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Hyperspectral Image Joint Super-Resolution via
Local Implicit Spatial-Spectral Function Learning

Yanan Zhang , Jizhou Zhang, and Sijia Han

Abstract—Hyperspectral image (HSI) super-resolution (SR) in
both spatial and spectral dimensions is one of the most attractive
research topics in HSI processing. Although recent advances in
deep learning (DL) frameworks have greatly improved the per-
formance of spatial-spectral SR reconstruction, existing methods
learn discrete representations of HSI, ignoring real-world signals’
continuous nature. Recently, Implicit Neural Representation (INR)
has been applied to 3D surface reconstruction and image SR for
continuous representation and has attracted increasing attention.
In this paper, we propose the Local Implicit Spatial-spectral Func-
tion (LISSF), which learns a local continuous representation of high
spatial resolution hyperspectral images (HR-HSI) from the discrete
inputs. The model consists of a deep feature encoder and a spatial-
spectral intensity decoder. The encoder converts the low spatial
resolution multispectral image (LR-MSI) into deep features and
the decoder predicts the intensity values at the given coordinates
as output. Since the spatial-spectral coordinates are continuous,
LISSF can achieve spatial-spectral SR in arbitrary scales, even
extrapolating to higher resolutions not covered by the training data.
Extensive experiments on spatial-spectral SR, spatial SR, and spec-
tral SR demonstrate that LISSF can achieve superior performance
in comparison with state-of-the-art methods. Moreover, ablation
studies are performed on the effects of individual components of
LISSF.

Index Terms—Hyperspectral image (HSI), spatial-spectral
super-resolution, implicit neural representations (INR), local
implicit spatial-spectral function (LISSF).

I. INTRODUCTION

H PERSPECTRAL images (HSI) contain reflectance or
transmittance information of objects in hundreds of spec-

tral bands over a continuous wavelength range. Compared to
commonly used RGB images, HSIs show more intrinsic prop-
erties of object materials. Therefore, hyperspectral imaging is
an indispensable scientific tool in many fields such as remote
sensing [1], [2], [3], medical imaging [4], [5], [6], and industrial
inspection [7], [8], [9]. In these applications, both high spatial
resolution and high spectral resolution are required. However,
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there is a trade-off between spatial and spectral resolution due
to limitation of imaging sensor technology and time constraints.
For example, multispectral imaging (MSI) systems on remote
sensing satellites such as Geo Eye-1, MODIS, Landsat series,
and GF series have lower spatial resolution than the panchro-
matic or RGB imaging systems, and lower spectral resolution
than HSI systems. Neither the spectral resolution nor the spatial
resolution of these MSI systems can satisfy the requirements of
emerging remote sensing applications. In recent years, to take
full advantage of the available multispectral data, deep learning
(DL) frameworks have been introduced to enhance the resolution
in spatial and spectral dimensions.

There are mainly three approaches for obtaining high spatial-
spectral resolution data using DL-based SR methods: 1) spatial
SR, 2) spectral SR, and 3) spatial-spectral SR. The spatial SR
approach only enhances the spatial resolution of MSI. A typical
paradigm is training a deep convolutional neural network (CNN)
network to extract deep features from low spatial resolution
inputs and reconstruct high spatial resolution counterparts. The
spectral SR approach only enhances the spectral resolution
of MSIs. Sparse representations and dictionary learning are
commonly used conventional techniques for spectral SR, and
CNN-based models have become popular in recent years. A
special case of spectral SR is to reconstruct HSIs from RGB
images, which has become an important task in many computer
vision challenges such as NTIRE [10], [11]. Unlike the above
approaches, the spatial-spectral SR approach extends both spa-
tial resolution and spectral resolution of the input. Therefore, it
can make better use of the available multispectral data and adapt
to more situations. At the same time, it is a more challenging
task due to its highly ill-posed nature.

Although several DL-based spatial-spectral SR methods have
been proposed, these methods still suffer from a number of issues
that hinder their performance. On the one hand, most existing
methods of these approaches treats the hyperspectral image
as discrete voxels in the 3D spatial-spectral space, ignoring
the continuous nature of signals. On the other hand, existing
methods are trained and inferred at a fixed SR scale which is
inconvenient in practical use.

To address these issues and inspired by the recent progress in
INR, we propose a framework, termed Local Implicit Spatial-
spectral Function (LISSF), that learns the local continuous
spatial-spectral representation of HR-HSI from discrete input.
LISSF consists of two parts, an encoder and a decoder. The
encoder is a transformer-based U-shape network to extract deep
features from LR-MSI input. The decoder takes an MLP as the
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core and uses the deep features to estimate the intensity values at
given continuous spatial-spectral coordinates on HR-HSI. As a
spatial-spectral SR model, LISSF can improve the resolution of
LR-MSI in both spatial and spectral dimensions. Furthermore,
it can scale the LR-MSI input to arbitrary size regardless of
whether the current scaling ratio is covered by the training
process, which greatly improves the practicality.

To evaluate the performance of LISSF, detailed experiments
on CAVE and ARAD HS datasets are carried out. Joint spatial-
spectral SR experiments validate the state-of-the-art perfor-
mance of LISSF. The well performance of spatial SR and
spectral SR also demonstrates the good generalization ability
and flexibility of LISSF. Moreover, ablation studies are carried
out to validate the effectiveness of individual components of
LISSF.

The main contributions of this article can be summarized as
follows.

1) A novel framework termed LISSF is proposed for jointly
spatial-spectral SR. To the best of our knowledge, this is
the first work to learn local continuous representation of
HSI for spatial-spectral SR.

2) For the first time, DL-based arbitrary resolution scaling in
both spatial and spectral dimensions are achieved, which
brings significant convenience to the practical application
of hyperspectral image super-resolution.

3) Extensive experiments on spatial SR, spectral SR and
spatial-spectral SR are conducted to compare the pro-
posed model with state-of-the-art methods. A modified
model based on MetaSR [12] which is capable of arbitrary
spatial-spectral SR is used for comparison.

II. RELEATED WORK

A. Spatial Super-Resolution

HSIs are data in 3D form, containing two spatial dimensions
and one spectral dimension. Spatial SR, i.e. increasing the reso-
lution of HSIs in the spatial dimensions, has the same roots as the
single-image super-resolution (SISR) task in computer vision.
Numerous SISR methods can be directly used to perform HSI
spatial SR, such as SRCNN [13], VDSR [14], SRGAN [15] and
EDSR [16]. However, these methods treat images of different
bands as independent, ignoring their correlation. Motivated by
these approaches, networks dedicated to HSI spatial SR have
recently been developed. For the first time, Yuan et al. [17]
proposed a CNN-based method for HSI spatial SR. They re-
garded the problem as a transfer learning task and transferred
a pre-trained SISR model to perform the HSI spatial SR. Later,
Mei et al. [18] proposed a 3D-FCNN model to directly increase
the spatial resolution of HSI. Li et al. [19] designed a generative
adversarial network (GAN) framework for HSI spatial SR to
reconstruct more texture details and proposed a band attention
mechanism to explore the correlation of spectral bands. Li
et al. [20] designed a novel mixed with both 2D and 3D con-
volution to jointly exploit the information from different bands.
Jiang et al. [21] proposed to use spatial-spectral blocks (SSB)
to exploit the spatial and spectral prior. Liu et al. [22] employed
a new spectral attention mechanism for group convolutions to

rescale grouped features with holistic spectral information. Li
et al. [23] alternately employed 2D and 3D units to solve the
problem of structural redundancy by sharing spatial information
during the reconstruction.

B. Spectral Super-Resolution

The spectral SR denotes to enhance the resolution of hy-
perspectral images in the spectral dimension. Most previous
researches of spectral SR are based on the sparse representation.
Han et al. [24] proposed a spectral library-based dictionary
learning method to achieve HSI spectral SR, which estimates
the band matching matrix, spectral dictionary, and sparse coef-
ficients simultaneously. Yi et al. [25] designed a framework in-
volving spectral improvement strategies and spatial preservation
strategies for HSI spectral SR. In recent years, many CNN-based
methods have been proposed and achieved excellent spectral SR
performance. Gewali et al. [26] proposed to reconstruct HSIs
from MSIs using an end-to-end fully convolutional residual
neural network architecture. Arun et al. [27] integrated sparse
representation into a CNN-based encoder-decoder architecture
to improve the fidelity of spectral SR reconstruction. Zheng
et al. [28] proposed a spatial-spectral residual attention network
(SSRAN) that simultaneously explores the spatial and spectral
information of MSIs to reconstruct HSIs. In particular, recon-
struction of HSIs from RGB images can be regarded as a special
case of spectral SR. It has become a hot topic in the field of com-
puter vision [11], attracting the attention of many researchers.
Shi et al. [29] proposed two advanced CNNs for RGB spectral
SR, one using residual blocks and the other using dense blocks
with a novel fusion scheme. Li et al. [30] proposed an adap-
tive weighted attention network (AWAN) for RGB spectral SR
which integrats adaptive weighted channel attention (AWCA)
module and patch-level second-order non-local (PSNL) mod-
ule. Cai et al. [31] designed a Transformer-based method,
Multi-stage Spectral-wise Transformer (MST++), for efficient
spectral reconstruction. The model achieves state-of-the-art
performance while consuming much less computation and
memory.

C. Spatial-Spectral Super-Resolution

Although spatial SR and spectral SR have been widely ex-
plored in recent years, few researches consider joint spatial-
spectral SR. For the first time, Mei et al. [32] proposed a
spatial-spectral joint SR (SSJSR) model that learns an end-to-
end mapping from a LR-MSI and to the HR-HSI with a full a
3-D CNN. Ma et al. [33] proposed a CNN-based model named
unfolding spatiospectral super-resolution network (US3RN).
US3RN solves both spatial SR and spectral SR problems via
the alternative direction multiplier method (ADMM) technique.
Ma et al. [34] presented a deep spatial-spectral feature inter-
action network (SSFIN) that using a spatial-spectral feature
interaction block (SSFIB) to make the spatial SR task and the
spectral SR task benefit each other. Our work also belongs to
spatial-spectral SR methods. Moreover, it can achieve arbitrary
SR in both spatial and spectral domains.
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Fig. 1. Schematic diagram of Local Implicit Spatial-spectral Function
(LISSF). LISSF learns the local continuous representation from discrete input
and achieves arbitrary super-resolution in both spatial and spectral dimensions.

D. Implicit Neural Representation

INR is an emerging technology that can generate continu-
ous, memory-efficient implicit representations for objects like
shapes [35], [36], scenes [37], [38], [39] or images [40]. Objects
are represented as multi-layer perceptrons (MLPs) that map
coordinates to signal values. Genova et al. [35] chose an implicit
surface representation based on a combination of local shape
elements to allow for widely varying geometry and topology
of shapes. Peng et al. [39] combined a convolutional encoder
with an implicit occupancy decoder to incorporate inductive
biases for structured reasoning in 3D space. Recently, many
studies have focused on sharing the function space of implicit
representations for different objects, rather than learning an inde-
pendent INR for each object [41]. Sitzmann et al. [41] proposed
a meta-learning-based method for sharing the function space.
Chen et al. [42] proposed the Local Implicit Image Function
(LIIF) to generate continuous representations for images and
achieve arbitrary spatial scaling of images. Xu et al. [43] and
Zhang et al. [44] proposed to represent hyperspectral images
with INR and perform spectral reconstruction from RGB images.
However, both studies focus on learning independent INRs and
achieving SR in only spectral domain. Our work proposes to
learn the local image function in a shared spatial-spectral space
and can achieve arbitrary scaling in both spatial and spectral
domains.

III. METHODOLOGY

To simplify the presentation, we use the abbreviations listed in
Table I. In this section, we introduce the proposed LISSF model
as shown in Fig. 2. The model takes a LR-MSI I as input and
produce a HR-HSIO as output. The model is mainly divided into
two parts: encoder and decoder. The encoder converts the input I
into a 3D deep feature Fd through a deep neural network. Then,
the decoder maps each continuous spatial-spectral coordinate

TABLE I
ABBREVIATIONS AND NOTATIONS

s ∈ S to the hyperspectral pixel valueO(s)using a MLP. Finally,
all hyperspectral pixel values are synthesized and reshaped to
generate O.

A. Spatial-Spectral Feature Representation

Let I ∈ Rh×w×d denotes the input LR-MSI, where h, w and d
represent the height, width and spectral bands respectively. The
encoder transforms I into a 3D deep feature Fd ∈ Rh×w×d×C ,
where C represents the channel number. It can be formulated as

Fd = fencoder(I), (1)

where fencoder is the map function of encoder.
In LISSF, we use a transformer-based network as the encoder,

as shown in Fig. 2. To cope with different number of input
spectral bands and to exploit the feature representation ability
of 3D data, we use 3D convolution layers as basic components
of the encoder. It first applies a convolution with kernel size of
3 to extract shallow features from the input, denoted as

Fs = fconv3(I), (2)

where fconv3 is the map function of 3D convolution with kernel
size of 3. Afterwards, these shallow features are transformed into
deep features through a 3-level U-shaped structure. In each level,
multiple transformer blocks are stacked to effectively extract
features. Starting from the original input, the encoder hierarchi-
cally reduces spatial size, while keeping spectral number and
expanding channel size. The detailed process can be expressed
as

F1 = fN1
trans

(· · · f1
trans (Fs)

)
, (3)

F2 = fN2
trans

(· · · f1
trans (fdown (F1))

)
, (4)

F3 = fN3
trans

(· · · f1
trans (fdown (F2))

)
, (5)

where ftrans is the map function of transformer block, fdown

denotes the map function of downsampler, N1, N2 and N3 are
the number of transformer blocks in each level. F1 ∈ Rh×w×d×C ,

F2 ∈ R
h
2×

w
2×d×2C andF3 ∈ R

h
4×

w
4×d×4C are the deep features in

different levels. Then, the encoder hierarchically expands spatial
size, while keeping spectral number and reducing channel size,
formulated as

F4 = fN2
trans

(· · · f1
trans (fconv1 (fcat (F2, fup (F3))))

)
, (6)
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Fig. 2. Diagram of LISSF for spatial-spectral SR. First, the encoder, a transformer-based U-shape network, transforms the LR-MSI input into deep features.
Then, for a specific continuous spatial-spectral coordinate, the decoder extracts a local feature and enhances it. At last,an MLP is used to estimate the corresponding
intensity value. Besides, the local ensemble strategy is used to ensure a smooth reconstruction. .

F5 = fN1
trans

(· · · f1
trans (fconv1 (fcat (F1, fup (F4))))

)
, (7)

where fup denotes the map function of upsampler, fconv1 is
the map function of 3D convolution with kernel size of 1,

F4 ∈ R
h
2×

w
2×d×2C andF5 ∈ Rh×w×d×C are the deep features after

processing. Afterwards, multiple transformer blocks are stacked
to refine the features, denoted as

F6 = fN4
trans

(· · · f1
trans (F5)

)
. (8)

At last, a skip connection from the shallow features is used to
generate the final deep features, formulated as

Fd = Fs + fconv3 (F6) . (9)

1) Transformer block: In typical transformer-based models,
the transformer block is composed of a Multi-head Self-
Attention (MSA) block, a Feed-Forward Network (FFN) block
and the corresponding layer normalization blocks. To improve
the performance of transformer block and inspired by the
structures proposed in Restormer [45], we propose the 3D multi-
dconv head transposed attention (MDTA3D) and the 3D gated-
dconv feed-forward network (GDFN3D). The architecture of the
transformer block is illustrated in Fig. 3. SupposeX as the input,
the map function of the transformer block can be denoted as

ftrans(X) = X̂ + fGDFN3D

(
fLN

(
X̂
))

, (10)

X̂ = X + fMDTA3D (fLN(X)) , (11)

where fMDTA3D and fGDFN3D are the map functions of
MDTA3D and GDFN3D respectively.

Fig. 3. Structure of (a) the transformer block, (b) the MDTA3D block, and
(c) the GDFN3D block.

2) Channel-Wise Multi-Head Transposed Attention: Sup-
pose X ∈ RĤ×Ŵ×D̂×Ĉ as the input of MDTA3D, X is first
projected into query (Q ∈ Rĥ×ĤŴD̂×̂c), key (K ∈ Rĥ×̂c×ĤŴD̂)
and value (V ∈ Rĥ×ĤŴD̂×̂c), where ĥ is the head number and ĉ is
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the channel number in each head. It is achieved by applying 1×1
convolutions to expand the channel dimension, and then using
3×3 group channel-wise convolutions to encode spatial-spectral
context, formulated as

Q = fQ
reshape

(
fdconv3

(
f1
chunk (fconv1(X))

))
, (12)

K = fK
reshape

(
fdconv3

(
f2
chunk (fconv1(X))

))
, (13)

V = fV
reshape

(
fdconv3

(
f3
chunk (fconv1(X))

))
, (14)

where f1
chunk, f2

chunk, f3
chunk denote to split the feature into three

chunks, fdconv3 is the map function of 3D deep-wise convolution
with kernel size of 3, fQ

reshape, fK
reshape, fV

reshape are reshape
functions corresponding to Q, K, V . Then the map function of
MDTA3D can be expressed as

fMDTA3D(X) = fconv1 (V · fsoftmax (K ·Qα)) , (15)

where fsoftmax is the softmax activation function. By using
channel-wise multi-head attention mechanism and channel-wise
group convolution, the memory usage and computation can be
greatly reduced.

3) Channel-Wise Gated Feed-Forward Network: Suppose
X ∈ RĤ×Ŵ×D̂×Ĉ as the input of GDFN3D, it is expanded in
channel dimension and spit into two parallel paths to achieve
gating mechanism. Then the gated feature is reduced to the orig-
inal size in channel dimension. The map function of GDFN3D
can be formulated as

fGDFN3D(X) = fconv1 (fgating (fconv1(X))) , (16)

lfgating

(
X̂
)
= fdconv3

(
f1
chunk

(
X̂
))

� fdconv3

(
fGELU

(
f2
chunk

(
X̂
)))

, (17)

where fgating denotes the map function of gating mechanism,
fGELU is the GELU (gaussian error linear units) activation
function.

B. Continuous Spatial-Spectral Reconstruction

Let O ∈ RH×W×D denotes the output HR-HSI, where H ,
W and D represent the height, width and spectral bands re-
spectively. It is clear that H ≥ h, W ≥ w and D ≥ d for the
spatial-spectral SR task. In typical spatial SR and spectral SR
models, the upsampling module is crucial for mapping the deep
features from low-resolution space to high-resolution space.
However, the scaling ratio of the upsampling module is fixed.
To achieve arbitrary scaling in the spatial and spectral domains,
we map each spatial-spectral continuous coordinate s ∈ S to
its corresponding hyperspectral pixel value O(s) with the deep
feature F , formulated as

O(s) = fdecoder(F, s), (18)

where fdecoder is the map function of the decoder. Inspired by
former research on Local Implicit Image Function (LIIF) [42],
the reconstruction process of LISSF can be separated as the
following four parts.

Fig. 4. LISSF with local ensemble. (a) 8 nearest discrete coordinates s∗i of s
and their interfaces. (c) Normalized volumes as local ensemble weights.

1) Local feature extraction: More specifically, to map the
continuous coordinate s ∈ S to HR-HSI value O(s), the feature
vector t needs to be extracted first. As the deep feature F is
represented in the discrete space, t can be obtained by indexing
F at the nearest (Euclidean distance) discrete coordinate s∗,
formulated as

t = F (s∗) . (19)

Then (18) can be rewritten to

O(s) = fdecoder(F, s) = fMLP (fcat (t, s− s∗)) , (20)

where fMLP is the mapping function of the MLP, fcat refers
to concatenation of vectors. In (20), t and s− s∗ make up the
1D input and can be transformed to O(s) with the MLP. Using
the residual value s− s∗ instead of s prevents the MLP from
relying on the absolute value of s, allowing it to learn the local
continuous representation.

2) Feature enhancement: Although (20) is enough to train
the decoder, neighboring information is ignored with only one
coordinate. To achieve a better representation of the local infor-
mation, we apply the feature enhancement scheme. The deep
features in the 3×3×3 neighboring area are concatenated to-
gether to generate the final feature vector, formulated as

t̂ = fcat (F (s∗ + [l,m, n])) , (21)

where l ∈ {−1, 0, 1}, m ∈ {−1, 0, 1} and n ∈ {−1, 0, 1} de-
note the variations of discrete spatial-spectral coordinates. After
the feature enhancement, t is replaced by t̂ in subsequent pro-
cesses, so (20) can be rewritten to

O(s) = fdecoder(F, s) = fMLP

(
fcat

(
t̂, s− s∗

))
. (22)

3) Local ensemble: There is still an issue in (22) that hinders
the continuous prediction of pixel values. Since the pixel value
is predicted by querying the nearest feature vector with the
decoder, when s moves across the boundary of adjacent discrete
coordinates, the nearest discrete coordinate s∗ and its corre-
sponding feature vector t̂ change, and the decoder’s prediction
changes accordingly. As illustrated in Fig. 4(a), the sudden
switch happens when s crossing the red interfaces. As long as the
decoder map function fdecoder is not perfect, discontinuous pre-
diction can appear at these interfaces when the sudden switches
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occur. Therefore, we refine (22) to

O(s) = fdecoder(F, s)

=
∑
i

vi
v

· fMLP

(
fcat

(
t̂i, s− s∗i

))
, (23)

where s∗i (i ∈ {000, 001, 010, 011, 100, 101, 110, 111}) is one
of the 8 nearest discrete coordinates of s, t̂i is the corresponding
enhanced feature vector of s∗i , vi is the volume of the subspace
enclosed by s and s∗i , v =

∑
i vi is the total volume of 8

subspaces. (23) denotes to combine 8 neighboring predictions
of the decoder to get the final prediction. With the normalized
volumes of 8 subspaces as weights, the final prediction can
switch smoothly around the interfaces, as shown in Fig. 4(b).

4) Grid decoding: Since LISSF is used for arbitrary spatial-
spectral SR, the decoder should exhibit different properties with
different scaling ratio. For example, the model should tend
to reconstruct more textures with lower ratio and reconstruct
more low-frequency features with higher ratio. Therefore, taking
scale-dependent information as additional input features will
improve the reconstruction performance of the decoder. We
finally extend (23) as

O(s) = fdecoder(F, s)

=
∑
i

vi
v

· fMLP

(
fcat

(
t̂i, s− s∗i , g

))
, (24)

where g = [gh, gw, gd] specifies the grid size of the input data
cube in spatial and spectral dimensions.

IV. EXPERIMENTS AND ANALYSES

A. Experimental Setups

1) Datasets: In the experiments, we use 2 hyperspectral
datasets, CAVE [46] and ARAD HS (NTIRE 2020) [11]. CAVE
is used in training and testing, while ARAD HS is used for testing
only.

The CAVE [46] dataset consists of 32 hyperspectral images
which covering varieties of materials and objects, such as skin,
fruits, drinks, feathers, paintings, etc. The CAVE is captured by a
tunable filter and a cooled CCD camera called Apogee Alta U260
under controlled indoor illumination conditions. All images are
saved in 16-bit format to preserve high dynamic information.
Each image has 31 spectral bands with a wavelength range of
400–700 nm with 10 nm interval and a spatial resolution of 512
× 512 pixels. 24 HSIs in the CAVE are used for traing and the
other 8 are used for testing.

The ARAD HS dataset is built for the NTIRE 2020 chal-
lenge on spectral reconstruction from RGB images. It contains
two parts: Track 1 “Clean” and Track2 “Real World”, each of
which contains 450 training images and 10 validation images.
The ARAD HS dataset is collected with a Specim IQ mobile
hyperspectral camera. Each image has 482 × 512 pixels and 31
bands from 400 nm to 700 nm with a 10 nm step. We use 10
validation image in the “Clean” Track for testing.

2) Implementation details: As the dataset contains only HR-
HSI, we obtain the corresponding LR-MSI input by down-
sampling the HR-HSI. We use bicubic interpolation for spatial
downsampling and linear interpolation for spectral downsam-
pling. Due to the difference between spatial and spectral pixel
definitions, we align corners when interpolating the spectral
dimension, but not when interpolating the spatial dimensions.
Therefore, the definition of magnification in the spectral dimen-
sion is different from that in the spatial dimensions. For example,
×2 represents 16 channels to 31 channels, and ×3 represents
11 channels to 31 channels. Since LISSF is cable of arbitrary
SR in spatial and spectral dimensions, the scaling factors are
not fixed during training. The spatial scaling factor is ranging
from 1 to 4 and the spectral scaling factor is ranging from 1
to 5.

During the training phase, the input patch is of 48×48×6 pix-
els. The ground truth patch is randomly cropped from the origi-
nal HR-HSI and its size is determined by the scale factors. A total
of 20 patches are randomly selected for training in one image.
Image flip and rotation are randomly used for data augmentation.
The proposed model and other methods for comparison are all
trained for 200 epochs. We use the AdamW optimizer to train
LISSF with β1 = 0.9, β2 = 0.999 and weight decay of 2×10−4.
The learning rate is initialed as 3×10−4 and halved every 20
epochs. For a fair comparison, the channel number of all methods
are set as 64. The proposed model and other methods are all
implemented using the PyTorch framework and trained on an
NVIDIA GTX3090 GPU.

3) Evaluation metrics: To quantitatively evaluate the per-
formance of the proposed method, we use three widely used
metrics, including Peak Signal to Noise Ratio (PSNR), structural
similarity (SSIM), and spectral angle mapping (SAM). PSNR is
the ratio between the maximum possible power of an image and
the power of distortion noise that affects the quality of its recon-
struction. It is suitable for evaluating the overall reconstruction
performance of different methods. SSIM is a perception-based
model that considers image degradation as perceptual change in
structural information. It is suitable to evaluate the spatial recon-
struction performance of different methods. SAM determines
the similarity between the estimated spectra and the reference
one by calculating the angle between them. It is suitable to
evaluate the spectral reconstruction performance of different
methods.

4) State-of-the-art methods: To evaluate the performance
of the proposed method under different conditions, we use
three state-of-the-art spatial-spectral SR methods, SSJSR [32],
US3RN [33] and SSFIN [34] for comparison. We also make up
four spatial-spectral SR methods by combining state-of-the-art
HSI spatial SR methods (MCNet [20] and ERCSR [23]) and
HSI spectral SR methods (AWAN [30] and MST++[31]). The
interpolation method that upsampling with bicubic interpolation
in spatial dimensions and linear interpolation in spectral dimen-
sion is used as a baseline. Besides, we modify the MetaSR [12]
method into a 3D form, making it possible to achieve spatial-
spectral SR and compare with LISSF. The modified MetaSR3D
model apply the same encoder as LISSF.
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TABLE II
QUANTITATIVE SPATIAL-SPECTRAL SR RESULTS OF ALL METHODS ON CAVE DATASET

B. Spatial-Spectral SR Results on CAVE Dataset

1) Setup: To evaluate the spatial-spectral SR performance of
LISSF, experiments are carried out on the CAVE dataset under
two scaling factor settings. The first is to increase the spatial
resolution by 2 times and the spectral resolution by 2 times. The
second is to increase the spatial resolution by 4 times and the
spectral resolution by 5 times. It should be noted that the LISSF
and MetaSR3D model are trained only once while other models
are retrained for different scales.

2) Results: For quantitative comparison, the average PSNR,
SSIM and SAM metrics of all methods on the CAVE dataset
are shown in Table II where bold indicates the best results and
underline indicates the second best results. The interpolation
method can be use as a baseline and perform well under low
scaling ratios. Compared with the four combined methods, the
three previously proposed state-of-the-art methods, SSJSR [32],
US3RN [33] and SSFIN [34] have no obvious advantages. This
may be because the four combined models have significantly
larger network size than the three independent models. As can be
seen from Table II, AWAN [30] & ERCSR [23] method achieves
the best performance and LISSF achieves the second best of
all methods. As mentioned earlier, LISSF is trained only once,
while the rest of the algorithms are trained individually for each
scale. For qualitative comparison, Fig. 5 provides examples of
visual reconstruction for all methods under two scaling factor
settings. The corresponding metrics are listed below the pictures
and regions of interest (ROI) are magnified. It can be easily
figured out that the results of LISSF contain abundant details
and little reconstruction error. We also plot the spectral intensity
of interested points in Fig. 6 where the reconstructed spectrum
of LISSF is very close to the ground truth. All these experiment
results demonstrate the effectiveness of the proposed LISSF
method.

TABLE III
QUANTITATIVE SPATIAL-SPECTRAL SR RESULTS OF METASR 3D AND LISSF

ON CAVE DATASET WITH ARBITRARY SCALING FACTORS

In addition, the quantitative metrics of the interpolation
method, MetaSR3D and LISSF under another two scaling factor
settings are provided in Table III. In this experiment, MetaSR3D
and LISSF are the same as those in the experiments above. This
experiment confirms that LISSF can achieve arbitrary scaling of
spatial and spectral dimensions with only one training. LISSF
can achieve stable and excellent spatial-spectral SR even with
scaling factors outside the range of the training process (spatial
factors larger than 4 and spectral factors larger than 5). This
brings great convenience to the practical application of the
model.

C. Spatial-Spectral SR Results on ARAD HS Dataset

1) Setup: In order to evaluate the generalization ability of
LISSF, we perform spatial-spectral SR on the ARAD HS dataset
which is not included in the training dataset. All comparison
methods are exactly the same as the models in the former section
and not retrained. Evaluations are also carried out under two
scaling factor settings.

2) Results: The average PSNR, SSIM and SAM metrics of
all methods on the ARAD HS dataset are shown in Table IV.
As shown in Table IV, LISSF achieves all 6 best quantitative
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Fig. 5. Qualitative spatial-spectral SR example results of CAVE dataset (the composite images of the HSI with bands 28-13-5 as R-G-B) and the corresponding
reconstruction error. The first row shows the reconstruction results of the “balloons_ms” sample with ×2 spatial scale and ×2 spectral scale (16 bands to 31 bands).
The third row shows the reconstruction results of the “flowers_ms” sample with ×4 spatial scale and ×5 spectral scale (7 bands to 31 bands). The second and forth
rows show the normalized reconstruction error corresponding to the first and third rows.

Fig. 6. Reconstrcted spectral signatures of two locations at “balloons_ms” and
“flowers_ms” sample in CAVE dataset respectively.

results which is the best in all methods and MetaSR3D achieves
all 6 s best quantitative results. Visual reconstruction examples
of all methods under two scaling factor settings are provided in
Fig. 7 where corresponding metrics are listed below the pictures
and ROIs are magnified. Fig. 7 shows that LISSF achieves the
richest details and the least reconstruction error. The spectral
intensity of interested points are plotted in Fig. 8 where LISSF
achieves the closest results to the ground truth spectrum. In-
terestingly, LISSF does not achieve the best performance on
CAVE dataset, but it does on ARAD HS dataset. This shows

that LISSF learns the deep nature of spatial-spectral SR during
training, but other methods have a certain degree of overfitting
on CAVE dataset. The well performance of MetaSR3D also
indirectly demonstrates the effectiveness of the encoder design,
because the MetaSR3D shares the same encoder structure with
LISSF. It can be concluded that the proposed LISSF method have
excellent generalization ability and can achieve state-of-the-art
performance in spatial-spectral SR task.

D. Spatial SR Results on CAVE and ARAD HS Dataset

1) Setup: Spatial SR can be regarded as a special case of
spatial-spectral SR with spectral scale of 1. We carry out a spatial
SR experiments to quantitatively evaluate the performance of
LISSF and other methods. Both CAVE and ARAD HS datasets
are used and the spatial scaling factor is 4. The LISSF and
MetaSR3D in this experiments are still the same with the models
used in the experiments above, while other models are retrained
for this task.

2) Results: The average PSNR, SSIM and SAM metrics of
all methods are shown in Table V. SSJSR [32] achieves the
worst spatial SR result among all methods, even worse than
the interpolation method, the baseline of the experiments. All
other DL-based methods achieve spatial SR performance no
worse than the interpolation method. LISSF achieves the best
performance on spatial SR of CAVE dataset, which demonstrates
the effectiveness of LISSF. Besides, LISSF achieves the best
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TABLE IV
QUANTITATIVE SPATIAL-SPECTRAL SR RESULTS OF ALL METHODS ON ARAD HS DATASET

TABLE V
QUANTITATIVE SPATIAL SR RESULTS ON CAVE AND ARAD HS DATASET

performance on spatial SR of ARAD HS dataset, which proves
that LISSF has good generalization ability.

E. RGB Spectral SR Results on CAVE and ARAD HS Dataset

1) Setup: Spectral SR from RGB images can be regarded as
a special case of spatial-spectral SR with spatial scale of 1 and
fixed input spectral bands of 3. We conduct RGB Spectral SR
experiments to quantitatively evaluate the performance of LISSF
and other methods. Both CAVE and ARAD HS datasets are used
and the output spectral band number is 31. As RGB images
are not provided in ARAD HS, we extract the 28-13-5 bands

as R-G-B in CAVE and ARAD HS datasets, which is a widely
used approach in previous studies. But this creates a problem, the
number of input spectral bands is different from the number we
use to train LISSF and MetaSR3D in the experiments above (as
few as 6 bands). Therefore, we retrained LISSF and MetaSR3D
in this experiment for a fair comparison. Other methods are also
retrained for this task. During training, the actual channel-wise
order used is 5-13-28 to maintain the order from low wavelength
to high wavelength.

2) Results: The average PSNR, SSIM and SAM metrics of
all methods are shown in Table VI. As the input band number
is much less than the output and three channels of RGB images
are not evenly spaced, the interpolation method perform worst.
Among all DL-based methods, LISSF achieves the best perfor-
mance on both CAVE and ARAD HS datasets. This experiment
further verifies the effectiveness and generalization ability of the
LISSF method.

F. Ablation Study

In addition, we conduct an ablation study to validate the
effectiveness of each proposed component.

1) Effect of encoder structure: In LISSF, the encoder is used
to extract deep features from the input LR-MSI which has a
significant impact on the final performance of the model. To
evaluate the effectiveness of the proposed transformer-based en-
coder, we train LISSF with other models including VDSR [14],
UNet [47], CARN [48] and RRDB [49]. All models are modified
to 3D form to adapt to LISSF. The spatial-spectral SR metrics of
all methods with spatial ratio of 3 and spectral ratio of 3 on CAVE
dataset and ARAD HS dataset are provided in Table VII. Among
all encoder choices, LISSF with the proposed transformer-based
encoder achieves the best reconstruction results, which validates
the effectiveness of the encoder design.
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Fig. 7. Qualitative spatial-spectral SR example results of ARAD HS dataset (the composite images of the HSI with bands 28-13-5 as R-G-B) and the corresponding
reconstruction error. The first row shows the reconstruction results of the “ARAD_HS_0453” sample with ×2 spatial scale and ×2 spectral scale (16 bands to 31
bands). The third row shows the reconstruction results of the “ARAD_HS_0456” sample with ×4 spatial scale and ×5 spectral scale (7 bands to 31 bands). The
second and forth rows show the normalized reconstruction error corresponding to the first and third rows.

Fig. 8. Reconstrcted spectral signatures of two locations at
“ARAD_HS_0453” and “ARAD_HS_0465” sample in ARAD HS dataset
respectively.

2) Effect of transformer block structure: As the basic com-
ponents of the encoder, transformer blocks have a significant
impact on the performance of LISSF. In this section, we compare
the performance of different transformer block variants. The
MDTA3D block is replaced by MTA3D and CNN3D (3D convo-
lutions). In MTA3D, the 3D deep-wise convolutions are replaced
by standard 3D convolutions. The GDFN3D block is replaced by
FN3D and CNN3D. In FN3D, the gating mechanism is removing
and the 3D deep-wise convolutions are replaced by standard

TABLE VI
QUANTITATIVE RGB SPECTRAL SR RESULTS ON CAVE AND ARAD HS

DATASET

3D convolutions. The spatial-spectral SR metrics of all variants
with spatial ratio of 3 and spectral ratio of 3 on CAVE dataset
and ARAD HS dataset are provided in Table VIII. Replacing
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TABLE VII
QUANTITATIVE SPATIAL-SPECTRAL SR RESULTS OF METASR3D AND LISSF

ON THE CAVE DATASET WITH ARBITRARY SCALING FACTORS

TABLE VIII
QUANTITATIVE SPATIAL-SPECTRAL SR RESULTS OF METASR3D AND LISSF

ON THE CAVE DATASET WITH ARBITRARY SCALING FACTORS

TABLE IX
QUANTITATIVE SPATIAL-SPECTRAL SR RESULTS OF METASR3D AND LISSF

ON THE CAVE DATASET WITH ARBITRARY SCALING FACTORS

MDTA3D and GDFN3D causes obvious drop of performance
which demonstrates the effectiveness of the transformer block
architecture.

3) Effect of decoder design: Besides the encoder, the other
part that affects performance the most is the decoder, where we
apply a lot of unique designs. In this section, we compare the
performance of LISSF to its variants without feature unfolding,
local ensemble and cell decoding. As MetaSR3D shares the same
encoder structure with LISSF, it is also used as a baseline to
evaluate the performance of different variants of LISSF. The
spatial-spectral SR metrics of all methods under two scaling
factor settings are provided in Table IX. It is clear that, compar-
ing with the complete LISSF, LISSF-g (without grid decoding),

LISSF-l (without local ensemble) and LISFF-f (without feature
enhancement) all have significant performance degradations.
This shows that all these components play important roles
for the MLP to effectively decode deep features and perform
continuous spatial-spectral reconstruction. Furthermore, we can
find that not only LISSF, but LISSF-g, LISSF-l and LISFF-f also
perform better than MetaSR3D. This shows that the excellent
performance of LISSF is indeed due to the joint action of the
encoder and decoder.

V. CONCLUSION

In this article, we propose the LISSF model which can
achieve arbitrary super-resolution in both spatial and spectral
dimensions. Different from spatial-spectral SR methods that
learns fixed mapping from LR-MSI to HR-HSI, LISSF learns
the local continuous representation of LR-MSI from discrete
input independent of a specific scale. To achieve this goal, we
design a transformer-based encoder and a MLP-based decoder.
First, the encoder is used to transform the input LR-MSI into
deep features containing both local and global information in the
spatial-spectral domain. Then, the HR-HSI to be reconstructed
is decomposed into individual coordinates for processing, and
a feature vector is generated for each coordinate. At last, the
decoder is applied to project the feature vectors to intensity
values at specific spatial-spectral coordinates. Detailed com-
parisons and ablation studies were carried out to validate the
effectiveness of LISSF. Experiments shows that LISSF can
achieve better spatial-spectral SR results with arbitrary scales
than state-of-the-art methods retrained for a specific scale, which
has significant convenience in practical applications.
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