced to
denote the total rate of kth user. The original problem P1 is
thus transformed into an equivalent form as

P2 : max
W,C,t

(
1

Ptot
+

β

Psum

) K∑
k=1

tk (20a)

s.t. Ck +Rk,p ≥ tk,∀k (20b)
(19b)− (19d). (20c)

Note that problem P2 is in a form of ratio fractional sum,
which can be effectively addressed by means of the quadratic
transform algorithm. According to Theorem 1 in [29], it is
possible to equivalently convert problem P2 into

P3 : max
W,C,t,y

K∑
k=1

(
2yk
√
tk − y2

kPtot
)

+
β

Psum

K∑
k=1

tk (21a)

s.t. (20b), (20c) (21b)

where {yk} is the set of slack variables. Since P3 poses chal-
lenges in simultaneously determining the optimal values for all
variables, the alternating optimization method is employed to
optimize P3. More specifically, the primal variables {W,C}
and the auxiliary variables {y, t} are iteratively optimized.
The optimal value of y? and t? with fixed {W,C} can be
obtained in the closed-form as

y?k =

√
tk

Ptot (W)
(22a)

t?k =Ck +Rk,p (W) (22b)

Then, we optimize {W,C} with given {y, t}. The Lagrangian
dual transform and quadratic transform [29] is adopted to
reformulate the common rate and private rate as

fk,c (W, γk,c, αk,c) = (1 + γk,c)− γk,c + 2αk,c
√

1 + γk,c

×

(√
6

πe
hTkw0

)
− α2

k,c

(
6

πe
Sk,c + Tk,c

)
(23a)

fk,p (W, γk,p, αk,p) = (1 + γk,p)− γk,p + 2αk,p
√

1 + γk,p

×

(√
6

πe
hTkwj

)
− α2

k,p

(
6

πe
Sk,p + Tk,p

)
(23b)

where {Sk,c, Tk,c, Sk,p, Tk,p} is defined in (4) and (8). With
given {y, t}, the problem P3 is equivalent to

P4 : min
Φ

ζ

K∑
k=0

‖wk‖22 + PV LC (24a)

s.t.

K∑
k=1

Ck ≤
fk,c (W, γk,p, αk,c)

2
, Ck ≥ 0,∀k (24b)

Ck +
1

2
fk,p (W, γk,p, αk,c) ≥ Rmin

k ,∀k (24c)

(19d) (24d)

where Φ = {W,C,γ,α} is the optimization variables set.
Problem P4 demonstrates block coordinate-wise convexity.
Therefore, we propose an alternating optimization method to
solve problem P4. More specifically, the optimal auxiliary
variables with given {W, RC} can be obtained by

γ?k,c =
6

πe

∣∣hTkw0

∣∣2
Tk,c

(25a)

γ?k,p =
6

πe

∣∣hTkwk

∣∣2
Tk,p

(25b)

α?k,c =

√
(1 + γk,c)

(√
6
πeh

T
kw0

)
6
πe

∣∣hTkw0

∣∣2 + Tk,c
(25c)

α?k,p =

√
(1 + γk,p)

(√
6
πeh

T
kwj

)
6
πe

∣∣hTkwk

∣∣2 + Tk,p
. (25d)

For fixed {γ,α}, the optimal {W, RC} can be obtained by
addressing the following problem:

This article has been accepted for publication in IEEE Photonics Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JPHOT.2024.3388472

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



6

L (Φ) =

K∑
k=0

‖wk‖22 +
ρ

2

K∑
k=1

|Tk − Ck|2 +

K∑
k=1

αk (Tk − Ck) +

K∑
k=1

λk

(
K∑
k=1

Tk −
1

2
fk,c (W)

)

+

N∑
n=1

µn

(
K∑
k=0

Tr
(
wkw

T
k En

)
− I2

K + 1

)
+

K∑
k=1

vk

(
Rmin
k − Ck −

1

2
fk,p (W)

)
(28)

wm+1
0 =

∑
j

λmj
(
αmk,c

)2 6

πe
hjh

T
j +

N∑
n=1

2µmn En + 2I

+∑
j

λmj α
m
j,c

√
1 + γj,c

√
6

πe
hj (29)

wm+1
k =

 K∑
j=1

6

πe
λmj
(
αmj,c

)2
hjh

T
j +

N∑
n=1

2µmn En +
∑
j 6=k

νmj
(
αmj,p

)2
hjh

T
j +

6

πe

(
αmk,p

)2
νmk hkh

T
k + 2I

+

(30)

×αmk,pνmk
√

1 + γk,p

√
6

πe
hk

P5 : min
W,C

ζ

K∑
k=0

‖wk‖22 + PV LC (26a)

s.t.

K∑
k=1

Ck ≤
1

2
fk,c (W) , Ck ≥ 0,∀k (26b)

Ck +
1

2
fk,p (W) ≥ Rmin

k ,∀k (26c)

(19d) (26d)

As can be observed from P5, the reformulated problem
P5 exhibits convexity which can be effectively solved by
the CVX package. However, the utilization of CVX results
in a significant increase in computational complexity. The
primal-dual gradient method [30] is a straightforward yet po-
tent technique that effectively tackles large-scale optimization
problems by decomposing them into smaller subproblems,
thereby facilitating their handling. First, we relax problem P5
by introducing auxiliary variables {Tk} and transform it into
the following problem:

P6 : min
W,C,T

K∑
k=0

‖wk‖22 (27a)

s.t. Tk = Ck,∀k (27b)
K∑
k=0

Tr
(
wkw

T
k En

)
≤ I2

K + 1
,∀n (27c)

(26b), (26c) (27d)

The augmented Lagrangian function of P6 can be given
by (28) at the top of this page, where ρ > 0 is the penalty
parameter.

By setting the derivative of the augmented Lagrangian
function to 0, the precoding matrix, common rate allocation
vector and dual variables can be updated by (29)-(31f):

Tm+1
k =Cmk −

1

ρ

(
K∑
k=1

λmk + αmk

)
(31a)

Cm+1
k =Tm+1

k +
1

ρ
(vmk + αmk ) (31b)

αm+1
k =αmk + ρ

(
Tm+1
k − Cm+1

k

)
(31c)

λm+1
k =λmk + ρ

(
K∑
k=1

Tm+1
k − 1

2
fk,c

(
Wm+1

))
(31d)

νm+1
k =νmk + ρ

(
Rmin
k − Cm+1

k − 1

2
fk,p

(
Wm+1

))
(31e)

µm+1
n =µm+1

n

+ρ

(
K∑
k=0

Tr
(
wm+1
k

(
wm+1
k

)T
En

)
− I2

K + 1

)
.

(31f)

Algorithm 1 Precoding Design and Common Rate Allocation
for RE Maximization.
1: Initialization: error tolerance ε1 and iteration index m = 0.
2: repeat
3: For fixed {W,C}, update yk and tk by (22a) and (22b).
4: repeat
5: For fixed {γ,α}, solve P5 by (29)-(31f).
6: Update {γ,α} by (25a)-(25d) and set l = l + 1.
7: until Convergence.
8: Calculate REm =

(
1
Ptot

+ β
Psum

)∑K
k=1 (Ck +Rk,p).

9: Update Ψm+1=Ψtemp and set m = m+ 1.
10: until |REm − REm−1| ≤ ε1.
11: Return the beamforming matrix W and common rate
allocation vector C.

Complexity Analysis: In Algorithm 1, the results are ob-
tained by an alternating optimization. In the proposed Al-
gorithm 1, the main computational complexity arises from
the primal-dual-gradient algorithm for updating the precoding
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vector and dual variables. The complexity of updating the
precoding vector is O

(
K
(
KN2 +N3 +N2

))
and the com-

plexity of updating the dual variables is O
(
KN2

)
. Assume

Algorithm 1 converges after Ni iterations and the primal-
dual-gradient algorithm converges after No iterations. The
computational complexity of is O

(
NiNo

(
KN3 +K2N2

))
.

IV. EXTENSION TO IMPERFECT CSI SCENARIOS

The preceding section focused on investigating the joint pre-
coding design and common rate allocation of the RSMA-based
VLC system with ideal CSI. However, the CSI estimation
errors is always inevitable for practical VLC networks due
to feedback delay, channel estimation errors and quantization
errors, which will result in residual interference during SIC op-
erations and severely affect the VLC network’s performance.
Taking this into consideration, we further explore the joint
precoding design and common rate allocation of the RSMA-
based VLC systems in the context of imperfect CSI.

The worst-case common rate and private rate for user k are
given by (37) and (38), respectively, as demonstrated at the
top of next page. It is crucial to note that the common signal
s0 is removed by SIC. In the presence of imperfect CSI, the
users can not completely remove the common signal, which
leads to the residual term 4hTkw0 in (38).

The previous work is now extended to more practical sce-
narios where errors occur in channel estimation. Building upon
the closed-form expressions of worst-case rate (37) and (38),
we concentrate on joint robust precoding design and common
message rate allocation to maximize resource efficiency while
taking into account the QoS constraints, LoR constraints and
imperfect CSI. Mathematically, the optimization problem for
maximizing worst-case resource efficiency under imperfect
CSI is formulated as follows:

P7 : max
W,C

(
1

Ptot
+

β

Psum

) K∑
k=1

(
Ck +Rworst

k,p

)
(32a)

s.t.

K∑
k=1

Ck ≤ Rworst
k,c , Ck ≥ 0,∀k (32b)

Ck +Rworst
k,p ≥ Rmin

k ,∀k (32c)

‖W (n, :)‖1 ≤ min {Idc − Imin, Imax − Idc} ,∀n
(32d)

4hTkEk4hk ≤ ε2k,∀k (32e)

In the beamforming design and common rate allocation
problem, constraint (32b) ensures that all receivers are able
to decode the shared common stream s0 correctly. Constraint
(32c) guarantees all receivers can meet the minimum QoS
demands. Constraint (32d) ensures that the LEDs work in the
linear operation region. The challenges in solving the non-
convex fractional problem P5 primarily lie in two aspects:
1) the channel uncertainty constraint (32e) involves in fact
infinitely many constraints; 2) the complicated form of Rk,c
and Rk,p makes the problem non-convex.

Like the perfect CSI scenario, we first adopt auxiliary
variables, quadratic transform and SDR to deal with the

complicated form of objective function and constraints. The
reformulated problem is expressed by

P8 : max
W,C,t

K∑
k=1

(
2yk
√
tk − y2

kPtot

)
+

β

Psum

K∑
k=1

tk (33a)

s.t. Ck +Rworst
k,p ≥ tk,∀k (33b)

K∑
k=1

Ck ≤ Rworst
k,c , Ck ≥ 0,∀k (33c)

Ck +Rworst
k,p ≥ Rmin

k ,∀k (33d)
K∑
k=0

Tr (QkEn) ≤ I2

K + 1
,∀n (33e)

4hTkEk4hk ≤ ε2k,∀k (33f)

The constraints (33b), (33c) and (33d) contribute to the
non-convexity of P6. To deal with this problem, we introduce
equivalence transformation to replace the worst-case common
and private rate of user k.

(33b)⇔ Ck +Rk,p ≥ tk, ∀k, ∀4hk (34a)

(33c)⇔
K∑
k=1

Ck ≤ Rk,c, ∀k, ∀4hk (34b)

(33d)⇔ Ck +Rk,p ≥ Rmin
k , ∀k, ∀4hk (34c)

We then introduce exponential variables for the the achiev-
able private rate Rk,p and common rate Rk,c [16]. The
auxiliary exponential variables {ak,p,ak,c,bk,p,bk,c} are in-
troduced to enable approximating (34a), (34b), (34c) as a
convex constraint.

ebk,c ≥Tk,c,∀4hk (35a)

ebk,p ≥Tk,p,∀4hk (35b)

eak,c ≤ 6

πe

∣∣hTkw0

∣∣2 + Tk,c,∀4hk (35c)

eak,p ≤ 6

πe

∣∣hTkwk

∣∣2 + Tk,p,∀4hk (35d)

By employing the slack exponential variables for (33b)-(33d),
P6 can be reformulated as follows

P8 : max
Ω

K∑
k=1

(
2yk
√
tk − y2

kPtot

)
+

β

Psum

K∑
k=1

tk (36a)

s.t.

K∑
k=1

Ck ≤
1

2 ln 2
(ak,c − bk,c) , Ck ≥ 0,∀k (36b)

Ck +
1

2 ln 2
(ak,p − bk,p) ≥ tk,∀k (36c)

Ck +
1

2 ln 2
(ak,p − bk,p) ≥ Rmin

k ,∀k (36d)

(33e), (35a), (35b), (35d), (35d) (36e)

where Ω = {Q,C, t,ap,bp,ac,bc} is the optimization vari-
ables set. The problem P8 remains non-convex and compu-
tationally intractable due to the presence of infinitely many
constraints within constraints (35a)-(35d). By substituting the
CSI error model (12) into (35a)-(35d) and introducing the
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Rworst
k,c = min

4hk∈hk

Rk,c = min
4hk∈hk

1

2
log

1 +

6
πe

∣∣∣(ĥTk +4hTk

)
w0

∣∣∣2∑
j∈K

∣∣∣(ĥTk +4hTk

)
wj

∣∣∣2 + σ2
k

 (37)

Rworst
k,p = min

4hk∈hk

Rk,p = min
4hk∈hk

1

2
log

1 +

6
πe

∣∣∣(ĥTk +4hTk

)
wk

∣∣∣2∑
j 6=k

∣∣∣(ĥTk +4hTk

)
wj

∣∣∣2 +
∣∣4hTkw0

∣∣2 + σ2
k

 (38)

slack variables {uk,p,vk,p,uk,c,vk,c}, constraints (35a)-(35d)
can be rewritten by as follows:

uk,c ≤4hTkR4hk + 24hTkRĥk + hTkRĥk + σ2
k (39a)

vk,c ≥4hTkB4hk + 24hTkBĥk + hTkBĥk + σ2
k (39b)

uk,p ≤4hT
k R4hk + 24hTk R̄ĥk + ĥT

k R̄ĥk + σ2
k (39c)

vk,p ≥4hTk B̃4hk + 24hTk B̄ĥk + ĥT
k B̄ĥk + σ2

k (39d)

eak,c ≤ uk,c, ebk,c ≥ vk,c, eak,p ≤ uk,p, ebk,p ≥ vk,p
(39e)

where R = 6
πeQ0 +

∑K
i=1 Qi, R̄ = 6

πeQk +
∑
i 6=k Qi,

B =
∑K
j=1 Qj , B̃ = 6

πeQk + 6
πeQ0 +

∑
i 6=k Qi, B̄ =∑K

j=1,j 6=k Qj . Next, we employ S-Procedure [31] to convert
the countless constraints into a set of linear matrix inequalities.

Based on S-Procedure [31], we transform (39a)-(39d) into
a finite number of LMI constraints by applying S-Procedure,
which can be given by[

γk,cI + R Rĥk
ĥTkR −γk,cvk + ĥTkRĥk + σ2

k − uk,c

]
� 0

(40a)[
λk,cI−B −Bĥk
−ĥTkB −λk,cvk − ĥTkBĥk − σ2

k + vk,c

]
� 0

(40b)[
γk,pI + R R̄ĥk
−ĥTk R̄ −γk,pvk + ĥT

k R̄ĥk + σ2
k − uk,p

]
� 0

(40c)[
λk,pI− B̃ −B̄ĥk
−ĥTk B̄ −λk,pvk − ĥT

k B̄ĥk − σ2
k + vk,p

]
� 0

(40d)

where γk,c ≥ 0, λk,c ≥ 0, γk,p ≥ 0, and λk,p ≥ 0 are
slack variables. Up to now, most of the constraints are convex
except for (39e). To tackle these non-convex constraints, SCA
is adopted to approximate the exponential bounds. For (39e),
it can be linearly approximated by employing the affine Taylor
expansion as

eb
[m−1]
k,c + eb

[m−1]
k,c

(
b
[m]
k,c − b

[m−1]
k,c

)
≥ vk,c (41a)

eb
[m−1]
k,p + eb

[m−1]
k,p

(
b
[m]
k,p − b

[m−1]
k,p

)
≥ vk,p (41b)

where b[m]
k,c and b[m]

k,p are feasible solutions obtained at the mth
iteration. Based on the S-lemma and SCA method, P7 with

Algorithm 2 Robust Precoding Design and Common Rate
Allocation for RE Maximization.
1: Initialization: index i = 0 and error tolerance δ2.
2: repeat
3: For fixed Ψ, update y?k =

√
tnk

Psum(Wn) .
4: repeat
5: For fixed y, solve P8 by using CVX and obtain the

solutions Ωtemp.
6: Update Ωl+1=Ωtemp and set l = l + 1.
7: until Convergence
8: Calculate REm =

(
1
Ptot

+ β
Psum

)∑K
k=1 (δkCk +Rk,p).

9: Update Ωm+1=Ωtemp and set m = m+ 1.
10: until |REm − REm−1| ≤ δ2 .
11: if rank (Qk) == 1 then
12: Calculate W by eigenvalue decomposition.
13: else
14: Calculate W by Gaussian randomization approach.
15: end if
16: Return the beamforming matrix W and common rate
allocation vector C.

an infinite number of constraints can be finally approximated
at the mth iteration as the following convex sub-problem

P9 : max
Ω

K∑
k=1

(
2yk
√
tk − y2

kPsum

)
+

β

Ptot

K∑
k=1

tk (42a)

s.t. (36b), (36c), (36d), (36e) (42b)
(40a), (40b), (40c), (40d) (42c)
(41a), (41b) (42d)

With given feasible initial value, the reformulated problem
P8 is then iteratively linearized as a convex problem which
can be solved by using standard CVX package [32] until con-
vergence is achieved. Once the solution set Q is obtained, the
rank of Qk should be checked. If the rank of Qk is one, then
the solution wk to P5 can be recovered from the eigenvector of
Qk corresponding to the largest eigenvalue. Otherwise, a near-
optimal solution can be obtained utilizing a Gaussian random-
ization technique. The SCA-based robust precoding and com-
mon rate allocation algorithm is outlined in Algorithm 2. With
respect to Algorithm 2, the overall computational complexity

is approximated by O
(
NiNo

(
N2 (K + 1)

2
+ 14K

)3.5
)

.

Theorem 1: The sequence {Ωm} generated by Algorithm 2
exhibits convergence towards a designated limit point.
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Table I: Simulation Parameters.

Parameters Values
LED semi-angle 60o

Receiver FOV 60o

Refractive index 1.5
PD geometrical area 1cm2

LED conversion factor 0.44W/A
PD responsibility 0.30A/W
Ambient light photocurrent 10.93A/m2/Sr

Pre-amplifier noise current density 5pA/Hz−1/2

System Bandwidth 10MHz

Table II: LED Positions.

LEDs Positions LEDs Positions
LED 1 [1.25, 1.25, 3]m LED 2 [3.75, 1.25, 3]m
LED 3 [3.75, 3.75, 3]m LED 4 [1.25, 3.75, 3]m
LED 5 [1.25, 2.50, 3]m LED 6 [3.75, 2.50, 3]m

Proof: Please refer to Appendix.

V. NUMERICAL RESULTS

This section presents the simulation studies to validate the
effectiveness of the proposed precoding design and common
rate allocation algorithm, as well as to explore the EE-SE
tradeoff in the RSMA-assisted VLC MISO systems. In our
simulations, we assume a typical setup of indoor scene with
the dimension of 5m × 5m × 3m. The LEDs are placed
at the ceiling while all users with uniform distribution are
located in the receiving plane, which is set to be 0.8m. The
basic parameters of the VLC network are summarized in
Table I, selected from [1], [23] while the positions of LED
are shown in Table II. The coefficient of power amplifier
is chosen as ζ = 2 and the constant power consumption
is set to PV LC = 2W. For comparison, we also consider
the performance of EE optimization (EEopt) [19] and SE
optimization (SEOpt) [15] as benchmarks. The solutions of
EEopt scheme can be obtained by setting weighting factor
β = 0 and the solutions of SEOpt scheme can be obtained
by setting weighting factor β → ∞. In the simulations, the
RSMA scheme proposed in Section III is denoted as RSMA-
GRA while the RSMA scheme proposed in Section IV is
denoted as RSMA-SCA.

Fig. 2 and 3 compare the RE performance between RSMA,
SDMA, and NOMA under both underloaded scenario and
overloaded scenario with β

Psum
= 1. In the underloaded case,

the VLC BS equipped with 4 LEDs (LED 1, 2, 3, 4) serves
2 users. While the system consists of 2 LEDs (LED 5, 6)
and 3 users in the overloaded scenario. It can be observed
that the system RE increases with the DC offset, and the
RE performance of RSMA outperforms NOMA and SDMA
schemes in both cases. RSMA’s ability to partially decode
interference and partially treat interference as noise contributes
to its superior performance.

Then, we will demonstrate that the RE metric is capable of
achieving the balance between EE and SE.

Fig. 4 illustrates the influence of equivalent weighting factor
β

Psum
to corresponding system EE and SE when N = 4

and K = 2. It can be observed that as the weighting factor
increases, the corresponding SE rises while EE decreases. This
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Fig. 2: The RE performance versus DC offset for underloaded
scenarios with N = 4 and K = 2.
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Fig. 3: The RE performance versus DC offset for overloaded
scenarios with N = 2 and K = 3.
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Fig. 4: Influence of the weighting factor on the corresponding
system EE and SE.
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Fig. 5: EE-SE tradeoff under different DC offset.
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Fig. 6: EE-SE tradeoff under different weighting factor.

is due to the reason that a larger weighting factor results in
attaching more importance to system SE and allocate more
resources to maximize the system SE. This is in accordance
with the fact that when weighting factor tends to zero, the
RE optimization problem degenerates to the EE optimization
approach, and when weighting factor tends to infinity, it equals
to the problem of maximizing SE. This means that the RE
metric provides a more general framework compared with EE
and SE. Fig. 4 also demonstrates the proposed RE optimization
approach achieves a flexible tradeoff between EE and SE via
setting an appropriate weighting factor.

Fig. 5 demonstrates the EE-SE tradeoff under different DC
offset with β

Psum
= 1 when K = 2 and N = 4. For

comparison, the performance of EE maximization algorithm in
[19] and SE maximization algorithm in [15] are also shown. It
is seen that the red curve, representing EEopt scheme, finishes
when SE = 13.18bit/s/Hz. This is because the EEopt scheme
achieves a lower SE than SEopt and REopt schemes. The result
also shows that the proposed REOpt algorithm can strike a
balance between the EE and SE.

Fig.6 illustrate the EE-SE tradeoff under different weighting
factor. It can be seen that the SE-EE curve gathers into a point
within the range of weighting factor from 10−2 to 102 when
Idc = 100mA. That is to say, the SE and EE maintain constant
when Idc = 100mA. This is due to the fact that both EE and
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Fig. 7: Comparison between the EE performance versus DC
offset.

50 100 150 200 250 300 350 400 450 500
9

10

11

12

13

14

15

16

S
p
ec

tr
al

 E
ff

ic
ie

n
cy

 (
b
it

s/
s/

H
z)

RSMA EEOpt-SCA

RSMA SEOpt-SCA

RSMA REOpt-SCA

RSMA SEOpt-GRA

Fig. 8: Comparison between the SE performance versus DC
offset.

SE are both maximized by taking the full use of transmit power
budget in the low SNR region. When Idc = 500mA, the SE
and EE achieve a tradeoff. This is due to the fact that in the
moderate and high SNR regimes, SE still increases with SNR
while EE starts decreasing with SNR.

To further illustrate the efficacy of the proposed REOpt
algorithm, we investigate the corresponding SE and EE perfor-
mance of the three approaches in relation to the DC current
in Fig. 7 and 8 with β

Psum
= 1 when K = 2 and N = 4.

In the low DC current budget region where Idc ≤ 150mA,
we can observe that the influence of weight coefficient on
EE and SE is negligible and the three considered algorithms
show almost the same performance. This can be attributed to
the fact that in the low DC current region, the EE and SE
performance achieve the peak points with full budget, which
results in the denominator of EE Ptot being equal to a constant
and the RE and EE maximization problem degrades into the
SE maximization. In contrast, the system RE maximization
does not achieve either the EE or the SE maximization, but
rather a tradeoff between them when Idc is relatively large.

Figure 9 compares the performance of the proposed robust
design and the non-robust approach under various DC offset
conditions with β

Psum
= 1 when K = 2 and N = 4. The non-
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Fig. 9: The robust RE performance versus DC offset.
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Fig. 10: Convergence of inner iteration.

robust design assumes a perfect match between the estimated
and actual channels, without considering any uncertainty in
the channel. Numerical results demonstrate that our developed
robust algorithm achieves superior performance compared to
the non-robust one by incorporating channel uncertainty for
enhanced robustness.

To assess the convergence performance of the proposed RE
algorithm, the resource efficiency for different DC offset in
inner and outer iteration are presented in Fig. 10 and 11 with
β

Psum
= 1 when K = 2 and N = 4 . As illustrated in Fig. 10

and 11, the proposed SCA-based algorithm requires at most
5 inner iterations and only 1 outer iteration for convergence.
In conclusion, the proposed RE algorithm exhibits rapid con-
vergence to stationary values fast within a minimal number of
iterations.

Table III compares the matlab performance time between the
proposed RSMA-GRA and RSMA-SCA algorithms as a rough
indicator of the computational complexity, acknowledging its
limitations. It can be seen that the proposed RSMA-GRA
algorithm consumes about 40% computation time of RSMA-
SCA algorithm. This is due to the fact that the RSMA-GRA
algorithm does not use CVX in each iteration.

0 2 4 6 8 10 12 14 16 18 20

Numer of iterations

14

15

16

17

18

19

20

21

R
e
s
o
u

rc
e
 E

ff
ic

ie
n

c
y
 (

b
it
s
/J

o
u
le

/H
z
)

Fig. 11: Convergence of outer iteration.

Table III: Computation Time.
Setup RSMA-GRA RSMA-SCA
N = 4 and K = 2 2.68sec 6.53sec

VI. CONCLUSION

In this paper, we have investigated the RE optimization
for RSMA-aided VLC MISO systems to achieve a desired
EE-SE balance. We have formulated a joint precoding and
common rate allocation problem to maximize the system
RE, while taking into consideration of the QoS constraint
and the optical power constraints of LED. To address this
non-convex factional problem with perfect CSI, a primal-
dual-gradient-based algorithm with low complexity has been
proposed, where auxiliary variables, quadratic transform and
fractional programming have been employed to transform the
non-convex problem into a convex problem. Furthermore, for
scenarios with imperfect CSI, we have developed a worst-case
robust precoding strategy for RSMA-enhanced VLC systems
to maximize the RE while ensuring the QoS requirements of
all users. Specifically, by leveraging SCA and S-Procedure
techniques, a worst-case robust scheme has been proposed to
yield high-quality solutions. Simulation results have demon-
strated that in the low DC offset region, the system RE, SE
and EE are simultaneously maximized and in the high DC
offset region, the proposed RE algorithm achieves a flexible
balance between EE and SE.

APPENDIX

The proposed RE maximization algorithm can be decom-
posed into two layers. For the outer optimization, the problem
is solved by quadratic transform and the convergence of
quadratic transform has been validated in [29]. Therefore,
we focus on the proof of inner convergence. Specifically,
denote the value of (21a) and (19a) as F (Ψ) and Fm(Ψ),
respectively, where m is the iteration index. Then, we have

F (Ψ) ≥ Fm(Ψ) (43)

F (Ψm) = Fm(Ψm) (44)
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Based on (43) and (44), we have

F (Ψm+1) ≥Fm(Ψm+1)

≥Fm(Ψm) = F (Ψm). (45)

The second inequality is hold due to the fact that Ψm+1 is
the optimal solution. According (45), we know that solving
P4 iteratively increases the value of F (Ψ). Moreover, Ψm is
bounded by the optical power constraint (19d). Thus, it is guar-
anteed to convergence based on the monotone convergence
theorem [14].
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