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A New Bearing Fault Diagnosis Method Based on
Deep Transfer Network and Supervised

Joint Matching
Chengyao Liu , Fei Dong , Kunpeng Ge , and Yuanyuan Tian

Abstract—In practical industrial environment, variable work-
ing condition can result in shifts in data distributions, and the
labeled fault data in various working conditions is difficult to collect
because rotating machines often works in normal status, and the
insufficient labeled fault data brings data samples imbalance and
performance degradation of intelligent fault diagnosis model. To
overcome these problems, by integrating the superiority of deep
learning method and feature-based transfer learning method, this
work proposes an innovative cross-domain fault diagnosis frame-
work based on deep transfer convolutional neural network and
supervised joint matching. First, the continue wavelet transform is
used to process original bearing vibration signals and extract time-
frequency images. Second, a deep transfer convolutional neural
network is built by the way of fine-tuning, and the trained network
is used to extract deep features from different domains. Third,
a new domain adaptation approach, supervised joint matching,
is developed to conduct joint feature distribution matching and
instance reweighting with the consideration of maximum marginal
criterion. The intelligent bearing fault diagnosis model is then
trained to predict the labels of the target domain’s feature data.
To verify the performance of the proposed approaches, this study
uses two distinct datasets pertaining to bearing defects for con-
ducting cross-domain fault diagnosis in the presence of balanced
and imbalanced data. The experimental analysis indicates that the
designed methods can achieve desirable diagnostic accuracy and
possess robust generalization ability.

Index Terms—Deep learning, domain adaptation, fault diag-
nosis, time-frequency images.

I. INTRODUCTION

ROTATING machinery plays a crucial role in industrial
area, including but not limited to construction, transporta-

tion, aerospace, electricity, and other fields [1], [2]. Bearing
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failures within these machines can lead to operational disrup-
tions and pose safety risks; thus, the development of robust
and efficient fault diagnosis models is imperative for averting
accidents and significant financial losses [3].

In recent years, artificial intelligence (AI)-based fault diag-
nosis techniques for rotating machinery have garnered signif-
icant attention, leading to a wealth of research conducted by
numerous scholars [4]. The main challenges about the appli-
cations of AI-based methods for fault detection or prediction
are data distributions shifting, class-imbalance, and insufficient
labelled fault samples, etc. To overcome these challenges, re-
searchers have investigated some popular methods for fault
diagnosis, such as continual learning-based methods [5], [6],
personalized diagnosis methods [7], [8], [9], simulation enlarge-
ment/augmentation and sample transfer method [10], transfer
learning combined fault sample augmentation [11], conventional
deep learning(DL)-based methods [12], [13], feature transfer
learning(FTL)-based methods [14], [15]. In [5], aiming at that
the traditional classification methods cannot effectively rec-
ognize the new fault type, the authors proposed a continual
learning classification approach and applied it to fault diagnosis
of equipment. In [6], a vaccine-enhanced artificial immune con-
tinual learning method (VECL) with the function of incremental
learning was proposed, and the VECL can culture new types
of memory cells to expand the recognition range of the model
and improve the performance of bearing fault identification. In
[7], a novel numerical simulation-based personalized diagnosis
methodology was investigated to detect faults in a shaft, aiming
at the shaft unbalance, misalignment, rub-impact and the combi-
nation of rub-impact and unbalance, this method was developed
using the finite element method, wavelet packet transform and
support vector machine. In [8], aiming at that faulty samples of
mechanical systems are difficult to obtain, a personalized diag-
nosis fault method of bearings was proposed to activate the smart
sensor networks using finite element method simulations. In [9],
a personalized fault diagnosis of rolling bearings in trains based
on digital twin and machine learning classification framework
was designed. In [10], to solving the problem of insufficient
labelled fault samples for gear fault detection, a new method
using numerical simulation and a generative adversarial network
(GAN) is proposed to enlarge fault samples for gears fault
diagnosis. In [11], in order to enlarge the training samples for
bearing fault diagnosis, the finite element method was adopted
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to obtain sufficient and complete simulation samples of all the
fault categories as the original fault samples, and the original
simulation fault samples are adjusted using a generative adver-
sarial network-based domain adaptation network to make them
similar to the measured samples. The authors utilized bearing
and gear fault data to conduct a series of experiments, which can
validate that the proposed methods can overcome the problems
of insufficient and incomplete labeled training samples. More-
over, DL methods have become one of the research hotspots
due to their powerful automatic feature extraction capability,
which is not possible with traditional machine learning-based
approaches [12], [13]. With the help of the typical advantage
of DL method, numerous intelligent fault diagnosis techniques
for bearings have been developed, achieving remarkable per-
formance. The commonly studied DL methods encompass the
likes of the deep auto-encoder (DAE) [16], the deep residual
network (DRN) [17], the deep belief network (DBN) [18], and
the convolutional neural network (CNN) [19], among others. In
[16], an enhanced DAE that employs convolutional shortcuts
and a domain fusion strategy was proposed to address the
challenge of limited labeled data in bearing fault diagnosis. In
[17], the authors investigate a selective kernel convolution DRN,
and it can leverage the channel-spatial attention mechanism
and feature fusion, which helps to enhance the fault diagnosis
accuracy. In [18], a novel fault diagnosis approach for bearings
utilizing joint distribution adaptation and an enhanced DBN
along with an improved sparrow search algorithm was devel-
oped. In [19], addressing the challenge posed by the significant
training data requirements that hinder the implementation of
DL-based methods, a novel bearing fault diagnosis approach
utilizing a multi-channel CNN in conjunction with a multi-scale
clipping fusion data augmentation technique was investigated. In
[20], a novel deep network-based maximum correlated kurtosis
deconvolution was developed for the problems of the filter length
selection and the sensibility to random interference. In addition
to the above traditional DL methods mentioned above, in recent
years, the combination of deep learning and transfer learning,
deep transfer learning (DTL) methods, has gradually become
a research hotspot. In [21], spectrum alignment and a deep
transfer convolution neural network were combined to develop a
novel bearing fault diagnosis model. This model’s deep transfer
convolution neural network was trained to enable the extraction
of robust, domain-invariant features. In [22], to address the
issue of data distribution shifts, the authors constructed a deep
multi-source transfer learning model. The study presented in
[23] explores a deep imbalanced domain adaptation framework
tailored for situations where feature distribution shifts and scarce
label information co-occur across different operational states.
This framework successfully mitigates class-imbalanced label
shift and facilitates fine-grained matching in latent space. In
[24], a new DTL-based method called classifier constrained
domain adaptation network was developed for extracting trans-
fer characteristics from simulated samples by theory model for
experimental rotor fault diagnosis. In [25], to overcome the
challenges of fine-grained fault feature extraction and undesir-
able model generalization to unseen few-shot faults in few-shot
fine-grained fault diagnosis tasks, the authors investigated a

new attention-based deep meta-transfer learning method. In
[26], the authors proposed a new deep residual joint transfer
strategy method for the cross-condition bearing fault diagnosis,
in first, the deep residual network was learned in training tasks,
and then three transfer strategies were applied to enhance the
generalizability and adaptability of the pre-trained models to the
data distribution in target tasks. The above studies have enhanced
the automatic feature extraction capabilities of DL methods,
leading to improved fault pattern recognition and classification
performance. However, achieving optimal accuracy in DL-based
fault diagnosis models typically necessitates the fulfillment of
several conditions [2], [12], [14], [27]: 1) a substantial number of
labeled training samples; 2) the testing samples exhibit the same
distribution as the training samples. In practical engineering
applications, it is often hard to acquire a sufficient quantity
of labeled fault samples from real-world mechanical systems
under various working conditions. Furthermore, distribution dif-
ferences frequently exist between training and testing samples.
Consequently, these issues present significant challenges for the
deployment of DL-based fault diagnosis models in industrial
settings.

FTL approaches are usually employed based on hand-craft
feature extraction [14], [22]. Key methods frequently explored
in FTL comprise Balanced Distribution Adaptation (BDA) [28],
Joint Distribution Adaptation (JDA) [29], Transfer Component
Analysis (TCA) [30], Geodesic Flow Kernel (GFK) [31], Mani-
fold Embedded Distribution Alignment (MEDA) [32], and Joint
Geometrical and Statistical Alignment (JGSA) [33]. Based on
these approaches, many scholars have developed several intel-
ligent fault diagnosis models for bearings. In [14], an improved
BDA was developed by incorporating balanced distribution
adaptation and balanced label propagation, and the improved
BDA can achieve desirable cross-domain fault diagnosis per-
formance. In [18], a novel approach for bearing fault diagno-
sis was proposed, utilizing JDA and DBN and an improved
sparrow search algorithm, and the JDA component is tasked
with facilitating feature transfer between different domains. In
[34], the bearing fault diagnosis model was augmented with an
advanced domain adaptation algorithm, specifically a weighted
version of Transfer Component Analysis (TCA), to effectively
operate across distinct domains. In [35], the authors present
a novel domain adaptation model, designated as DAGSZ, for
bearing fault diagnosis. This model incorporates GFK, feature
extraction, and normalization to achieve more desirable domain
adaptataion. In [36], a novel TL approach based on limit labeled
data was studied, which applies bidirectional gated recurrent unit
and MEDA, and the MEDA was used to synchronize sample
distributions between different domains. In [37], the JGSA was
applied to mitigate both distributional and geometric disparities
across domains. Coupled with transfer sparse coding, this ap-
proach yielded an effectively fault diagnosis model for bearings.
From the aforementioned literature review, it can be learned that
the main advantages of FTL methods are low-cost, time-saving
and strong ability of distribution adaptation.

Although the DL, DTL and FTL methods have been success-
fully used for bearing fault diagnosis and many research results
have shown their enormous potential for practical application,
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most intelligent diagnostic models still face challenges that will
block the application in actual industrial scenarios: distribution
shifting in variable working conditions, insufficient labeled fault
samples and data samples imbalance in real industrial environ-
ments [14], [21], [38]. The problem of distribution shifting in
variable working conditions has attracted a lot of attention, but,
to the best of our knowledge, research on the issue of data
samples imbalance is still quite rare. In actual industrial scenes,
the collected data samples are often insufficient and unbalanced,
and this problem can cause the obviously performance degrada-
tion of AI-based fault diagnosis models. Considering the above
issues of bearing fault diagnosis in real-world industrial appli-
cation, this work investigates a novelty frame for cross-domain
fault diagnosis based on deep transfer CNN (DTCNN) extraction
and supervised joint matching (SJM), termed as DTCNN-SJM,
which can deal with the problem of various working conditions-
caused distribution shifting under unbalanced data samples. The
DTCNN-SJM model exhibits a commendable capability for
cross-domain fault diagnosis with robust generalization. The
main contributions of this work are described below.

1) This work utilizes continue wavelet transform (CWT)
to process raw bearing vibration signals and extract the
wavelet time-frequency images (WTFI). On this basis, a
DTCNN, which is obtained by transferring the pre-trained
CNN parameters and fine-tuning with the use of normal
status data of target domain, is employed for extracting
deep features from the WTFI.

2) A new FTL-based domain adaptation approach, SJM, is
proposed for further processing the deep features. SJM can
perform joint feature distribution matching and instance
reweighting with the consideration of maximum marginal
criterion, which includes four aspects: 1© Introduce the
manifold subspace learning for the issues of feature dis-
tortion in high-dimensional and complex feature space; 2©
Propose joint feature distribution matching for achieving
robust distribution adaptation and overcoming the class
imbalance issue; 3© Introduce instance reweighting for
diminishing the distributional disparities under signifi-
cant domain discrepancies; 4© Design a new maximum
marginal criterion for improving the discriminability of
feature data after domain adaptation. The above explo-
rations can help to achieve more effective and robust do-
main adaptation while strengthening the discriminability
of features.

3) To address the persistent challenges in implementing AI-
based fault diagnosis approaches within real-world sce-
narios, we have integrated the strengths of DTL and FTL
methods to develop a novel cross-domain fault diagnosis
framework named DTCNN-SJM. By using two bearing
datasets, it sets extensive cross-domain fault diagnosis
experimental tasks that simulate the conditions of insuffi-
cient labeled fault samples and data samples imbalance in
real industrial environments. The results of experimental
analysis validate the outstanding and robust fault diagnosis
performance.

The remaining of this article is organized as follows. In
Section II, it introduces the preliminary knowledges of CNN,

Fig. 1. Typical structure of a CNN.

domain adaptation and maximum mean discrepancy. Section III
presents the DTCNN-SJM framework. The details of exper-
imental datasets and validation results are illustrated in Sec-
tion IV. Section V concludes this study.

II. PRELIMINARIES

A. Convolutional Neural Network (CNN)

CNN has achieved outstanding application results in machin-
ery fault diagnosis based on its strong deep features automatic
extraction and pattern classification capabilities. This work uti-
lizes the CNN to construct a deep features extraction model, and
this section briefly describes the principle of CNN as follows.

Fig. 1 depicts a standard architecture of a CNN, in this
structure, and it includes an input layer, multiple convolutional
layers (CL), pooling layers (PL), a fully-connected layer (FCL),
and an output layer [39].

1) Convolution Layer (CL): The CL employs multiple con-
volution kernels to process input data, applying the activation
function (AF) to generate feature vectors. Take the l-th CL as
an example, the convolution operation can be described by the
subsequent equation:

xl
j = fact

(∑
i

xl−1
i ∗ klij + blj

)
(1)

where xl
j represents the j-th feature map generated by the l-th

layer, xl−1
i is the i-th input feature map from the (l-1)-th layer.

The input feature map is a specific input data pattern, and the klij
represents the j-th kernel connected to the i-th input feature map,
fact() represents the AF, blj is the bias vector, and ∗ represents
the convolution operation [40].

2) Activation Function (AF): The AF is a crucial component
in a CNN, and in this study, the Rectified Linear Unit (ReLU) is
employed as the AF to alleviate issues of gradient explosion or
vanishing [40]. The functional form of ReLU is denoted by:

fact(x) = ReLU(x) = max(0,x) (2)

3) Pooling Layer (PL): In CNN, a PL is employed to perform
downsampling, which simplifies and refines the output feature
map by reducing its dimensionality. Various techniques exist
for this pooling process, which can decrease computational
expenses and assist in extracting only the essential data.

4) Fully Connected Layer (FCL): In a CNN, the obtained
feature map by several CLs and PLs is input to the FCL for
the further feature extraction, and FCL combines with softmax
or other classifiers to realize the fault pattern recognition and
classification [41].
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B. Domain Adaptation and Maximum Mean Discrepancy

Addressing the issue of distribution shift under varying opera-
tional conditions, domain adaptation (DA) emerges as a promis-
ing approach grounded in transfer learning and has been gaining
increasing attention [1]. Within the realm of bearing fault diag-
nosis, training data (labeled fault data from a specific working
condition) are designated as source domain data, while testing
data (unlabeled fault data from different working conditions)
constitute the target domain data. Accordingly, given source
and target domains’ data DS = {XS , Y S} = {xi, yi}nS

i=1 and
DT = {XT } = {xi}nT

i=ns+1, nS andnT represent the number
of source and target domains’ data, respectively. The primary
objective of DA techniques is to mitigate the impact of dis-
tribution shift between the source and target domains, striving
to minimize these distribution discrepancies as effectively as
possible [14], [23].

Maximum mean discrepancy (MMD) is a prevalent nonpara-
metric approach for estimating distributional differences in TL
approaches [42]. The MMD between distributions of source and
target domains can be given as follows:∥∥∥∥∥∥

1

nS

∑
xi∈XS

φ(xi)− 1

nT

∑
xj∈XT

φ(xj)

∥∥∥∥∥∥
2

H

(3)

whereH is the reproducing kernel Hilbert space, φ(�) represents
the transformation function that can transforms xi into H . On
this basis, the implement of the goal of DA method is to minimize
the MMD between different domains [28].

III. DTCNN-SJM FRAMEWORK

To address the persistent challenges of distribution shift and
sample imbalance in the deployment of AI-based fault diagnosis
methods in practical settings, this work explores a novelty
cross-domain fault diagnosis framework, DTCNN-SJM. The
architecture of DTCNN-SJM is depicted in Fig. 2, and it is
composed of four steps: time-frequency images extraction, deep
features extraction by DTCNN, domain adaptation by SJM, and
fault diagnosis model training and testing.

A. Time-Frequency Images Extraction

Addressing the nonlinearity and non-stationarity inherent in
bearing vibration signals, time-frequency transformation proves
to be a potent method for analysis. Time-frequency analysis il-
lustrates the signal’s concurrent distribution across time domain
and frequency domain. In this work, the CWT processes the
raw vibration signals to yield two-dimensional time-frequency
images. Subsequently, these time-frequency images are fed into
a DTCNN to facilitate the extraction of deep features.

B. DTCNN Construction and Deep Features Extraction

In this work, in an effort to automatic extract deep features
with better representation capability, we construct 2 CNN mod-
els shared the same network structure, in first, one CNN model is
trained by the 2D time-frequency images of source domain and
employed for deep feature extraction of source domain. Then

TABLE I
THE MAIN NETWORK LAYER PARAMETERS OF THE BUILT CNN

another CNN model, called DTCNN, is obtained by transferring
the trained CNN parameters and fine-tuning with the use of nor-
mal status data of target domain. DTCNN is employed for deep
feature extraction of target domain. The detailed description of
DTCNN construction and deep features extraction is as follows.

Firstly, it builds a CNN model that consists of three CL, three
PL, two FCL, and softmax classifier layer. Each CL incorporates
a batch normalization layer, and the AF is ReLU fuction. The
principal parameters of the CNN are presented in Table I. Sec-
ondly, the constructed CNN model is trained by tagged source
domain time-frequency images, and a trained CNN model and
the corresponding network parameters (weight matrix and bias
vector) are learned. Thirdly, the trained parameters of the CNN
are transferred to the DTCNN to adapt to the target domain.
Subsequently, time-frequency images representing the normal
status from the source domain are utilized to fine-tune the
DTCNN model. Finally, the CNN trained by source domain
time-frequency images is used to further extract deep features,
and the output of the FCL 1 is source domain deep features
(SDDF). The DTCNN obtained by model parameters transfer
learning and fine-tuning is applied to extract deep features, and
the output of the FCL 1 is target domain deep features (TDDF).

C. Supervised Joint Matching

Although some TL-based DA approaches can achieve effec-
tive cross-domain fault diagnosis by minimizing distribution
differences between different domains as much as possible, four
important problems of many existing TL-based DA methods
still need be considered and investigated [21], [35], [36], [37].
(1) Distribution alignment in high-dimensional and complex
feature space will face the issues of feature distortion and
poor domain adaptation performance. (2) The enhancement of
feature discriminability is usually ignored, which may limit the
cross-domain fault diagnostic accuracy after domain adaptation.
(3) Underutilization of the effect of category information and
neighborhood relationships of data, which may help to improve
the cross-domain fault diagnostic performance and generaliza-
tion ability [44], [45]. (4) In most existing TL-based domain
adaptation methods, the class imbalance of data is not con-
sidered carefully during domain adaptation process. The above
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Fig. 2. The architecture of the DTCNN-SJM framework.

problems will block the achievement of desirable cross-domain
fault diagnosis accuracy towards actual industrial scenes with
data imbalance. Therefore, this work proposes a new TL-based
domain adaptation method to overcome the above mentioned
challenges, supervised joint matching (SJM). The optimization
objective of SJM contains four aspects: A. Introduce the man-
ifold subspace learning for overcoming the issues of feature
distortion in high-dimensional and complex feature space; B.
Propose joint feature distribution matching for achieving robust
distribution alignment and overcoming the class imbalance is-
sue; C. Introduce instance reweighting for diminishing the dis-
tributional disparities under significant domain discrepancies;
D. Design a new maximum marginal criterion for improving

the discriminability of feature data after domain adaptation. The
details of SJM are as follows.

1) Manifold Subspace Learning (MSL): Aiming at that dis-
tribution alignment in high-dimensional and complex feature
space will face the issues of feature distortion and poor domain
adaptation performance, this work incorporates the classical
GFK for unsupervised MSL. The objective of GFK is to extract
a manifold subspace from a set of high-dimensional features, in
such a way that the resultant manifold subspace is resilient to
feature distortion [31], [32]. Given that the SDDF and TDDF are
respectively expressed asXS andXT . The deep feature samples
are process by GFK, which achieves that the deep features
are mapped into Grassmann manifold space G(d), where d
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represents the dimension of the learned manifold space. There-
fore, XS and XT can be transformed to new feature sets ZS and
ZT , respectively. The detailed principle of GFK can be found in
reference [31].

2) Joint Feature Distribution Matching (JFDM): Due to that
the class imbalance issue is not considered carefully for domain
adaptation in the existing feature transfer learning methods
(TCA, BDA, JDA, and etc.), they are usually difficult to attain de-
sirable domain adaptation performance under class imbalance,
which may lead to undesirable labels prediction and low cross-
domain fault diagnosis accuracy. Therefore, this work proposes a
new idea, JFDM, and it incorporates the joint weighted balanced
distribution alignment in the optimization objective of distribu-
tion adaptation, which can adaptively change the weight of each
class when performing the distribution adaptation, accordingly,
it can balance the class proportion of each domain to overcome
the class imbalance.

After the step of MSL, the new source domain feature set is
ZS= {zi}nS

i=1 and the corresponding label set is YS= {yi}nS

i=1,
the new target domain feature set is ZT= {zj}nT

j=1. nS and nT

represent the number of source and target domains feature data,
respectively. The JFDM is employed to minimize discrepancies
in their distributions, and this method encompasses three com-
ponents: marginal distribution alignment (MDA), conditional
distribution alignment (CDA), and joint weighted balanced dis-
tribution alignment (JWBDA), which collectively facilitate the
adaptation of the data distributions across domains.

1© MDA

The marginal distributions of ZS and ZT are PMD(ZS) and
PMD(ZT ). The MDA is conducted by minimizing the MMD
between PMD(ZS) and PMD(ZT ) [27]. The expression of
MMD between PMD(ZS) and PMD(ZT ) is defined as

MMD2
H (PMD(ZS), PMD(ZT ))

=

∥∥∥∥∥∥
1

nS

∑
zi∈ZS

φ(zi)− 1

nT

∑
zj∈ZT

φ(zj)

∥∥∥∥∥∥
2

H

= tr
(
WTZL0Z

TW
)

(4)

where H is the RKHS, tr(WTZL0Z
TW ) is the trace of

matrixWTZL0Z
TW , W is optimal transformation matrix, and

Z is constituted by ZS and ZT . The matrix L0 is defined as

L0 =

⎧⎨
⎩

1/n2
S (zi, zj ∈ ZS)

1/n2
T (zi, zj /∈ ZS)

−1/nSnT (otherwise)
(5)

By minimizing the (4), we can derive a new representation
WTZthat reduces the disparity in marginal distributions be-
tween the source and target domains.

2© CDA

The conditional distributions ofZS andZT areQCD(YS |ZS)
and QCD(YT |ZT ), and because the YT is unknown, therefore,
it use base-line classifier learned by ZSwith YS to predict the

label of ZT , and the pseudo labels ŶT can replace the un-
known YT . The expression of MMD between QCD(YS |ZS) and
QCD(ŶT |ZT )is as follows:

C∑
c=1

MMD2
H

(
QCD(YS |ZS), QCD(ŶT |ZT )

)

=

C∑
c=1

∥∥∥∥∥∥∥
1

n
(c)
S

∑
zi∈Z(c)

S

φ(zi)− 1

n
(c)
T

∑
zj∈Z(c)

T

φ(zj)

∥∥∥∥∥∥∥
2

H

=

C∑
c=1

tr(WTZLcZ
TW ) (6)

where c is the category of feature data, Z(c)
S = {zi : zi ∈ ZS ∧

y(zi) = c}represents the feature data pertaining to category
c, and Z

(c)
T = {zi : zi ∈ ZT ∧ ŷ(zi) = c} are also feature data

belonging to class c. ŷ(zi) represents the pseudo label of zi.
n
(c)
S and n

(c)
T represent the number of feature samples belonging

to class c fromZS andZT , respectively. The definition of matrix
Lc is as follows:

Lc =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

n
(c)
S n

(c)
S

(
zi, zj ∈ Z

(c)
S

)
1

n
(c)
T n

(c)
T

(
zi, zj ∈ Z

(c)
T

)
−1

n
(c)
S n

(c)
T

{
zi ∈ Z

(c)
S , zj ∈ Z

(c)
T

zi ∈ Z
(c)
T , zj ∈ Z

(c)
S

0 (otherwise)

(7)

By minimizing the (6), we can derive a new representa-
tion WTZthat reduces the disparity in conditional distributions
betweenZS and ZT .

3© JWBDA

Aiming at that the MDA and CDA are often treated equally
in most existing TL-based domain adaptation methods, and the
class imbalance is not considered carefully for domain adap-
tation. Therefore, this work designs JWBDA to overcome the
above problems, and it uses balance factor to adaptively adjust
the importance of both the MDA and CDA, and the weight of
each class can be adaptively changed in the procedure of domain
adaptation. The optimal expression of JWBDA is as follows:

(1− μ)MMD2
H (PMD(ZS), PMD(ZT ))

+μ

(
C∑

c=1

MMD2
H

(
Q̂CD(YS |ZS), Q̂CD

(
ŶT |ZT

)))
(8)

whereμ is the balance factor, and the μ ∈ [0, 1].
∑C

c=1

MMD2
H(Q̂CD(YS |ZS), Q̂CD(ŶT |ZT )) is obtained by improv-

ing the (6), the MMD matrix Lc is improved, and the new MMD
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matric L̂c is defined as follows:

L̂c =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (y
(c)
S )

n
(c)
S n

(c)
S

(zi, zj ∈ Z
(c)
S )

P (y
(c)
T )

n
(c)
T n

(c)
T

(zi, zj ∈ Z
(c)
T )

−
√

P (y
(c)
S )P (y

(c)
T )

n
(c)
S n

(c)
T

{
zi ∈ Z

(c)
S , zj ∈ Z

(c)
T

zi ∈ Z
(c)
T , zj ∈ Z

(c)
S

0 (otherwise)
(9)

where the P (y
(c)
S )and P (y

(c)
T ) are respectively the class prior on

class c in the source and target domains.
The (9) is obtained by improving the (7), the purpose of this

improvement is follows: in order to overcome the issue of data
class imbalance in the procedure of domain adaptation, the (9)
can adaptively change the weight of each class when performing
the distribution adaptation, therefore, it can balance the class
proportion of each domain to overcome the class imbalance.

3) Instance Reweighting: Due to that significant domain
discrepancies will inevitably result in the presence of source
instances (SI) that do not have relevance to the target instances
(TI), the domain adaptation performance will be degraded [46].
Therefore, to further diminish the distributional disparities, this
work incorporates instance reweighting into the domain adap-
tation process, and it can adaptively assign greater importance
to SI that is relevant to the target, while reducing the weighting
of irrelevant ones. Accordingly, the l2,1-norm structured spar-
sity regularizer is imposed on the mapping matrixW , which
can introduce row-sparsity to the W. Because each row of
W corresponds to a specific instance, such sparsity inherently
facilitates adaptive instance reweighting [46]. The respective
instance reweighting regularizer is formulated as:

‖WS‖2,1+ ‖WT ‖2F (10)

where the transformation matrices corresponding to the source
and target instances are respectively denoted by WSand WT .
l2,1-norm regularizer is imposed on the SI to reweight them in
the light of their relevance to the TI. By minimizing the (10), it
adaptively assigns greater importance to SI that are relevant to
the target, while reducing the weighting of irrelevant ones. This
instance reweighting scheme enhances the robustness of domain
adaptation, particularly in cases where there is a significant
discrepancy due to irrelevant instances.

4) Maximum Marginal Criterion for Discriminability Im-
provement: Due to that the enhancement of feature discrim-
inability is usually ignored in most existing feature transfer
learning methods, only considering distribution alignment in
domain adaptation will lead to poor labels prediction ability
and the degradation of fault diagnosis accuracy. Therefore,
this work designs a new maximum marginal criterion matrix
(MMCM) for improving the discriminability of feature data, in
this design, the effect of category information and neighborhood
relationships of feature data are considered, and it can expand the
boundaries of feature data from different classes. Inspired by the
principles of local fisher discriminant analysis (LFDA) [47],
the MMCM is constructed based on local within-class and
between-classes scatter matrices, the expression of MMCM is

as follows:

MMCM = I/
(
SLF
b − SLF

w

)
(11)

where the SLF
w and SLF

b are within-class and between-classes
scatter matrices, the I is the identity matrix. The expressions of
SLF
w and SLF

b are as follows:

SLF
w =

1

2

n∑
i,j=1

p̃LW
ij (zi − zj) (zi − zj)

T (12)

SLF
b =

1

2

n∑
i,j=1

p̃Lb
ij (zi − zj) (zi − zj)

T (13)

where

p̃Lb
ij =

⎧⎨
⎩
Aij(1/m− 1/ml), zi = zj = l,

ml/m zi �= zj (j ∈ Nst(i)) ,
1/m else.

(14)

p̃LW
ij =

{
Aij/nl,

0,
zi = zj = l
zi �= zj

(15)

where m is the count of feature samples, l represents the class
label assigned to a feature data sample, andml signifies the quan-
tity of samples that pertain to class l. p̃Lb

ij and p̃LW
ij are designated

as weight matrices. Inp̃Lb
ij , Nst(i)is the nearest neighbour of i

and they pertains to different classes. Aij ∈ [0, 1] can be defined
below:

Aij= exp

(
−‖zi − zj‖2

γiγj

)
(16)

where γi = ‖zi − zni ‖is the local scaling around zi, zni is the
n-th nearst neighbour of zi. When the ziand zjare closer, the
Aij is larger. By minimizing the (11), the feature samples of the
same class will become increasingly close to each other, and the
distance between feature samples of different classes will be-
come increasingly distant. Furthermore, the local neighborhood
relationships of the feature data are also considered by the p̃Lb

ij

[47]. Therefore, the discriminability of feature data after domain
adaptation will be improved.

5) Optimization Problem: In this study, we endeavor to re-
duce the disparity in distributions between the source and target
domains by integrating the aforementioned four components,
on the basis of (8), (10) and (11), we formulate the optimization
problem for SJM as follows:

OSJM (ZS , ZT )
WTZEZTW=I

= (1− μ)MMD2
H (PMD(ZS), PMD(ZT ))

+ μ

(
C∑

c=1

MMD2
H

(
Q̂CD (YS |ZS) , Q̂CD

(
ŶT |ZT

)))

+ λ
(
‖WS‖2,1+ ‖WT ‖2F

)
+ ηtr

(
WTK

(
I/
(
SLF
b − SLF

w

))
KW

)
(17)
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where the μ ∈ [0, 1]and η ∈ [0, 1]are adjustable parameters, μ
modulates the balance between marginal and conditional dis-
tributions adaptation, λ represents the regularization parameter
that tunes the trade-off among JFDM, instance reweighting,
and discriminability improvement, I ∈ R(nS+nT )×(nS+nT )and
E are respectively the unit matrix and centering matrix, respec-
tively. On the basis of the (4) and (6), it can further infer the
OSJM (ZS , ZT ) to

OSJM (ZS , ZT )
WTZEZTW=I

= μ
C∑

c=1

tr
(
WTZL̂cZ

TW
)
+ (1− μ) tr

(
WTZL0Z

TW
)

+ λ
(
‖WS‖2,1+ ‖WT ‖2F

)
+ ηtr

(
WTK

(
I/
(
SLF
b − SLF

w

))
KW

)
(18)

According to the principles of constrained optimization, we
define Φ= diag(φ1, φ2, · · · , φk) ∈ Rk×k as the Lagrange mul-
tiplier and construct the corresponding function to address prob-
lem (18) as follows:

L = tr(
WTZ(μ

C∑
c=1

L̂c + (1− μ)L0 + η
(
I/
(
SL
w − SL

b

))
)ZTW

)

+ λ
(
‖WS‖2,1+ ‖WT ‖2F

)
+ tr

((
I −WTZEZTW

)
Φ
)

(19)

Setting ∂L/∂W = 0, generalized eigendecomposition can be
obtained as follows:(

Z(μ

C∑
c=1

L̂c + (1− μ)L0 + η
(
I/
(
SL
w − SL

b

))
)ZT+λG

)

W = ZEZTWΦ (20)

‖WS‖2,1is an non-smooth function at zero, therefore, it can cal-
culate its sub-gradient as ∂(‖WS‖2,1+‖WT ‖2F )/∂W = 2GW
[46], where G is a diagonal sub-gradient matrix as follows:

Gii =

⎧⎨
⎩
1/2

∥∥wi
∥∥ ,

0,
1,

zi ∈ ZS , w
i �= 0

zi ∈ ZS , w
i = 0

zi ∈ ZT

(21)

where wiis the ith row of W. Obtaining the optimal matrix W is
reduced to solving the (20) for the h smallest eigenvectors, and
new feature sets US = WTZS and UT = WTZT are acquired.
Then, it can use labelled US to learn an pattern recognition
classifier f which is then applied to derive the category labels
of UT .

D. Complete Process Steps of the DTCNN-SJM

On the basis of the cross-domain fault diagnosis framework
DTCNN-SJM, the complete process steps are presented in detail
below.

Step 1: The collected bearing vibration signals with class
labels under a known working condition are denoted as
source domainDsource; The collected bearing vibration sig-
nals without class labels under a unknown working condi-
tion are denoted as target domain Dtarget. The Dsourceand
Dtargetare inputted in the DTCNN-SJM. Then, Dsource and
Dtargetare processed by the CWT to yield two-dimensional
time-frequency images, and they are respectively denoted as
TFIsourceand TFItarget.

Step 2: In first, construct a CNN model for source domain, the
TFIsourceand the corresponding class labels are employed
for train this CNN model and the network parameters of the
trained CNN are obtained. Then, the obtained model parame-
ters are transferred to a new CNN model (called DTCNN) for
target domain, and the time-frequency images representing
the normal status from TFItarget are employed to fine-tune
the DTCNN. Accordingly, the CNN model for source domain
is used to extract deep features from TFIsource, denoted as
Xsource. The fine-tuned DTCNN is utilized to extract deep
features from TFItarget, denoted as Xtarg et.

Step 3:Xsource, the class labels YsourceofXsource, andXtarg et

are inputted in the proposed SJM, and the parameters (mani-
fold subspace dimension d, parametersλ,η, andμ, the dimen-
sion of feature set after domain adaptation h) involved in SJM
are set. After the process of the SJM, the new source domain
feature set Zsource and target domain feature set Ztarget are
obtained for the next step.

Step 4: Zsourceand Ysource are used to train the KNN classifier
for cross-domain fault diagnosis, and the trained KNN clas-
sifier is employed to predict the labels ofZtarget, finally, the
cross-domain fault diagnosis results are calculated.

IV. EXPERIMENTAL VALIDATION

To validate the efficacy and generalizability of the proposed
methods, this study carries out cross-domain fault diagnosis
experiments on two types of bearing fault datasets (Case Western
Reserve University (CWRU) experimental platform [2], [14],
[34], [35], [48] and SQI-MFS test platform [49], [50], [51])
under balanced and unbalanced data samples. Furthermore, to
demonstrate the superiority of the proposed DTCNN-SJM, some
models are built by ready-made various established techniques
for comparison.

A. Case 1: Cross-Domain Fault Diagnostic Based on CWRU
Test Platform

1) Introduction of Dataset and Fault Diagnosis Tasks: Fig. 3
illustrates the bearing faults experimental platform developed
by (CWRU). This platform employs accelerometer sensors to
capture bearing vibration signals at a sampling frequency of 12
kHz. The platform operates under four bearing load conditions:
motor loads of 0 hp, 1 hp, 2 hp, and 3 hp, equivalent to rotational
speeds of 1797 rmp, 1772 rmp, 1750 rmp, and 1730 rmp,
respectively. The collected data includes three types of bearing
defects: inner ring defect(IRD), rolling element defect(RED),
and outer ring defect (ORD), with defect sizes of 0.021inch,
0.014inch and 0.007inch. Table II displays the bearing vibration
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TABLE II
THE CWRU BEARING DATA FOR CROSS-DOMAIN FAULT DIAGNOSIS EXPERIMENTS

TABLE III
CROSS-DOMAIN FAULT DIAGNOSIS TASKS UNDER BALANCED TRAINING SAMPLES (CASE 1)

Fig. 3. CWRU test-bed.

data utilized in this study. For each type of fault data, the
original data is divided into 200 samples, each consisting of
864 sampling points. The training set (120 samples), validation
set (40 samples), and testing set (40 samples) are divided in
a 6:2:2 ratio. Consequently, we derive bearing vibration data
across ten categories, designated as 1 through 10. On the basis
of these bearing vibration data, 24 cross-domain fault diagnosis
tasks (CFDT) under balanced and unbalanced training samples
are set up, as shown in Tables III and IV. The source domain
samples for both the training and validation sets are utilized to
train the CNN. For the fault diagnosis tasks 1–12 under balanced
data samples, the number of different types of fault samples is
the same. But, the fault diagnosis under imbalanced data samples
has different types of fault samples, and the number of training
samples for categories 1–10 are 120, 110, 100, 90, 80, 70, 60, 50,

40, and 30, respectively. Therefore, the total number of training
samples is 750.

2) The Effectiveness Verification of the DTCNN-SJM Frame-
work: In this section, we apply the DTCNN-SJM framework to
conduct 24 CFDT, as delineated in Tables III and IV. Initially, we
process the raw vibration signals from both the source and target
domains using CWT to generate an array of two-dimensional
time-frequency images (TFI). Taking 10 types of fault vibration
signal samples under 0hp motor load (1797r/min speed) as an
example, the corresponding time-frequency diagrams are shown
in Fig. 4. Then, a DTCNN is built to extract deep features from
TFI of source and target domains, and the mainly parameters of
DTCNN are shown in Table I. Accordingly, the deep features of
source domain (DFSD) and the deep features of target domain
(DFTD) are separately extracted. Next, the labeled DFSD and
unlabelled DFTD are inputted into the SJM, and it conducts the
joint feature distribution matching with the instance reweight-
ing and maximum marginal criterion in learned Grassmann
manifold subspace, which can achieve more robustness domain
adaptation ability. After the procedure of SJM, the new DFSD
and DFTD are obtained, accordingly, the new DFSD is used to
train a classifier for cross-domain fault diagnosis. Finally, this
trained classifier is applied to infer the category labels of the
DFTD, thus yielding the results for cross-domain fault diagnosis.

Table V presents the testing results of DTCNN-SJM frame-
work in tasks 1–24. Tasks 1–12 are set up under balanced training
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TABLE IV
CROSS-DOMAIN FAULT DIAGNOSIS TASKS UNDER UNBALANCED TRAINING SAMPLES (CASE 1)

Fig. 4. Time-Frequency Images of Various Fault Vibration Signals (Labels 1–10) under Motor Load of 3hp.

TABLE V
EXPERIMENTAL RESULTS OBTAINED BY DTCNN-SJM FRAMEWORK IN CASE 1

samples, and tasks 13–24 are set up under unbalanced training
samples. For tasks 1–12, cross-domain diagnosis accuracies are
respectively 100.00%, 100.00%, 98.50%, 100.00%, 100.00%,
100.00%, 99.00%, 98.00%, 97.50%, 96.00%, 99.50%, and
100.00%, the mean accuracy can attain 99.04%. For tasks 13–
24, cross-domain diagnosis accuracies are respectively 99.50%,
100.00%, 89.00%, 100.00%, 100.00%, 100.00%, 100.00%,
98.50%, 99.00%, 94.50%, 94.00%, and 100.00%, the mean
accuracy can attain 97.88%, which is slightly lower than mean
accuracy of tasks 1–12. According to the results shown in
Table V, the validity of the proposed DTCNN-SJM framework
can be verified, and they also indicate that the imbalance of

training samples can lead to a decrease in the fault diagnosis
accuracy, nicely, the DTCNN-SJM framework can still achieve
ideal cross-domain fault diagnosis results. The parameters used
in SJM are as follows: the adjustable parameters μand ηare
0.4 and 0.6, and the regularization parameter λis 0.5; manifold
subspace dimension d is 30, and the dimension of feature set
after domain adaptation h is 30.

3) Comparative Experiments: To substantiate the superior
performance of the DTCNN-SJM framework and advantages of
the proposed SJM, we constructed a variety of fault diagnosis
models for comparative analysis. These models utilize both
conventional and widely-recognized methods such as KNN,
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TABLE VI
COMPARATIVE MODELS

SVM, Softmax, JDA, TCA, BDA, GFK, MEDA, JGSA, TJM,
CORAL [52], EasyTL [53], JPDA [54], MEKT [55], STL [56]
and SA [57]. Accordingly, the Table VI lists 18 comparative
models built by these methods, DTCNN and SJM. The rea-
sons of this setup are as follows: (1) The comparative models
are divided into two categories: the models without domain
adaptation methods and the models integrated different classical
domain adaptation methods. The models built upon SVM, KNN,
and Softmax belong to the models without domain adaptation
methods, and their experimental results can serve as a baseline
comparison. The models built upon different domain adapta-
tion methods (JDA, TCA, BDA, GFK, MEDA, JGSA, TJM,
CORAL, EasyTL, JPDA, MEKT, STL and SA) can be compared
with the models without domain adaptation methods to verify
the effect of domain adaptation methods on cross-domain fault
diagnosis performance. (2)The JDA, TCA, BDA, GFK, MEDA,
JGSA, TJM, CORAL, EasyTL, JPDA, MEKT, STL and SA
are classical feature transfer learning methods, and they have
been studied by many researchers in the field of cross-domain
fault diagnosis. These methods contain different mainstream
optimization ideas, such as probability distributions alignment,
manifold learning for domain adaptation, and joint geometrical
and statistical alignment for domain adaptation. Therefore, we
set comparative models constructed by them and compare the
experimental results of the proposed SJM in this manuscript with
theirs, which validates the superiority of the proposed SJM.

For the CM1-CM3 models, take DTCNN-SVM as an exam-
ple, it means that the original vibration signals are processed by
steps 1 and 2 in DTCNN-SJM framework, and deep features are
extracted. Subsequently, the DFSD is used to train the machine
learning classifier, and the trained classifier predicts the labels of
DFTD. Consequently, the fault diagnosis results can be obtained.
For the CM4-CM18 models, take DTCNN-JDA-SVM as an
example, it means that the raw bearing vibration signals are
processed by steps 1 and 2 in DTCNN-SJM framework, and deep
features are extracted. Then, the labeled DFSD and unlabeled
DFTD are inputted into JDA for domain adaptation, the next, the
new DFSD after domain adaptation is used to learn the SVM
classifier, and the learned SVM classifier predicts the labels
of DFTD. Finally, the fault diagnosis experimental results are
derived.

Fig. 5. Comparison of Accuracies for CM1-CM18 Models across Tasks 1–3.

Fig. 6. Comparison of Accuracies for CM1-CM18 Models across Tasks 4–6.

Table VII shows the fault diagnosis results for the CM1-CM18
models across tasks 1–12, clearly showing that the CM11 and
CM18 models, which are based on the proposed DTCNN-SJM
framework, surpass the performance of the other comparative
models. The mean diagnostic accuracies of CM11 and CM12
in these tasks reach 98.58% and 99.04%, respectively. By
comparing the results of fault diagnosis models using different
domain adaptation methods, it indicates that the performance
of the models using JDA, TJM, and SJM is markedly better
than models using TCA, BDA, GFK, JGSA, MEDA, CORAL,
EasyTL, JPDA, MEKT, STL and SA. The performance of model
using SJM is the best, the DTCNN-SJM-KNN model can attain
99.04% of mean diagnosis accuracy in tasks 1-12, which is re-
spectively 0.63%, 3.58%, 3.50%, 8.63%, 3.21%, 9.00%, 0.54%,
5.29%, 24.79%, 4.33%, 39.79%, 7.17%, and 21.67% higher than
that of models using JDA, TCA, BDA, GFK, MEDA, JGSA,
TJM, CORAL, EasyTL, JPDA, MEKT, STL and SA. Figs. 5–8
present the comparison of experimental outcomes for models
CM1 to CM18 across tasks 1 to 12, and the Fig. 9 gives the
comparison of the average diagnostic accuracies for tasks 1 to
12 obtained by models CM1 to M18.

Table VIII presents the cross-domain fault diagnosis results
of CM1-CM18 models in tasks 13–24, it is also apparent that
the CM11 and CM12 models (based on the proposed DTCNN-
SJM framework) can achieve desirable performance, which also
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TABLE VII
CROSS-DOMAIN FAULT DIAGNOSIS OUTCOMES OF MODELS CM1-CM12 ACROSS TASKS 1-12

TABLE VIII
CROSS-DOMAIN FAULT DIAGNOSIS OUTCOMES OF MODELS CM1-CM12 ACROSS TASKS 13–24
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Fig. 7. Comparison of Accuracies for CM1-CM18 Models across Tasks 7–9.

Fig. 8. Comparison of Accuracies for CM1-CM18 Models across Tasks 10–
12.

Fig. 9. The comparison of the average diagnostic accuracies for tasks 1 to 12
obtained by models CM1 to CM18.

supasses other models, and the mean diagnostic accuracies of
CM11 and CM12 models in tasks 1–12 can attain 96.96% and
97.88%, respectively. From the experimental results of fault
diagnosis models using different domain adaptation methods,
it is evident that the performance of the models using JDA,
TJM, and SJM is obviously better than models using TCA, BDA,
GFK, JGSA, MEDA, CORAL, EasyTL, JPDA, MEKT, STL and
SA. The DTCNN-SJM-KNN model can attain 97.88% of mean

Fig. 10. Comparison of Accuracies for CM1-CM18 Models across
Tasks 13–15.

Fig. 11. Comparison of Accuracies for CM1-CM18 Models across
Tasks 16–18.

Fig. 12. Comparison of Accuracies for CM1-CM18 Models across
Tasks 19–21.

diagnosis accuracy in tasks 13–24, which is respectively 1.29%,
4.88%, 2.92%, 8.13%, 4.67%, 2.42%, 1.50%, 5.88%, 16.92%,
5.05%, 33.30%, 8.34%, and 31.34% higher than that of models
using JDA, TCA, BDA, GFK, MEDA, JGSA, TJM, CORAL,
EasyTL, JPDA, MEKT, STL and SA. Figs. 10–13 show the
comparison of experimental outcomes for models CM1 to CM18
across tasks 13 to 24, and the Fig. 14 presents the comparison
of the mean diagnostic accuracies for tasks 13 to 24 obtained by
models CM1 to CM18.

According to the above comparative experiments analysis, it
can evidently conclude the following conclusions. (1) In the situ-
ations of balanced or unbalanced training samples, the proposed
DTCNN-SJM framework can achieve desirable performance
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Fig. 13. Comparison of Accuracies for CM1-CM18 Models across
Tasks 21–24.

Fig. 14. The contrast of the mean diagnostic accuracies for tasks 13 to 24
obtained by models CM1 to M18.

and outperform models using other domain adaptation methods,
accordingly, it indicates that the DTCNN-SJM framework is a
promising approach that can be applied in practical industrial
scenarios; (2) The fault diagnostic results of all models in
balanced training samples (tasks 1–12) are better than that of
all models in unbalanced training samples (tasks 13–24), and it
evident implies that the insufficient training samples can pose
challenges for achieving ideal results of fault diagnosis models
and their application in practical scenarios; (3) The designed new
domain adaptation method SJM possesses a desirable domain
adaptation performance and obviously surpasses other tradi-
tional adaptation methods.

B. Case 2: Cross-Domain Fault Diagnostic Based on
SQI-MFS Experimental Platform

1) Introduction of Dataset and Fault Diagnosis Tasks: To
further demonstrate the validity and adaptability of the DTCNN-
SJM framework, accordingly, cross-domain fault diagnosis ex-
periments are conducted using a bearing vibration dataset ob-
tained from the SQI-MFS test-bed. As depicted in Fig. 15, it
utilizes the accelerometer sensors to collect the bearing vibration
signals under 16 kHz sampling frequency. There are two working
speeds of bearing, namely, motor speeds of 1730r/min and

Fig. 15. The SQI-MFS test-bed.

TABLE IX
THE SQI-MFS BEARING DATA FOR CROSS-DOMAIN FAULT DIAGNOSIS

EXPERIMENTS

TABLE X
CROSS-DOMAIN FAULT DIAGNOSIS TASKS BASED ON SQI-MFS BEARING DATA

1750r/min. The collected data includes three types of bearing
defects: IRD, RED, and ORD, with defect sizes of 0.05 mm,
0.1 mm, and 0.2 mm. Table IX presents the bearing vibration
data used in this experiment case. For each type of fault data,
the original data is divided into 200 samples, each consisting of
864 sampling points. The dataset is partitioned into a training
set of 120 samples, a validation set of 40 samples, and a testing
set of 40 samples, adhering to a 6:2:2 split ratio. Consequently,
the study acquires bearing vibration data spanning ten distinct
categories, which are identified numerically from 1 to 10. Uti-
lizing this data, we setup four CFDT (tasks 25–28), addressing
scenarios with both balanced and unbalanced training samples,
detailed in Table X. The training and validation sets of the source
domain data are used to train the CNN network. For the fault
diagnosis tasks 25 and 26 under balanced data samples, each
fault type is represented by an equal number of samples. But,
the fault diagnosis under imbalanced data samples has different
types of fault samples, and the number of training samples for
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TABLE XI
CROSS-DOMAIN FAULT DIAGNOSIS OUTCOMES OF MODELS CM1-CM18

ACROSS TASKS 25–28

categories 1-10 are 120, 110, 100, 90, 80, 70, 60, 50, 40, and 30,
respectively. Therefore, the total number of training samples is
750.

2) Diagnosis Results Analysis of DTCNN-SJM Framework:
To verify the efficacy and adaptability of the DTCNN-SJM
framework, datasets from the SQI-MFS test rig, operating at two
distinct speeds, are employed in cross-domain fault diagnosis
experiments, and the comprehensive procedures are similar to
that of case 1. Table XI presents the experimental results of
DTCNN-SJM framework in tasks 25–28. Tasks 25 and 26 are set
up under balanced training samples, and tasks 27 and 28 are set
up under unbalanced training samples. For tasks 25–26, cross-
domain diagnosis accuracies are respectively 94.50%, 94.00%,
91.50%, and 89.50%, and the mean accuracy can attain 92.38%.
According to the results shown in Table XI, the effectiveness
of the proposed DTCNN-SJM framework can be also verified,
and they also indicate that an imbalance in training samples
will result in reduced accuracy of fault diagnosis; however,
the DTCNN-SJM framework is able to maintain optimal cross-
domain fault diagnostic performance despite these challenges.

3) Comparative Analysis With Different Models: This sec-
tion is also similar to that of case 1. Table XI and Fig. 16
display the comparative experimental outcomes for the CM1-
CM18 models across tasks 25–28, while Fig. 17 illustrates the
comparison of the average diagnostic accuracies for tasks 25 to
28 obtained by models CM1 to CM18. The experimental results
underscore that the proposed DTCNN-SJM model markedly

Fig. 16. Comparison of Experimental Results for Models CM1-CM18 across
Tasks 25–28.

Fig. 17. The comparison of the average diagnostic accuracies for tasks 25 to
28 obtained by models CM1 to CM18.

surpasses other comparative models in cross-domain fault
diagnostic performance. Specifically, the average diagnostic
accuracies for the CM11 and CM12 models in tasks 25–28
achieve 89.88% and 92.38%, respectively, which are signifi-
cantly superior to those of the comparative models. From the
experimental results of fault diagnosis models using different
domain adaptation methods, it can be also shown that the per-
formance of the models using JDA, TJM, and SJM is obviously
better than models using TCA, BDA, GFK, JGSA, MEDA,
CORAL, EasyTL, JPDA, MEKT, STL and SA. The DTCNN-
SJM-KNN model can attain 92.38% of mean diagnosis accuracy
in tasks 13–24, which is respectively 5.38%, 10.63%, 7.50%,
14.38%, 10.63%, 10.75%, 5.63%, 25.38%, 15.13%, 14.13%,
24.76%, 21.51%, and 24.63% higher than that of models using
JDA, TCA, BDA, GFK, MEDA, JGSA, TJM, CORAL, EasyTL,
JPDA, MEKT, STL and SA. The aforementioned experimental
analysis indicates that the proposed SJM approach significantly
improves domain adaptation and augments the results of cross-
domain fault diagnosis. To sum up, the findings from case 2
further verify the efficacy, advantages, and adaptability of the
DTCNN-SJM framework across varying working speeds.
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V. CONCLUSION

This study introduces an innovative fault diagnosis
framework for bearings that employs DTCNN and SJM,
facilitating cross-domain applications. The framework incor-
porates time-frequency analysis to process the raw vibration
signals and extract wavelet time-frequency representation maps.
Then, DTCNN construction and deep features extraction are
conducted. Next, the designed SJM is performed to shrink the
distribution discrepancies between source and target domains
and enhance the discriminability by integrating manifold sub-
space learning, joint feature distribution matching, instances
reweighting and maximum marginal criterion. Finally, a pattern
recognition classifier is trained for cross-domain fault patterns
recognition.

Extensive cross-domain fault diagnosis experiments utilizing
two bearing fault datasets are conducted, encompassing sce-
narios with both balanced and imbalanced training samples.
The experimental results indicate as follows: (1) the proposed
DTCNN-SJM framework achieves superior cross-domain fault
diagnosis performance in comparison to models that are built
by common and traditional methods; (2) the diagnostic results
of all models in balanced training samples are better than that
of all models in unbalanced training samples, and it evident
implies that the insufficient training samples can pose challenges
for achieving ideal results of fault diagnosis models and their
application in practical scenarios; (3) the designed new domain
adaptation method SJM possesses a desirable domain adaptation
performance and obviously surpasses other traditional domain
adaptation methods. In conclusion, the proposed DTCNN-SJM
framework shows significant potential for application in di-
verse industrial environments with fluctuating operational con-
ditions. Future work will focus on developing domain adaptation
methodologies with enhanced robustness suitable for complex
fault detection scenarios across various devices.
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