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Abstract—There is an increasing demand for data with the
development of the world, and various fiber optic multiplexing
techniques have become an important research direction to im-
prove transmission capacity. However, the transmitted signals are
subject to great interference due to mode coupling and mode
dispersion, which require multiple-input multiple-output (MIMO)
digital signal processing techniques to restore the quality of the
transmitted signals. In this paper, a novel MIMO detector is de-
signed using an adaptive learning recurrent neural network and
successfully implemented in a mixed wavelength-division-mode-
division-multiplexing (WDM-MDM) optical transmission system,
and its performance is compared with that of the forced-zero
detector and the minimum-mean-square-error detector. The re-
sults show that the introduction of an adaptive machine learning
model in MIMO detection for WDM-MDM optical transmission
systems can significantly improve the quality of the transmitted
signals and achieve better performance than other MIMO detection
algorithms while maintaining a faster computational speed and a
lower number of parameters.

Index Terms—MIMO, WDM, SDM, communication system,
machine learning.

I. INTRODUCTION

THE limited bandwidth in optical communication systems
is being rapidly consumed as the demand for data flow in

people’s lives continues to grow. Moreover, since single-mode
fiber-based optical communication systems have never been
able to break through their inherent nonlinear Shannon limits
and reach bottlenecks, the expected capacity growth rate of
single-mode fiber transmission systems is still lower than the
growth rate of Internet traffic even though the single-mode
fiber technology has been significantly improved [1]. In recent
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decades, the system capacity has increased by orders of magni-
tude whenever a new parameter is added as a reuse dimension.
However, the utilization of the frequency/wavelength [2], time
[3], phase [4], and polarization dimensions [5] are currently
approaching their limits. As the only underutilized dimension,
the spatial dimension has become considered the most promising
multiplexing method. [6] When space-division multiplexing
(SDM) and wave-division multiplexing (WDM) are combined,
the transmission capacity of existing optical communication
systems can be greatly expanded.

SDM has three types of transmission fibers: multi-core fiber
(MCF) [7], [8], few-mode fiber (FMF) or multi-mode fiber
(MMF) [9], [10], [11], and few-mode multi-core fiber (FM-
MCF) [12]. For SDM systems, FMF supports several modes
between SMF and MMF and can transmit over longer distances
than MMF. Meanwhile, FMF is easier to fabricate fiber and
related optical devices compared to MCF and FM-MCF. There-
fore, FMF-based mode division multiplexing (MDM) technol-
ogy has greater advantages. Under ideal conditions, the FMF
channels of each mode are independent of each other without
crosstalk, which can realize a multiplier increase in system
transmission capacity. However, problems such as bending and
twisting can also occur during practical application, resulting in
the orthogonality of modes in the fiber being destroyed, causing
crosstalk between modes such as mode coupling, mode group
delay, and other crosstalk. In addition, loss, noise, and other
damage can also occur due to defects in the manufacturing pro-
cess of optical fibers or optical devices [13]. The superposition
of various types of impairing factors makes the channel of the
FMF MDM system complex and requires the use of multiple-
input multiple-output (MIMO) signal processing techniques at
the receiver side to eliminate crosstalk and recover damage to
achieve more optimized transmission. Besides that, because of
the variations of the environments, like the temperature or the
stress of fiber link, the mode dispersion and mode coupling may
change from time to time. Therefore, the MIMO algorithms may
need to be update consequently, which requires to reduce the
complexity and improve the speed of algorithms.

Machine learning (ML) algorithms have evolved dramatically
in recent years as hardware computing power has increased and
specialized datasets have expanded [14]. ML is capable of sys-
tematically mining valuable information from flow data and au-
tomatically discovering correlations that would be too complex
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for a human expert to extract. The principles of machine learning
are distinct from traditional algorithms in that it primarily uses
computational methods to learn information directly from data,
rather than relying on predetermined equations for modeling, as
various types of traditional algorithms do. Its networks involve
a great deal of nonlinear computation, which makes it much
more versatile. MIMO detection techniques based on ML neural
networks are already available and successfully implemented in
MDM optical transmission systems [15], [16]. However, the
performance of traditional shallow neural networks may not
improve even if more data is provided, instead they may create
more problems such as local optimum or overfitting. Recurrent
Neural Network (RNN) is a kind of neural network specialized
in processing sequential information. RNN can be extended to
longer sequences and it was created to address the limitations of
traditional neural networks in processing sequence information
[17], [18].

In this paper, a MIMO detection algorithm based on a RNN is
proposed and successfully implemented in a simulated WDM-
MDM optical transmission system with five wavelengths and
three modes. In the system of this paper, we use a step FMF and
perform MIMO processing on the signal. For MIMO detection,
we designed and trained a supervised adaptive cycle learning rate
RNN (CLR-RNN) in this paper. In this method, 15 channels
of Quadrature Phase Shift Keying (QPSK) signals are trans-
mitted over WDM-MDM optical transmission and successfully
detected with the help of CLR-RNN. The results of the study
show that this method is a highly improved algorithm in terms
of complexity and detection, and the accuracy of the training
can reach 100% with a bit error rate (BER) of 0.

II. FUNDAMENTAL PRINCIPLES

A. MIMO Received Model

When FMFs are used for long-distance transmission, prob-
lems with fiber materials and production processes cause cou-
pling, dispersion, and loss between FMF modes that are sup-
posed to be orthogonal to each other, resulting in significant
degradation of the received signal quality. To recover the trans-
mitted signal as much as possible at the receiver side, it is
necessary to select an appropriate MIMO-DSP technique to
recover the transmitted signal in the transmission system. The
following section focuses on the WDM-MDM-MIMO system
model and channel matrix parameters, and the system model is
shown below in Fig. 1:

The WDM-MDM optical communication system in Fig. 1
contains N wavelengths and M modes. In the transmission
process, the transmitter sends N optical signals with different
wavelengths through a continuous wave (CW) laser, and modu-
lates the signals into the signals required for the test through an
optical modulator, and the modulated optical signals first pass
through a Wavelength Selective Switch (WSS) to create different
wavelengths. After that, the mode multiplexer multiplexes the
signals of different modes into one optical fiber. In this paper,
we choose FMF as the transmission medium, and then it goes
through a mode division decomposition multiplexer and WSS
for demultiplexing. Finally, the signal is received by the coherent

Fig. 1. Schematic diagram of WDM-MDM optical communication system.
The multiplexing structure of WDM and MDM is represented in it.

Fig. 2. RNN model. at is state vector, xtis the input vector and yt is the
output. W represents the weight matrix.

optical detector at the receiving end, which normally processes
the received signal to restore it to the initial signal. The equation
of this MIMO system can be expressed as [19]:

y = Hx+ b (1)

where, b is Gaussian white noise. To eliminate the interfering
signals from other transmitting antennas, the MIMO-DSP tech-
nique should be used at the receiver side, and it is particularly
important to determine the channel matrix H .

B. Recurrent Neural Network and Cyclical Learning Rate

After determining the channel matrix H for MDM-MIMO,
there is a need to formulate the problem of MIMO detection
in a machine-learning framework. Recurrent neural networks
(RNNs) are a type of learning model with internal memory
that enables them to capture sequential dependencies. Unlike
traditional neural networks where inputs are independent of each
other, RNNs consider the time sequence of inputs, making them
suitable for tasks involving sequential information. By using
recurrences, RNNs apply the same operation to each element
in the sequence, with the current computation depending on the
current input and previous computations.

RNNs are designed for modeling sequential data where there
is a serial correlation between samples. In each time step, they
produce outputs through recurrent connections between the
hidden layer units, as shown in Fig. 2. The input vector xt and
the previous neuron’s state vector at−1 generate the current state
vector at after a matrix transformation W :

at = f(W a [at−1,xt] + ba) (2)

where, W is the weight matrix, b is the bias vector, f is an
activation function through which each element of the input
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Fig. 3. Cyclical learning rate schematic. The learning rate increases and
decreases according to the blue line, with two step lengths forming a cycle.

vector needs to pass. at then passes through a matrix change
to generate the current prediction ŷ(t) in (3):

ŷ (t) = f (W yat + by) . (3)

The output y(t) of the RNN can be obtained by iterating
through the iteration chain of the two equations, as shown
in (4):

y (t) = f(W yf(Wat +W yf (W aat−1

+ W yf (W aat−2 + · · ·)) + by). (4)

It can be seen that the output at the current point in time
contains historical information, which indicates that RNN saves
historical information. Unlike traditional neural networks that
use different parameters at each layer, RNNs share the same
parameters. This reflects the fact that the same task is performed
at each step, just using different inputs, which greatly reduces
the total number of parameters for training.

The activation function introduces nonlinear factors into the
neural network, through which the neural network can fit various
curves. In this system the tanh function is used in the training pro-
cess with the equation f (x) = ex−e−x

ex+e−x . [20] From its equation,
it can be concluded that the use of the tanh activation function
can limit the output values between -1 and 1. Other activation
functions for RNN include the ReLU function. [21] ReLU is
a non-negative output, only the parts above or equal to 0 will
be retained in the recursive multiplication. Instead, the tanh, an
activation function that is symmetric with a center of 0, can
decide what information to keep and what to remove, which is
more compatible with the data form of the channel matrix H in
this system.

During the training process, the learning rate is probably the
most important parameter. The learning rate determines how
much the model is adjusted in each parameter update step. There
are many ways to adaptively adjust the learning rate, such as Step
Learning Rate and Cosine Annealing Learning Rate. After our
testing and research, we decided to use Cyclical Learning Rate
(CLR) in this system. CLR is a method that dynamically adjusts
the learning rate based on the state of the neural network training,
and works with the neural network to reach the best-fit point
faster during training. [22], [23] As shown in Fig. 3 below, there
are three variables in CLR, which are base learning rate, max
learning rate, and step size. The CLR needs to set a minimum

bound (base learning rate, base_lr) and maximum bound (max
learning rate, max_lr) to achieve the best fit of the network by
adjusting the learning rate to vary in the maximum and minimum
bound instead of simply decreasing the learning rate. In a cycle,
the learning rate step size needs to be increased and decreased
similar to the uphill and downhill slopes, and two-step sizes form
a cycle. The step size is set based on the iterations required for
network training.

The cyclic variation strategy enables the model to avoid
local minima and saddle points that are encountered during
the training process. Saddle points are more of a hindrance to
convergence than local minima. If a saddle point happens to
occur at a clever equilibrium point, a small learning rate usually
does not produce a large enough gradient change to make it
jump over the point, and even if it does, it takes a long time
to do so. This is where a periodically high learning rate can be
useful, by jumping over the saddle point faster. What is more,
assuming that the CLR must fall between the minimum bound
and maximum bound, periodic tuning is equivalent to constantly
iterating to find the optimal solution. The CLR-RNN proposed
in this paper utilizes the CLR approach which plays a vital role in
MIMO detection in WDM-MDM optical transmission systems.

III. SYSTEM ESTABLISHMENT

In this paper, we design a mixed-multiplexed fiber optic
transmission system with five wavelengths, three modes, and
15 channels as shown in Fig. 4, which is a 50 Gbps transmission
system via Quadrature Phase Shift Keying (QPSK) modulation.
In the simulation experiment, five arrays of CW lasers with
emission wavelengths of 193.1–193.5 THz are selected at the
transmitter side, and each array contains three lasers correspond-
ing to three different fiber modes. Each laser has a linewidth
of 0.1 MHz and a power of 10 dBm. Afterward, QPSK signal
is performed by IQ modulation (IQM), and using WSS for
wavelength selection. Thereafter, the transmission is split into
two paths with polarization orthogonal to each other by a 3 dB
delay, one of which is decorrelated by a delay line and mul-
tiplexed with the other through a Polarization Beam Combiner
(PBC). Signals are amplified by the erbium-doped fiber amplifier
(EDFA) after signal modulation and polarization multiplexing.
Before entering the mode multiplexer, the signals are mode-
stimulated to have three different modes, LP01, LP11x, and
LP11y . After wavelength-division multiplexing of the channels
of these five MDMs through a WDM, these mixed-multiplexed
optical signals are coupled into a step-type FMF, which is 60 km
long and has a dispersion of 17 ps/nm/km and a dispersion slope
of 0.12 ps/nm2/km.

At the output of the three-mode fiber, five different wave-
lengths of the mode mixing channel are first separated by a wave-
length demultiplexer. Afterwards, five independent branches of
different wavelengths are re-separated the three modes signals
through the mode demultiplexer of the current channel. The
demultiplexer consists of the mode demultiplexer and the de-
polarization multiplexer. After wavelength decomposition mul-
tiplexing, the LP01 and LP11 modes are first separated by a
mode demultiplexer. It also needs to go through a depolarization
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Fig. 4. System setup. The data is first transmitted through the WDM-MDM system followed by data reception, and then passed into the CLR-RNN for processing.
Finally, the classification results are obtained.

multiplexer to split the LP11 modes into LP11x and LP11y for
LP11 modes and amplified by EDFA. Then the optical signals
are received and detected by multiple coherent optical receivers,
and the signals are demodulated. To focus on the MIMO algo-
rithm, since the power entering the fiber in this system becomes
much smaller with modulation and multiplexing, the nonlinear
crosstalk generated during transmission is negligible, and the
channels can be considered independent of each other. Finally,
the generated electrical signals are processed by a MIMO digital
signal processing (DSP) to eliminate various effects in the link.
In order to confirm that the correct mode is stimulated, we exam-
ined the output power of each mode. The results show that the
signal information of each channel is smoothly reconstructed.
The system has taken into account spontaneous radiation noise
of EDFA and the dark current noise of the detector is set to 10nA
in this simulation.

In this simulation system, there are various losses and interfer-
ences in the signal transmission process, which will have a great
impact on the quality of the transmitted signal, and it is necessary
to process the signal to improve the overall quality of the
communication system. The introduction of MIMO technology
can improve the overall signal quality of the communication
system. Therefore, this system combines the unique character-
istics of neural networks and optical communications to design
an algorithm for optical communications. Since neural networks
can generally only process real data, complex variables need to
be divided into real and imaginary parts for processing:

y (t) =

[� (y (t))
� (y (t))

]
x (t) =

[� (x (t))
� (x (t))

]

H =

[� (H) −� (H)
� (H) −� (H)

]
(5)

where, � and � are operations that take the real and imaginary
parts of a complex vector. Considering that the content of the
dataset used for training and testing is too large to satisfy the
demand by directly feeding the data into the neural network,
this design is introduced with a CLR-RNN learning model as
shown in the bottom half of Fig. 4, which makes it possible
to extract the features of the data and expects to obtain better
results.

The RNN network model shown in Fig. 4 has 3 layers, where
the number of recurrent neurons in each layer is 20. The last
output layer is a fully connected layer consisting of 4 neurons,
each representing a single category. The activation function used
in the final output layer is the SoftMax function, which is used for
the output of the multi-categorization problem. It normalizes a
vector of values into a vector of probability distributions and the
sum of the individual probabilities is equal to one. The SoftMax
layer is often used in conjunction with the cross-entropy loss
function. In this system, the cross-entropy loss function is mainly
used to determine the closeness of the actual output and the
desired output. It is used to measure the difference between the
output of the network and the label, and this difference is utilized
to update the network parameters after backpropagation. The
tanh function is used as the activation function of the neurons
for the other 3 layers apart from the output layer which uses the
SoftMax function.

Based on the data collected from the WDM-SDM optical
communication transmission system model proposed in this
paper, we have produced the dataset, which is divided into
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TABLE I
OVERALL PARAMETERS IN CLR-RNN

the training set and the test set, and they are independent of
each other. The total data contents of the dataset are 3.3× 105

groups of symbols, the training set contains 2.8× 105 groups
of symbols and the test set contain 5× 104 groups of symbols.
Although using a larger database would provide greater insight,
at this stage we used this WDM-MDM dataset for comparative
testing. The data content of the dataset consists of the received
signal data as x(t) with the joint matrix J(t) of the channel
matrix H , and the transmitted signal data y(t) at the output data.
The input data is the joint matrix J(t) of x(t) with H , which
can be written as follows (6) [19]:

J (t) =
[
Jre (t) J im (t)

]

Jre (t) =

⎡
⎢⎣
� (H1) � (x1)

...
...

� (HN) � (xN)

⎤
⎥⎦

J im (t) =

⎡
⎢⎣
� (H1) � (x1)

...
...

� (HN) � (xN)

⎤
⎥⎦ (6)

where,N is the number of transmission signals. In each signal of
this project, the dimensions of Jre(t) and Jim(t) correspond to
sequence length and input size, which are 4 and 6, respectively.
During the training process, the parameters of the RNN are
the weights W and bias b of individual neurons, which can be
optimized by the backpropagation process.

For getting a perfect model, the learning rate, batch size,
and epoch need to be modified according to the actual situation
of training, and these three parameters together determine the
performance of the system model. In the training process of
this system, the learning rate is adaptively adjusted using CLR
to make the training more efficient, where base_lr = 0.05,
max_lr = 0.1, and step size = 20. A high value of epoch
setting may lead to overfitting of the system and a low value
may lead to the potential problem of the system not being able
to train the model adequately. In this system, we used different
epoch sizes for different RNN networks in order to compare the
superiority of CLR. In addition to this, the batch size is uniformly
set to 50. The parameters in CLR-RNN has shown in Table I.
Overall, changing parameters and iteratively training models is
an extremely important part of machine learning.

Nowadays, many tools and algorithms are available for build-
ing and training large neural networks. Among many existing
machine learning frameworks, we use PyTorch to design and
train our neural network. [24] PyTorch is a mathematical library

that performs efficient computations and automatic differenti-
ation on various models. For hardware, we used a CPU Core
I9-10900X and a GPU Nvidia GTX-3070 for training and testing
the neural network.

IV. RESULTS AND COMPARISON

The details of the designed neural network have been de-
scribed in the previous section. In this section, the machine
learning model and its parameter settings are tested differently
and its simulation results are analyzed and compared with tra-
ditional signal detection algorithms and fully connected neural
networks.

In training, the loss function needs to be utilized to evalu-
ate how well the model predicts the dataset. As mentioned in
Section III, this system uses the cross-entropy loss function to
measure the robustness of the model. The loss function plays
a very important role in machine learning by calculating the
deviation between the forward computed value and the correct
value in each iteration of the neural network, thus guiding the
next training step in the right direction. By reducing the loss
between the true value and the predicted value, the predicted
value generated by the model is made to be closer in the direction
of the true value. Therefore, observing the value of the loss
function at each iteration can determine whether the results are
converging or not.

Shown in Fig. 5 are the loss curves and training accuracy
curves for both RNN and CLR-RNN when the number of
hidden layers is 3. The data set used at this point is the one
at signal-to-noise ratio (SNR) equal to 35. For the RNN, there is
fast convergence in the first 9 trainings, and the accuracy is less
than 100% until the training is carried out 27 times. However,
for our proposed CLR-RNN, the accuracy reaches 100% by the
fifth time of training and converges faster. In addition to that,
the loss of CLR-RNN is also smaller than that of RNN. At the
same time, the increasing trend of the accuracy of the training set
is extremely similar to the decreasing trend of the loss function
value. For the RNN, the initial value of the loss function is about
0.006567, which starts to decrease rapidly by the 9th iteration,
slows down by the 15th iteration, and stabilizes thereafter. When
Epoch = 30, the loss function value drops to 3.58E-05. Turning
to CLR-RNN, the initial value of its loss function is about
0.000219, which is an order of magnitude smaller than that of
RNN, and when Epoch = 10, the loss function value drops to
1.57E-05. it can be seen that with the performance of the CLR,
it is possible to avoid retuning and to achieve optimal accuracy
with fewer iterations.

In order to find the optimal number of hidden layers and
neurons required for RNNs, we developed a number of neural
networks with different numbers of hidden layers for train-
ing and compared RNNs with traditional fully connected neu-
ral networks (FNN). FNN is one of the basic artificial neu-
ral network structures and is the most widely used type of
neural network. [25] In an FNN, each neuron is connected to all
neurons in the previous and following layers, forming a densely
connected structure. FNN can learn the features of the input
data and perform tasks such as classification and regression.
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Fig. 5. Comparison of RNN and CLR-RNN training states when the hidden layer is 3. (a) Loss and training accuracy for RNN. (b) Loss and training accuracy
for CLR-RNN.

Fig. 6. Comparison of results between RNN and FNN with various layers and using CLR or not. (a) The left axis represents the epoch that reaches the highest
accuracy for RNN and CLR-RNN. The right axis represents the highest accuracy for FNN and CLR-FNN. The horizontal coordinate is the number of layers of
each neural network. (b) The number of errors in different neural network with different number of layers.

Another competitive neural network model, the convolutional
neural network (CNN), has also been considered in our work. In
previous simulation experiments [26], we tested the performance
of CNN for MIMO detectors in MDM optical transmission
systems. It is well known that CNNs are inconsistent with NNs
and RNNs in the overall framework structure, hence in the
following comparisons of the performance of different layers
will be performed only between NNs and RNNs.

The performance of different neural networks using different
numbers of hidden layers and network designs is shown in Fig. 6,
when the dataset used is the one at SNR= 35. Since the behavior
of fiber is nonlinear, the bit error rate (BER) is improved with
the increase of hidden neurons. The ability to learn potential
patterns increases with the number of hidden neurons increased
as shown in Fig. 6(a). When the neural network structure is
RNN, the accuracy of training is always 100%. For RNN, the
number of epochs needed to reach the highest training accuracy
is 93 for 1 layer, 76 for 2 layers, and 27 for 3 layers, however,
after adding the adaptive algorithm CLR, the number of epochs

needed to reach the highest training accuracy is 18, 7, and 5,
respectively, which greatly accelerates the speed of convergence
and improves the efficiency significantly. The number of epochs
needed to reach the highest training accuracy after adding Step
Learning Rate and Cosine Annealing Learning Rate is 21 and 19,
respectively, which are much higher than that for CLR. On the
contrary, comparing FNN, their training number is 100, however,
their highest training accuracy is 99.92% for CLR-FNN with
three layers, which is much worse than CLR-RNN.

Comparing the BER can better show the superiority of CLR-
RNN as shown in Fig. 6(b). When the neural network has
only one layer, the number of errors for FNN is as high as
13172, however, the number of errors for CLR-RNN is only
5, with a BER equal to 10−4. When the neural network has three
layers, the CLR-RNN gives the best results, with a BER of 0, as
compared to the number of errors for RNN with 5, for FNN with
34, and for CLR-FNN with 13. For a CLR-RNN with 3 hidden
layers and 20 neurons in each hidden layer, the accuracy is 100%
for both training and testing, which fully meets the requirements
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of the MIMO detection algorithm. Thus, it seems that the RNN
is much better than the traditional FNN, and the addition of the
algorithm of adaptive learning rate CLR plays a crucial role in the
MIMO detection of WDM-MDM optical transmission systems.
Due to the drastic reduction in the number of epochs needed
to reach the highest training accuracy, it can greatly reduce the
training time and improve the convergence speed.

The model was trained several times at different SNRs to test
its generality and its BER was compared with those of several
detection algorithms. Specifically, we used white noise with
additive noise of 0 mean and SNR ranging from 5–35. We used
not only the previously mentioned FNN and CNN but also two
common conventional detection algorithms, Zero Force (ZF)
[27] and Minimum Mean Square Error (MMSE) [28], in our
comparison tests. ZF is a linear signal detection algorithm that
treats the bit stream emitted by the target transmitting antenna as
useful and the bit stream emitted by other transmitting antennas
as disturbing. The core concept is to use matrix operations
to demodulate the signal and remove interference. Since ZF
detection only considers the removal of interference between
antennas and does not take into account the effect of additive
noise, the recovered signal contains a large amount of enhance-
ment noise. When the SNR is low, the detection performance
decreases sharply. In order to make up for the shortcomings of
the ZF algorithm, the MMSE detection algorithm is improved
on the basis of the ZF algorithm, and the MMSE algorithm
also considers the additive noise interference in the transmission
process when decoupling the signal.

To perform a performance comparison between ZF, MMSE,
FNN, CNN, RNN, and our CLR-RNN, we used the same input
vectors and received vectors for constructing the test dataset to
comparatively test the performance of CLR-RNN. As the SNR
increases, the performance difference between the algorithms
gradually comes out. The algorithm performance is ranked,
and the CLR-RNN algorithm has the best performance, RNN
is second best, CNN and FNN follows, and finally, MMSE is
slightly better than ZF. The results are shown in Fig. 7.

The results show that the CLR-RNN is theoretically optimal
and has better performance than the traditional algorithm. It can
be found that the neural networks detection algorithm is sensitive
to the SNR and cannot maintain a very low BER in high noise
channels, but it has a very low BER or even no BER in low noise
channels, and its performance is much better than the traditional
detection algorithm. At SNR of 30-35, the CLR-RNN has a BER
of 0, which achieves the ideal BER for QPSK. When the SNR
is 5, the BER of ZF and MMSE detection algorithms are the
same, and the BER of FNN, CNN, RNN, and CLR-RNN are
lower than them. When the SNR is more than 10, the BER of
the machine learning algorithm starts to decrease and gradually
distances itself from the ZF and MMSE detection algorithms.
When the SNR is about 5, the advantage of the CLR-RNN is not
yet reflected, because the noise is large and the neural networks
algorithm learns the features incorrectly. When the SNR is
greater than 10, the neural networks algorithm outperforms the
traditional algorithm in all aspects and the BER of the CNN,
RNN and CLR-RNN algorithms decreases sharply. When the
SNR is greater than 26 and less than 35, the CLR-RNN detection

Fig. 7. BER versus SNR of different MIMO detection algorithms. In the plot
line of the CLR-CNN, the BER measured at SNR = 35 is 0. Since this is a
logarithmic scale, it is set as a null point.

Fig. 8. Average time cost of different MIMO detection algorithms. FNN
spends the least time because there are fewer parameters than CLR-RNN.

algorithm still outperforms the RNN detection algorithm. It is
worth noting that the difference in BER between the ZF and
the MMSE is always small, but it can also be seen that the
MMSE outperforms the ZF at lower SNRs. Thus, it seems that
the MIMO detection algorithm combined with neural networks
shows high performance, although this performance requires a
better channel environment.

In terms of complexity, the time consumed by the model for
each test was calculated, and the results are shown in Fig. 8. It
can be found that the average time consumed by the CLR-RNN
algorithm is 1.293s, which is slightly lower than the average time
consumed by the RNN, which is 1.322s. What is more, the time
cost of CNN was 1.603s. The time complexity is lower compared
to other traditional algorithms, while the average time consumed
by the FNN algorithm, which has the lowest time complexity
among the machine algorithms, is 1.079s. As for computation



7200709 IEEE PHOTONICS JOURNAL, VOL. 16, NO. 3, JUNE 2024

complexity among these machine algorithms, their computa-
tional parameters are as follows: numparas(FNN) = 1004,
numparas(RNN) = 1460, numparas(CNN) = 208180. It
can be seen that the total number of computational parameters
of FNN is less than that of RNN, so the computation takes less
time. The computation time of CLR-RNN is less than that of
RNN, however, the computational parameters of their networks
are the same. The comparison of Figs. 6 and 7 shows that the
computational power of FNN is inferior to that of RNN and
CLR-RNN. Therefore, it is acceptable to get higher computa-
tional accuracy at the expense of a small computational time.
After calculation, the time complexity of this algorithm is 56.6%
lower than the MMSE algorithm. The time complexity of deep
learning depends on the batch size at the time of testing, and the
value of the batch size can be appropriately adjusted to a larger
size if a higher processing speed is required.

From the above simulation results, it is easy to see that the
algorithm is superior to other algorithms in all tests even under
poor channel conditions, and its BER performance is superior
to other algorithms we mentioned under better channel condi-
tions. In addition to these advantages, the end-to-end properties
of the MIMO detection algorithm based on adaptive learning
CLR-RNN significantly reduce the signal detection complexity
and enhance the robustness while improving the system per-
formance. In conclusion, the machine learning-based MIMO
detection algorithm proposed in this paper can be applied to
optical communication systems and has the advantages of high
performance and low complexity that other existing algorithms
do not have.

V. CONCLUSION

In this paper, we study the application of machine learning-
based MIMO signal detection technology in hybrid WDM and
MDM optical communication systems, propose an RNN based
on an adaptive learning rate optimization algorithm, and intro-
duce the basic principle of the algorithm and the simulation and
testing process in detail. The results shown in this paper pro-
vide a new method for novel MIMO detection in WDM-MDM
optical transmission systems. Our results can be considered as
an achievement in the use of neural networks for MIMO optical
communication systems.

Considering the many defects of traditional detection algo-
rithms, it is difficult to meet the requirements of high preci-
sion and low complexity for optical communication. In this
paper, some existing traditional MIMO detection algorithms
are briefly summarized and applied to the WDM-MDM optical
communication system proposed here. The performance and
complexity of these algorithms are analyzed and compared, and
the algorithm proposed in this paper can solve the problems
of traditional MIMO detection algorithms. For the trained and
tested signals of the WDM-MDM optical transmission system,
the detection accuracy can reach 100% and the BER can reach
0, and its performance reaches the level of ideal QPSK. The
above results clearly show that the performance of CLR-RNN
can reach very high levels and provide better results compared
to existing systems.
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