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Instantaneous Frequency Estimation of Radio
Frequency Signal Based on Rydberg Atomic Receiver

Guanyu Chen , Cheng Wang , Bin Yang , and Tiantian Chen

Abstract—Rydberg atom receiver attracts much research in-
terest for promising applications in communications and sensing.
Generally, Rydberg atomic receiver is utilized with microwave
frequency comb (MFC) to expand its detectable frequency range.
MFC consists of a set of equally spaced discrete frequency lines,
resembling a comb in frequency space. In such receives, the mixing
of RF signal and its closest MFC component excites the atoms
into the desired Rydberg state. Since the mixing rather than RF
signal is detected, there exists inevitable ambiguity of frequency
estimation. In this paper, we provide a novel frequency ambiguity
resolution based on improved Chinese remainder theorem (I-CRT).
It realizes the instantaneous frequency estimation of RF signal
with the MFC-based Rydberg atomic receiver. The effectiveness
of proposed resolution in this paper is verified by both simulation
experiments and theoretical analysis.

Index Terms—Rydberg atomic receiver, microwave frequency
comb, Chinese remainder theorem, instantaneous frequency
estimation.

I. INTRODUCTION

THE RF signal detection has a wide range of applica-
tions in communication, navigation, radar, electromag-

netic spectrum monitoring, and aerospace fields. Limited by
Johnson-Nyquist noise and the influence of antenna size on
radiation efficiency [1], [2], [3], it is difficult to achieve wide-
band signal detection for electronic system. Rydberg atoms,
with one highly excited, nearly ionized electron, are highly
sensitive to applied electromagnetic field [4], [5], [6]. In recent
years, significant progress has been made in electromagnetic
perception based on Rydberg atomic receiver with a record
sensitivity down to 55 nV · cm−1 ·Hz−1/2 [7]. The Rydberg
atomic receiver can also detect frequency, phase, polarization,
and direction of arrival of RF signals [8], [9], [10], [11]. There-
fore, it has the potential to become the next generation of radio
receiver.

Limited by the relaxation time of electromagnetically induced
transparency (EIT) phenomenon, the Rydberg atomic receiver
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has about 10 MHz instantaneous bandwidth [12] which is related
to the natural lifetime of Rydberg atomic energy level. Compared
with traditional receivers, limited instantaneous bandwidth is
the main disadvantage of Rydberg atomic receiver. Based on
superheterodyne technique, Zhang [13] used the microwave
frequency comb (MFC) instead of the single-frequency local
oscillator field to break through the limitation of EIT relaxation
time and realize real-time frequency measurement with a range
of 125 MHz. The MFC significantly expands the instantaneous
bandwidth of Rydberg atomic receiver.

MFC has multiple equally spaced discrete frequency lines,
resembling a comb in frequency space. Using MFC, the mixing
of RF signal with its closest MFC component would be detected
by Rydberg atoms. Hence, there exists inevitable ambiguity of
instantaneous frequency estimation for MFC-based Rydberg
atomic receivers. To solve the problem, additional MFC is
introduced in [13] to provide frequency measurement without
ambiguity. However, this method requires RF signal lies in
certain frequency range and has limited estimation accuracy.
Moreover, the restrictions of MFC lines and detectable RF signal
have not been well explained yet.

In this paper, the instantaneous frequency estimation is stud-
ied based on MFC-based Rydberg atomic receiver. Specifically,
a frequency ambiguity resolution with improved Chinese re-
mainder theorem (I-CRT) is proposed. CRT is to reconstruct a
single integer by its remainders modulo several moduli. It has
been widely studied and applied in frequency estimation, phase
unwrapping and error code correcting codes [14], [15], [16],
[17], [18], [19], [20], [21]. According to MFC structure, first
it requires to determine which side from a particular MFC line
the mixing signal is located at. Hence, we improve traditional
CRT and propose improved Chinese remainder theorem (I-
CRT). The I-CRT obtains unambiguous instantaneous frequency
estimation with limited computation burden. Both simulation
experiments and theoretical analysis confirm its effectiveness.
The upper bound of frequency that the RF frequency can be
uniquely obtained from MFC-based receivers are provided in
addition.

The remaining content is organized as follows. In Section II,
we first introduce the measurement principle of the MFC-
based Rydberg atomic receiver and give the formulation of
frequency estimation. In Section III, we propose I-CRT and
derive its upper bound of frequency estimation. In Section IV,
we present simulation results to verify the performance of the
proposed algorithm. Finally, in Section V, we conclude the
study.
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Fig. 1. (a) Schematic diagram of four energy levels. (b) Schematic diagram of
experimental equipment for a Rydberg atomic receiver. (c) RF signal fs measured
by MFC.

II. PROBLEM STATEMENT AND MATHEMATICAL FORMULATION

A. The Measurement Principle of Rydberg Atomic Receiver

In order to excite the Rydberg atoms, the commonly used
alkali metal atoms are cesium (Cs) atoms and rubidium (Rb)
atoms. This paper takes Cs atom as an example to intro-
duce the measurement principle of Rydberg atomic receiver.
The energy level diagram of Cs atom and the schematic dia-
gram of the experimental equipment are depicted in Fig. 1(a)
and (b), respectively. In Cs atom vapor cell, probe
(λp= 852 nm) and coupling lasers (λc = 510 nm) are counter-
propagating [22], [23], [24], [25]. The 852 nm probe laser is
frequency-stabilized to |6S1/2〉 → |6P3/2〉 transition. The Cs
atoms transit from the ground state to an excited state. The 510
nm coupling laser is resonant with the transition |6P3/2〉 →
|47S1/2〉. The cesium atoms are excited to the Rydberg state,
which forms a Rydberg EIT system. A strong MFC field EMFC

is set as a local oscillator field, and a RF signal field ES couples
the two Rydberg states |3〉 → |4〉. The probe light is detected by
photodetector, and analyzed via an oscilloscope and a spectrum

analyzer.EMFC andES are combined through a resistance power
divider, and transmitted to the vapor cell by a horn antenna.

In [9], the single-frequency local oscillator field
EL = E ′

L cos(2πfLt+ φL) and RF signal field ES =
E′

S cos(2πfSt+ φS). E ′
L (E ′

S), fL (fS), φL (φS) denote
the amplitude, frequency and phase of local field (signal field)
respectively. Rydberg atoms have extreme sensitivity to RF
fields due to their large dipole moments; RF signal field is small
compared to the LO field E′

S <<E ′
L. Total electric field Eatom

in the vapor cell can be expressed as (1).

|Eatom| =
√

E ′
L
2 + E ′

S
2
+ 2E ′

LE
′
S cos (2πΔft+Δφ)

≈ E ′
L + E ′

S cos (2πΔft+Δφ) (1)

where Δf = |fL − fS|, Δφ = |φL − φS|. As limited by the
evolution time to reach the steady state, the instantaneous band-
width of the Rydberg atomic receiver is less than 10 MHz [12],
while the MFC method could expand instantaneous working
bandwidth. As shown in Fig. 1(c), MFC field consists of multi-
ple phase-stabilized frequency lines with equidistant frequency
intervals. The frequency lines are different microwave fields with
approximately equal power and different frequencies [26], [27].

In this paper, the single local oscillator field EL in (1) is
replaced by an MFC field EMFC. In Fig. 1(c), f0 is the MFC
offset frequency and the fM is MFC frequency interval. ELi

denotes the electric field strength of the i th MFC comb line,
ELi

= E ′
L cos(2πfit+ φi), and fi = f0 + (i− 1)fM. Then,

the electric field strength of the MFC is denoted as EMFC =∑
i E

′
L cos(2πfit+ φi). Thus, the electric field strengths of the

Rydberg atoms when they receive EMFC and ES is as follows.

|Eatom|≈
√
NCE

′
L+

1√
NC

E ′
S cos (2πΔfjt+Δφj) , fR=Δfj

(2)

where NC denotes the total number of MFC comb lines. The
subscript j represents the MFC comb line number that generates
the mixing frequency response with the RF signal field, and the
frequency of this comb line is the closet to RF signal frequency.

The transmission coefficient Tprobe of the probe light passing
through the atomic vapor cell is a function of |Eatom|, Tprobe ∝
|Eatom|2 [9]. From the detected probe optical spectrum varies
with the mixing frequencyΔfj , then the mixing frequency fR =
Δfj can be measured. The fR is an absolute value, and the
positive-negative of fR can’t be directly judged.

The relationship between the frequency of RF signal fS and
the MFC offset frequency f0 and the MFC frequency interval
fM is shown below

fS = f0 + nfM + bfR (3)

where n is the mode-order number of RF signal field’s closet
MFC comb line, b takes the value of ±1. Since, n and b are
unknown integers, fS can’t be determined by only one MFC. We
need more than two MFCs to determine the RF signal frequency.
In Fig. 2, three MFCs are used to measure fS.
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Fig. 2. RF signal fs is measured by 3 MFCs.

B. Constructing System of Simultaneous Congruences for
Frequency Estimation

It can be seen from the above that the frequency of RF signal
field fS is measured by using K MFCs (K ≥ 2) with the same
number of comb line, the same offset frequency and different
frequency intervals. In the MFC measurement range, combined
with Fig. 2 and (3), the mixing frequency fR1, fR2, . . . , fRK

measured by K MFCs is related to RF signal frequency by the
following system of simultaneous congruences⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f̂S1 = f0 + n1fM1 + b1fR1

f̂S2 = f0 + n2fM2 + b2fR2

...
f̂Sk = f0 + nkfMk + bkfRk

...
f̂SK = f0 + nKfMK + bKfRK

f̂S =
1

K

(
f̂S1 + f̂S2 + . . .+ f̂Sk + . . .+ f̂SK

)

s.t. 0 ≤ fRk <
fMk

2

fM1 < fM2 . . . < fMK

nk = 0, 1, 2, . . . , NC − 1

bk = ±1

k = 1, 2, . . . ,K (4)

where nk is the mode-order number of RF signal field’s closet
comb line in kth microwave frequency comb MFCk, fMk is
the frequency interval of MFCk, fRk is the mixing frequency
measured by MFCk, and f̂Sk is the estimated frequency of RF
signal field measured by MFCk. The fRk has the problem of
frequency ambiguity, because, bk takes the value of ±1.

Here,nk and bk are unknown integers, which need to be solved
by (4), nk and bk affect the accuracy of frequency estimation
of the Rydberg atomic receiver. Next, we introduce how to

disambiguate fRk and estimate RF signal frequency form several
fRk (k = 1, 2, . . . ,K).

III. FREQUENCY ESTIMATION METHOD BASED ON

I-CRT ALGORITHM

CRT algorithm can be used to solve system of simultaneous
congruences. Assume that the integers m1,m2 . . . ,mK are mu-
tually prime, then for any integer a1, a2 . . . , aK , the following
system of equations ⎧⎪⎪⎨

⎪⎪⎩
x ≡ a1 (modm1)
x ≡ a2 (modm2)
. . .
x ≡ aK (modmK)

(5)

exists as an integer solution,

x ≡
∑K

i=1
ai

Y

mi
zi (modY ) (6)

where Y =
∏n

i=1 mi; zi = [(Y /mi)
−1]mi

represents (Y /mi) ·
zi ≡ 1(modmi). Here is an example of traditional CRT, find an
integer X that satisfies the conditions of dividing by 3 with a
remainder of 2, dividing by 5 with a remainder of 3, and dividing
by 7 with a remainder of 2, namely⎧⎨

⎩
X ≡ 2 (mod3)
X ≡ 3 (mod5)
X ≡ 2 (mod7)

(7)

from (6), X = (70× 2 + 21× 3 + 15× 2) mod 105 = 23.
The traditional CRT is not robust, because X cannot be accu-
rately reconstructed even when the remainder errors are small.
And, m1,m2 . . . ,mK should be mutually prime. traditional
CRT. The application of traditional CRT algorithm is limited.
With the development of CRT algorithm, CRT algorithm has
now been applied in many fields.

In [14], [15], [16], [17], the problem of subsampling signal
processing can also be expressed by system of simultaneous
congruences, and solved by CRT algorithm. CRT algorithm is
widely used in subsampling signal processing, phase unwrap-
ping, pulsed doppler radar and other fields [18], [19], [20], [21].
Only when ambiguity of fRk be resolved in advance, can we use
CRT algorithm to solve (4).

In order to solve (4), this paper proposes a frequency ambigu-
ity resolution based on I-CRT to disambiguate fRk and estimate
RF signal frequency. Equation (4) can be transformed into the
following

f̂Sk − f0 ≡ bkfRk mod fMk

or f̂Sk − f0 = nkfMk + bkfRk, (k = 1, 2, . . . ,K). (8)

A. Theorem and Lemmas

Let M denote the greatest common divisor of all fMk such
that

fMk = MΓk, 1 ≤ k ≤ K. (9)
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All Γk are mutually prime and the greatest common divisor
of any two Γk is 1.

γk = Γ1 . . .Γk−1Γk+1 . . .ΓK (10)

where γ1 = Γ2 . . .ΓK and γK = Γ1 . . .ΓK−1. And fM1 <
fM2 . . . < fMK , so Γ1 < Γ2 < . . .ΓK . For each k, define Sk

as

Sk =

{
(n̄1, n̄k)=argmin n̂1=0,1,...,γ1−1

n̂k=0,1,...,γk−1
|n̂kfMk

+bkfRk−n̂1fM1−b1fR1|
}

(11)

the set of all the first element n̄1 of the pairs (n̄1, n̄k) in Sk is
denoted as Sk,1.

Sk,1 = {n̄1 |(n̄1, n̄k) ∈ Sk} (12)

next, define S

S =
K∩

k=2
Sk,1. (13)

Then, several theorems and lemmas related to algorithm solv-
ing process are introduced.

Theorem 1: If all Γk (1 ≤ k ≤ K) are mutually prime,

0 ≤ f̂Sk − f0 < lcm(fM1, fM2, . . . , fMK)

=
1

MK−1
fM1fM2 . . . fMK (14)

and the error τ of fRk satisfies τ < M
4 .

Then, there exists a unique element n1 in the set S, S =
{n1}, and (n1, n̄k) ∈ Sk implies n̄k = nk (2 ≤ k ≤ K). Then
nk (1 ≤ k ≤ K) is a correct solution in (4). Theorem 1 is proved
in Appendix A.

Lemma 1: Assume that all the conditions in Theorem 1 hold,
and letnk (1 ≤ k ≤ K) be a solution of (4). Then (n̄1, n̄k) ∈ Sk

if and only if n̄1 = n1 +mkΓk and n̄k = nk +mkΓk for some
integer mk exists and 0 ≤ n̄k ≤ γk − 1 (1 ≤ k ≤ K). Lemma
1 is proved in Appendix B.

Lemma 2: Under the conditions of Theorem 1, let

Ωk = {(n̂1, n̂k) |0 ≤ n̂1 ≤ Γk − 1 , 0 ≤ n̂k ≤ γk − 1}
∪ {(n̂1, n̂k) |0 ≤ n̂k ≤ Γ1 − 1 , 0 ≤ n̂1 ≤ γ1 − 1} .

(15)

Then, for any element (n̄1, n̄k) ∈ Sk, there exists an integer
mk, for example

(n̄1 +mkΓk, n̄k +mkΓ1) ∈ Ωk ∩ Sk (16)

This lemma indicates that if we search (n̄1, n̄k) within the
set Ωk, at least one element belonging to set Ωk can be found.
Lemma 2 is proved in Appendix C.

Lemma 3: Let (n̄1, n̄k) ∈ Sk, if n̄1 or n̄k in (n̄1, n̄k) is
determined, then the corresponding n̄k or n̄1 is unique. Lemma
3 is proved in Appendix D.

B. Solution Process of I-CRT Algorithm

Based on the above theorem and lemma, (4) is solved as
follows.

TABLE I
FOUR SITUATIONS OF n̂k(n̂1)

First find an element (n̄1,k, n̄k) ∈ Sk (2 ≤ k ≤ K). Based on
Lemma 2 we can find an element belonging to Sk in set Ωk, so
we only need to search over Ωk.

Search for all integers n̂1 from 0 to Γk − 1. According to
Lemma 3, when n̂1 is determined, its corresponding n̂k in Si is
determined by the following equation,

n̂k ∈
(
Γ1

Γk
n̂1 +

b1fR1

MΓk
− bkfRk

MΓk
− Γ1

2Γk
,
Γ1

Γk
n̂1

+
b1fR1

MΓk
− bkfRk

MΓk
+

Γ1

2Γk

)
(17)

and the value of n̂k is taken as an integer within the interval
range of (17), and denoted by n̂k = n̂k(n̂1).

In (17), due to the ambiguity of mixing frequency, the values
of b1 and bk are unknown, b1 and bk represent the positive-
negative values of fR1 and fRk, and take the value of ±1. b1 and
bk have a total of four different combinations of values. Thus,
according to the values of b1 and bk, n̂k(n̂1) has four different
situations as shown in Table I.
n̂1 takes values from 0 toΓk − 1, n̂k take values from n̂ka(n̂1)

to n̂kd(n̂1), and from the following equation,

Sk =

{
(n̄1, n̄k) = argmin n̂1=0,1,...,Γk−1

n̂k=n̂ka,n̂kb,n̂kc,n̂kd

|n̂kfMk

+bkfRk − n̂1fM1 − b1fR1|
}

(18)

search for the pair (n̂1, n̂k(n̂1)) that minimizes (18), and the
corresponding function value is recorded as T1.

Next search for all integers n̂k from 0 to Γ1 − 1. According
to Lemma 3, when n̂k is determined, its corresponding n̂1 in Si

is determined by the following equation and denoted by n̂1 =
n̂1(n̂k).

n̂1 ∈
(
Γk

Γ1
n̂k +

bkfRk

MΓ1
− b1fR1

MΓ1
− 1

2
,
Γk

Γ1
n̂k

+
bkfRk

MΓ1
− b1fR1

MΓ1
+

1

2

)
. (19)

Similarly, change the value range of variables n̂1 and n̂k

in (18), n̂1 = n̂1a, n̂1b, n̂1c, n̂1d, n̂k = 0, 1, . . . ,Γ1 − 1, and
search for the pair (n̂1(n̂k), n̂k) that minimizes (18), and the
corresponding function value is recorded as T2.

Find the minimum value of two minimums T1, T2. The
(n̂1, n̂k) corresponding to the minimum value is the (n̄1,k, n̄k) ∈
Sk being searched for, and its corresponding b1, bk represents
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positivity or negativity of fR1, fRk. The total number of searches
is 4(Γ1 + Γi).

Find one element (n̄1,k, n̄k) ∈ Sk for each k with 2 ≤ k ≤ K.
Next, determine the mode-order numbers nk (2 ≤ k ≤ K). By
Lemma 1, n̄1,k and n1 have the same remainder, remainder is
denoted by ξ1,k.

n̄1,k = ξ1,k mod Γk, n1 = ξ1,k mod Γk. (20)

Thus, for each k (2 ≤ k ≤ K), from n̄1,k we get the remain-
der ξ1,k ofn1 moduloΓk. There is a total ofK − 1 remainders of
n1 modulo Γk. Thus n1 can be determined by these remainders

n1 =
K∑

k=2

ξ1,kdk
γ1
Γk

(21)

where dk is determined by the following equation

dk
γ1
Γk

= 1 mod Γk. (22)

When n1 has been determined in the above way, other mode-
order numbersnk can then be obtained. For each k with 2 ≤ k ≤
K, by Lemma 1, we have (nk − n̄k)/Γ1 = (n1 − n̄1,k)Γk.

Furthermore,

nk = n̄k +
Γk

Γ1
(n1 − n̄1,k) . (23)

After all mode-order numbers nk (2 ≤ k ≤ K) are deter-
mined, the instantaneous frequency of RF signal field can be
determined by the following equation.

f̂S =

[
1

K

K∑
k=1

f̂Sk

]

=

[
1

K

K∑
k=1

(f0 + nkfMk + bkfRk)

]
. (24)

f̂S is the solution of (4).
The pseudo-code of the solving algorithm process in this

paper is as follows. And, the block-diagram is shown in Fig. 3.
CRT algorithm is to reconstruct a single integer by its remain-

ders modulo several moduli. The single integer cannot be accu-
rately reconstructed when the remainder errors are larger than
remainder redundancy. In this paper, the mixing frequency fR
measured by MFC is an absolute value, and the positive-negative
of fR can’t be directly judged. The uncertainty of the frequency
remainder fR exceeds the remainder redundancy (M/4) of the
CRT algorithm and reduces the accuracy of frequency estima-
tion. The I-CRT algorithm proposed in this paper can determine
the positive and negative of fR, that is, the value of bk in (4),
and then realize the accurate estimation of signal frequency.

C. Upper Bound on Frequency Estimation for
I-CRT Algorithm

Next, we will analyze the upper bound on frequency esti-
mation for I-CRT algorithm. RF signal field is measured by K
MFCs with frequency interval fM1, . . . , fMK . The relationship
between the frequency estimation upper fmax of the I-CRT

Fig. 3. A block-diagram of the solving algorithm.

algorithm and fM1, fM2, . . . , fMK is as follows

fmax = f0

+

min
I,J

{
LCM

(
fSet1
M1 , . . . , fSet1

MI

)
+ LCM

(
fSet2
M1 , . . . , fSet2

MJ

)}
2

I + J = K

I, J = 1, . . . ,K. (25)

In the above equation, divides fM1, . . . , fMK into
two frequency sets Set1 and Set2, {fM1, . . . , fMK} =
{{fSet1

M1 , . . . , fSet1
MI } ∪ {fSet2

M1 , . . . , fSet2
MJ }}. Only when the

frequency of RF signal is lower than fmax, can the Rydberg
atomic receiver accurately estimate the frequency of the applied
RF signal field. The proof of (25) is as follows.

Assume that there exist two RF signal fields with frequency
fS and f ′

S (f0 < fs < f ′
s < fmax).{fR1, fR2, . . . , fRK} and

{f ′
R1, f

′
R2, . . . , f

′
RK} are mixing frequencies of the two sig-

nal fields measured by same MFCs, respectively. The dis-
tance between mixing frequencies of fS and f ′

S is defined as
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Algorithm 1: Instantaneous Frequency Estimation Based on
I-CRT Algorithm.

Input: RF signal field is measured by K MFCs with
frequency interval {fM1, fM2, . . . , fMK} to obtain the
mixing frequency {fR1, fR2, . . . , fRK}.

Output: Instantaneous RF signal frequency f̂S .
1: for each k ∈ [1,K] do
2: for each n̂1 ∈ [0,Γk − 1] do
3: From Algorithm 2. mixing frequency positive and

negative de-ambiguating algorithm, we get
n̂k(n̂1), b1, bk

4: Calculate the value of (18) based on
(n̂1, n̂k(n̂1), b1, bk) and record the value in the set
T1_K

5: end for
6: T1 = minT1_K

7: for each n̂k ∈ [0,Γ1 − 1] do
8: From Algorithm 2. mixing frequency

de-ambiguating algorithm, we get n̂1(n̂k), b1, bk
9: Calculate the value of (18) based on

(n̂1(n̂k), n̂k, b1, bk) and record the value in the set
TK_1

10: end for
11: T2 = minTK_1

12: if T1 ≤ T2

(n̄1,k, n̄k) = (n̂1, n̂k(n̂1))
13: else

(n̄1,k, n̄k) = (n̂1(n̂k), n̂k)
14: end if
15: bk corresponding to the minimum of T1 and T2

determines the positive-negative of fRK

16: end for
17: according to (n̄1,k, n̄k), ξ1,k is calculated by (20)

18: calculate n1 =
K∑

k=2

ξ1,kdk
γ1

Γk

19: calculate f̂S =

[
1
K

K∑
k=1

(f0 + nkfMk + bkfRk)

]
20: return f̂S

follows

D (fS, f
′
S) = (fR1 − f ′

R1)
2
+ (fR2 − f ′

R2)
2

+ . . .+ (fRK − f ′
RK)

2
. (26)

RF signal frequency fS is uniquely determined from
{fR1, fR2, . . . , fRK}, which needs to satisfy any f ′

S �= fS ∈
[f0, fmax), {fR1, fR2, . . . , fRK} �= {f ′

R1, f
′
R2, . . . , f

′
RK}. In

order to satisfy this condition, the distance between mixing fre-
quencies of fS and f ′

S is greater than zero, min(D(fS, f
′
S)) =

Dmin > 0. The mixing frequency has a problem of frequency
ambiguity, bk take the value of ±1. Therefore, there are four
combinations between fRk and f ′

Rk. These combinations can
be divided into two groups. The first group, fRk and f ′

Rk have
different positive-negative sign. The second group, fRk and f ′

Rk

have same positive-negative sign.

Algorithm 2: Mixing Frequency Disambiguating.
Input: n̂1

Output: n̂k(n̂1), b1, bk corresponding to minimum
function value of (18)

1: for each b1 ∈ {−1, 1} do
2: for each bk ∈ {−1, 1} do
3: find n̂k by (14)
4: Calculate the function value of (18) by

n̂1, n̂k, b1, bk
5: end for
6: end for
7: Find the minimum of four function values
8: return n̂k(n̂1), b1, bk corresponding to the minimum

function value of (18)
Input: n̂k

Output: minimum function value corresponding ton̂1(n̂k),
b1, bk

Same process as above

When fRk and f ′
Rk have different positive-negative sign

(fRk − f ′
Rk)

2

=
(
(−1)b ((fS − f0)− nkfMk)− (−1)b+1

((f ′
S − f0)− n′

kfMk))
2

= ((fS − f0) + (f ′
S − f0) + (−nk − n′

k) fMk)
2

= (f + f ′+ΛkfMk)
2

f = fS − f0; f
′ = f ′

S − f0; Λk = −nk − n′
k; b = 0, 1. (27)

When fRk and f ′
Rk have same positive-negative sign

(fRk − f ′
Rk)

2

=
(
(−1)b ((fS − f0)− nkfMk)− (−1)b

((f ′
S − f0)− n′

kfMk))
2

= ((fS − f0)− (f ′
S − f0) + (−nk + n′

k) fMk)
2

= (f − f ′ +ΔkfMk)
2

f = fS−f0; f
′ = f ′

S − f0; Δk = −nk+n′
k; b = 0, 1. (28)

From (27) and (28) we can divide the mixing fre-
quency difference fRk − f ′

Rk, k ∈ [1,K] into two groups.
The first group contains I frequencies whose frequency dif-
ference is equal to f + f ′+ΛkfMk. The second group con-
tains J frequencies whose frequency difference is equal to
f − f ′ +ΔkfMk, I + J = K. fM1, . . . , fMK is also divided
into two frequency sets, Set1 and Set2, {fM1, . . . , fMK} =
{{fSet1

M1 , . . . , fSet1
MI } ∪ {fSet2

M1 , . . . , fSet2
MJ }}. The distance be-

tween f and f ′ is defined as follows

D (f, f ′)=
(
f+f ′+Λ1f

Set1
M1

)2
+ . . .+

(
f + f ′+ΛJf

Set1
MI

)2
+
(
f − f ′ +Δ1f

Set2
M1

)2
+ . . .+

(
f − f ′ +Δ1f

Set2
MJ

)2
. (29)
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In order to maximize the minimum distance D(f, f ′), the
frequency interval fMk should be selected in a way thatD(f, f ′)
should be maximized as much as possible. In order to find a
closed-form solution of (29), two variables X = f + f ′ and
Y = f − f ′ are introduced. The difference operation is per-
formed onD(X,Y ), ∂

∂XD(X,Y ) = 0, ∂
∂Y D(X,Y ) = 0. Then

X and Y are obtained as follows⎧⎨
⎩
X = −Λ1f

Set1
M1 +Λ2f

Set1
M2 +...+ΛIf

Set1
MI

I

Y = −Δ1f
Set2
M1 +Δ2f

Set2
M2 +...+ΔJf

Set2
MJ

J .
(30)

The values of f and f ′, f = (X+Y )
2 , f ′ = (X−Y )

2 , that mini-
mize the distance D(f, f ′) can thus be obtained as follows⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f=

(
−Λ1fSet1

M1
+Λ2fSet1

M2
+...+ΛIfSet1

MI
I −Δ1fSet2

M1
+Δ2fSet2

M2
+...+ΔJfSet2

MJ
J

)

2

f ′=

(
−Λ1fSet1

M1
+Λ2fSet1

M2
+...+ΛIfSet1

MI
I +

Δ1fSet2
M1

+Δ2fSet2
M2

+...+ΔJfSet2
MJ

J

)

2 .

(31)

By substitution (31) in (29) and after some manipulation (32)
is obtained. After maximizing the distance between Λif

Set1
Mi

and Δjf
Set2
Mj , the minimum distance Dmin can be obtained by

searching for different I and J values in (32).
We should find the minimum value of f ′, where

min(D(f, f ′)) = Dmin = 0, which implies that f ′ is incorrectly
determined as f ; for this purpose, first, we find Λif

Set1
Mi and

Δjf
Set2
Mj that satisfies the condition Dmin = 0, and then, by

substituting the values obtained in (31), we find the minimum
value of f ′.

Dmin=

{(
Λ1f

Set1
M1 − Λ2f

Set1
M2

)2
+ . . .+

(
Λ1f

Set1
M1 −ΛIf

Set1
MI

)2
I

+

(
Λ2f

Set1
M2 − Λ3f

Set1
M3

)2
+ . . .+

(
Λ2f

Set1
M2 − ΛIf

Set1
MI

)2
I

+

. . .+

(
ΛI−1f

Set1
MI−1 − ΛIf

Set1
MI

)2
I

}

+

{(
Δ1f

Set2
M1 −Δ2f

Set2
M2

)2
+ . . .+

(
Δ1f

Set2
M1 −ΔJf

Set2
MJ

)2
J

+

(
Δ2f

Set2
M2 −Δ3f

Set2
M3

)2
+ . . .+

(
Δ2f

Set2
M2 −ΔJf

Set2
MJ

)2
J

+

. . .+

(
ΔJ−1f

Set2
MJ−1 −ΔJf

Set2
MJ

)2
J

}
. (32)

To determine the minimum values of Λif
Set1
Mi and Δjf

Set2
Mj

that satisfy Dmin = 0, we introduce the following definition:
Definition 1: The Least Common Multiple (LCM) of

a1, a2, . . . , aK is defined as LCM(a1, a2, . . . , aK) then
c1a1 = c2a2 = . . . = cKaK = LCM(a1, a2, . . . , aK) where
c1, c2, . . . , cK is a group of integers.

To complete the proof of (25), it is necessary to prove this point
Dmin �= 0. According to (32), when all terms in (32) are zero, it
follows that Dmin = 0, that is Λcf

Set1
Mc − Λdf

Set1
Md = 0, where

c �= d, c ∈ [1, I], d ∈ [1, I]; Δef
Set2
Me −Δgf

Set2
Mf , where e �=

g, e ∈ [1, J ], g ∈ [1, I]. That is Λ1f
Set1
M1 = Λ2f

Set1
M2 = . . . =

ΛIf
Set1
MI , Δ1f

Set2
M1 = Δ2f

Set2
M2 = . . . = ΔJf

Set2
MJ .

According to Definition 1

Λ1f
Set1
M1 = Λ2f

Set1
M2 = . . . = ΛIf

Set1
MI

= LCM
(
fSet1
M1 , . . . , fSet1

MI

)
Δ1f

Set2
M1 = Δ2f

Set2
M2 = . . . = ΔJf

Set2
MJ

= LCM
(
fSet2
M1 , . . . , fSet2

MJ

)
. (33)

Using the obtained minimum values of Λif
Set1
Mi and Δjf

Set2
Mj ,

we should find the minimum value of f ′. Based on different
values of I and J , we consider three different cases:

When I �= 0 and J �= K. since we assume f < f ′, substi-
tuting (33) into (31), the resulting f ′(f ′

min) may be incorrectly
determined as f(fmin). Therefore, the minimum frequency fmin

and its ambiguous frequency f ′
min can be obtained by the

following equation.

f ′
min =

LCM
(
fSet1
M1 , . . . , fSet1

MI

)
+ LCM

(
fSet2
M1 , . . . , fSet2

MJ

)
2

.

(34)

When I = 0 and J = K. According to (33) and (30), we have
Y = f − f ′ = −LCM(fSet2

M1 , . . . , fSet2
MJ ), therefore, the mini-

mum value f ′(f ′
min) is valid only when f = 0.

f ′
min = LCM

(
fSet2
M1 , . . . , fSet2

MJ

)
= LCM (fM1, . . . , fMK) .

(35)

When I = K and J = 0. Then, according to (33) and (30),
we have X = f − f ′ = −LCM(fSet2

M1 , . . . , fSet2
MJ ).

Hence f ′ = LCM(fSet1
M1 , . . . , fSet1

MI )− f . Sincef ≤ f ′, then
the least possible value satisfying f ′ = LCM(fSet1

M1 , . . . , fSet1
MI )

−f is realizable when f = f ′
min. In this case:

f ′
min =

LCM
(
fSet1
M1 , . . . , fSet1

MI

)
2

=
LCM (fM1, . . . , fMK)

2
.

(36)

In summary, from (34)–(36), the frequency f ′
min in (34) is

the minimum of the frequency f ′
min derived from (34)–(36).

Therefore, in order to estimate RF signal frequency fS from
fR1, fR2, . . . , fRK , fS should be less than the upper frequency
limit fmax, fmax = f ′

min + f0, as shown in (25).
The proposed algorithm greatly expands the instantaneous

bandwidth of the Rydberg atomic receiver. For example, us-
ing 3 MFCs, set the frequency interval of MFCs:fM1 =
2.78 MHz, fM2 = 3.24 MHz, fM3 = 4.12 MHz. And, fmax =
168.25 MHz calculated by (25), which is much larger than
the instantaneous bandwidth of 10 MHz, breaking the limit of
atomic relaxation time. From (25), it can be seen that the upper
limit of RF signal frequency estimation can be improved by
setting the frequency interval of MFC reasonably.

IV. RESULTS AND ANALYSIS

In this section, the I-CRT algorithm is verified by numerical
simulation experiments. The experiment is divided into three
parts. The first part is the performance analysis of the I-CRT
algorithm. The second part is to compare the I-CRT algorithm
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with other algorithms. The third part is the comparison of upper
bound on frequency estimation for I-CRT algorithm and other
algorithms.

In order to verify that the I-CRT algorithm proposed in this
paper can accurately estimate the instantaneous frequency of
the received RF signal from atomic receivers, the following root
mean square error (RMSE) and the probability of detection Pd

are defined to illustrate the estimation accuracy.

RMSE(fS) =

√√√√ 1

Q

q∑
q=1

(fS − f̂Sq)
2

(37)

where fS denotes RF signal frequency, f̂Sq is the estimated RF
signal frequency of qth Monte Carlo simulation, and Q is the
total number of Monte Carlo simulations. The Pd probability
of correct RF signal frequency estimation is as follows. The
probability,Pd, that RF signal frequency is estimated correctly
is defined as follows

Pd = P
(∣∣∣f̂S − fS

∣∣∣ < T
)
. (38)

In the experiment, if the absolute value of the difference
between the estimated value f̂S and the true value fS is less
than T , the estimation is correct, and T is the frequency error
threshold.

A. Performance of I-CRT Algorithm

We set up three groups of experiments, each group uses
three MFCs, frequency group 1: fM1 = 50 kHz, fM2 =
70 kHz, fM3 = 90 kHz; frequency group 2: fM1 = 1.1 MHz,
fM2 = 1.2 MHz, fM3 = 1.3 MHz; frequency group 3: fM1 =
17 MHz, fM2 = 18 MHz, fM3 = 19 MHz. In the experiment,
the measurement noises of mixing frequency fRk are indepen-
dent and identically distributed and follow a normal distribution
N(0, σ2). The measurement noise ΔR = −10 lg(σ2) [28] and
the variation range of ΔR is set to −10∼5 dB. The Monte
Carlo simulation is repeated for 1000 times at each value ofΔR.
When the difference between the f̂S and fS is in the range of
0.1 kHz, the frequency estimation is considered to be correct. In
the low frequency (LF) band (30 kHz∼300 MHz) and above, the
frequency estimation error of 0.1 kHz is acceptable for frequency
measurement in applications such as astronomy, radar detection,
wireless communication, and navigation.

In Fig. 4, as the measurement noise decreases, the experiments
with different frequency groups both can obtain Pd = 100%.
When the range of ΔR is −7 dB to −1 dB, it can be seen that
at the same noise level, the frequency interval used in frequency
group 3 is the largest and the estimation result is the best, while
the frequency interval used in frequency group 1 is the smallest
and the estimation result is the worst. The greatest common
divisor of fM1, fM2, and fM3 is M. For CRT algorithm, M/4 is
the upper limit of residual noise [28], ΔR must be less than M/4
in order to estimate fS correctly. Therefore, the greater the M,
the better the noise-robust performance of the algorithm.

Set the frequency interval of MFCs:fM1 = 50 kHz, fM2 =
70 kHz, fM3 = 90 kHz; the frequency interval in the simula-
tion experiment is {fM1, fM2, fM3} ×MN , MN ∈ [1, 150].

Fig. 4. Comparison of the probability of detection in terms of different
frequency groups.

Fig. 5. Comparison of the RMSE in terms of different measurement noises.

Under the condition of three measurement noises (ΔR =
−10 lg(σ2)=− 5.2 dB, −4.7 dB, −3.2 dB), the Monte Carlo
simulation is repeated 1000 times for each MN value. The exper-
imental RF signal frequencies under different noise conditions
for the same MN value are taken to be the same, and the RMSE
of the estimated frequency calculated by (37) is shown in Fig. 5.

In Fig. 5, the lower the measurement noise, the better the con-
vergence results obtained for the same MN. As MN increases, the
maximum common divisor M of frequency group also increases,
which increases the noise robustness of frequency estimation and
reduces the influence of noise on estimation accuracy. Therefore,
RMSE decreases with the increase of MN.

B. Multipart Figures Algorithm Performance Comparison

The I-CRT algorithm proposed in this paper is compared with
the Closed Chinese remainder theorem (C-CRT), Frequency
Band Division (FBD) algorithm [29] and the algorithm in Ref-
erence [13]. The MFC frequency interval of I-CRT algorithm,
C-CRT algorithm and FBD algorithm is set to fM1 = 3 MHz,
fM2 = 4 MHz, fM3 = 5 MHz. The MFC frequency interval
of the algorithm in Reference [13] is fM1 = 3MHz, fM2 =
2.9MHz. The measurement noise ΔR ranges from-10 dB to
15 dB, and Monte Carlo simulation is repeated 1000 times at
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Fig. 6. Comparison of the probability of detection in terms of different
algorithms.

Fig. 7. Comparison of the RMSE in terms of different algorithms.

each ΔR. When the difference between the f̂S and fS is in the
range of 0.1 kHz, the frequency estimation is considered to be
correct. ThePd, RMSE, and algorithm time consumption of four
algorithms are as follows.

In Figs. 6 and 7, with the decrease of measurement noise,
the I-CRT algorithm in this paper and the FBD algorithm can
achieve Pd = 100% and RMSE converge to the lowest value.
The proposed method achieves Pd = 100% and RMSE curve
convergence, and the corresponding noise is about 11 dB higher
than that of the FBD algorithm, indicating that I-CRT algorithm
has better noise robust performance. And in the experimental
environment of this paper, the FBD algorithm has the largest
time consumption.

As for FBD algorithm, the relationship between error bound
τ and noise variance σ2 is σ2 = τ2/3. In this paper, the abscissa
of Figs. 6 and 7 is ΔR = −10 lg(σ2), so the error bound of
the FBD algorithm is τ =

√
3 · 10− X

20 . For I-CRT algorithm,
the maximum error bound is τ = M/4, so the noise robust
performance is better than that of the FBD algorithm.

The C-CRT algorithm is also often used in the problem of
deriving the original integer from the remainders, this algorithm
also requires that the error of the remainder is not greater than
M/4, but the problem solved in this paper needs to determine

Fig. 8. Comparison of the time consumption in terms of different algorithms.

the positive-negative of the mixing frequency first. Therefore,
the ambiguity of the mixing frequency causes the Pd of the
C-CRT algorithm to reach only about 35%.

The method in [13] uses two MFCs with a small difference
in frequency intervals. The two MFCs have the same offset
frequency. The mode-order number N in (3) is inferred by
varying the size of the staggered comb lines. This method is
simple, but it lacks noise robustness. It also needs to meet the
constraint condition NC(fM1 − fM2) = fM1/2 to estimate RF
signal frequency.

From Fig. 8, it can be seen that the FBD algorithm has
the largest time consumption, the I-CRT algorithm and the
closed C-CRT algorithm have similar time consumption, and
the algorithm in [13] has the smallest time consumption. The
complexity of the I-CRT algorithm is o(4((K − 1)Γ1 + Γ2 +
· · ·+ Γk + · · ·+ ΓK)), where Γk is obtained from (9) and K
represents the number of MFCs. The complexity of the C-CRT
algorithm is o(4K). The complexity of the FBD algorithm
is o( 12Nb ·K(K − 1)), where Nb is the total number of fre-
quency bands. The complexity of method in [13] is o(1). In
this experiment, I-CRT algorithm, closed C-CRT algorithm, and
FBD algorithm have K = 3. Nb reached 103, making the FBD
algorithm has the largest time consumption.

C. Comparison of Upper Bound on Frequency Estimation for
Different Algorithms

Comparing the theoretical upper bounds of each method,
the theoretical upper bound of the four algorithms are re-
lated to the frequency interval of MFC. The theoretical
upper bound of the I-CRT algorithm is given in Section II-
I-C. Considering the frequency estimation problem in this pa-
per, the theoretical upper bound of the C-CRT algorithm is
fmax = LCM(fM1, fM2, fM3), the fmax of the FBD algorithm
is LCM(fM1, fM2, fM3)/2. Set the frequency:fM1 = 3 MHz,
fM2 = 4 MHz, fM3 = 5 MHz, the MFC frequency interval of
I-CRT algorithm, C-CRT algorithm and FBD algorithm is set to
{fM1, fM2, fM3} ×MN , MN�[1, 20]. The fmax of the method
in [13] is greatly affected by the frequency difference δf between
fM1 and fM2. Therefore, we set fM1 = 3×MNMHz, δf =
100×MN kHz, MN�[1, 20].
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TABLE II
COMPARISON OF THE FOUR DIFFERENT ALGORITHMS

Fig. 9. Comparison of the upper bound on frequency estimation in terms of
different algorithms.

From Fig. 9, it can be seen that in the case of same values
of fM1, fM2, and fM3, the fmax of the I-CRT algorithm is not
superior to other methods. I-CRT algorithm achieves better esti-
mation accuracy at the cost of reducing the maximum estimable
frequency. Therefore, in practical applications, it is necessary to
consider the frequency estimation range and reasonably set up
the frequency interval of the MFC. The fmax of I-CRT algorithm
can be improved by adjusting the values to increase the least
common multiplier of the frequency interval of the MFC.

Based on the above experiments, the performance comparison
of the four algorithms is shown in the following table.

Table II shows that only the Pd of I-CRT and FBD algorithms
can reach 100%. When Pd = 100%, the measurement noise
ΔRMAXPd

of I-CRT algorithm is higher than that of FBD algo-
rithm, indicating that the I-CRT algorithm has better robustness.
In terms of algorithm complexity, the FBD algorithm has a
higher complexity than I-CRT algorithm, as shown in Fig. 8,
the FBD algorithm has the highest time consumption. As for
the upper bound on frequency estimation of the algorithms, the
I-CRT algorithm does not have an advantage. But, in practical
application, in order to meet the measurement requirement on
frequency upper bound, we could adjust frequency interval of
the MFC to improve fmax. In summary, the I-CRT algorithm is
superior to other algorithms.

V. CONCLUSION

In this paper, on the basis of MFC-based Rydberg atomic
measurements, the I-CRT algorithm is proposed to estimate
instantaneous frequency of RF signals. This algorithm solves the

frequency ambiguity of the mixing signal generated by mixing
RF signal field and its closest MFC comb line via Rydberg
atoms. And, the interference of the mirror frequency is avoided.
By using the mixing frequencies measured by multiple MFCs,
the I-CRT algorithm realize the accurate estimation of the RF
signal frequency. And the proposed algorithm is compared with
the C-CRT algorithm, FBD algorithm and the method in [13]
verifying the superiority of proposed algorithm.

Limited by the relaxation time of Rydberg atomic electromag-
netic induced transparency phenomenon, the maximum band-
width of the real-time detection of Rydberg atomic receiver is
about 10 MHz. Using MFC can break through the limitation of
the instantaneous bandwidth. And, through a group of MFCs
with different frequency intervals, a more reliable frequency re-
sponse can be obtained. Therefore, MFC-based Rydberg atomic
receiver has promising application prospects, and this study
provides theoretical support for the design and application of
Rydberg atomic receiver.

APPENDIX A
PROOF OF THEOREM 1

Proof: If the conditions in Theorem 1 are met, it is not
difficult to see that nk in (8) falls within the range 0 ≤ nk ≤ γk
(1 ≤ k ≤ K). ΔRk denote the errors of the remainders fRk,
fRk = f̃Rk +ΔRk. For any pair (n̄1, n̄k) ∈ Sk, we have∣∣∣n̄kfMk + f̃Rk − n̄1fM1 − f̃R1

∣∣∣
≤

∣∣∣nkfMk + f̃Rk − n1fM1 − f̃R1

∣∣∣ . (39)

f̃Rk is replaced by f̂Sk − f0 − nkfMk in both sides of (39).
Let μk = n̄k − nk (1 ≤ k ≤ K), we have

|μkfMk − μ1fM1 − (ΔRk −ΔR1)| ≤ |ΔRk −ΔR1| . (40)

According to ΔRk ≤ τ and τ < M
4 , then

|μkfMk − μ1fM1| ≤ 2 |ΔRk −ΔR1|
≤ 2 (|ΔRk| − |ΔR1|)
≤ 4τ < M. (41)

After dividing M in both sides, we have

|μkΓk − μ1Γ1| < 1. (42)

Due to μk, Γk, μ1 and Γ1 are all integers, (42) implies

μkΓk = μ1Γ1, k = 2, 3, . . . ,K (43)

Γk and Γ1 are co-prime, thus
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μ1 = hΓk and μk = hΓ1, i.e.,

n̄1 = n1 + hΓk and n̄k = nk + hΓ1 (44)

where integer h with |h| < min(γk, γ1). Replacing (44) into
(39), we obtain∣∣∣n̄kfMk + f̃Rk − n̄1fM1 − f̃R1

∣∣∣
=

∣∣∣nkfMk + f̃Rk − n1fM1 − f̃R1

∣∣∣ (45)

which implies (n1, nk) ∈ Sk, (2 ≤ k ≤ K). This proves n1 ∈
S. Then, show S = {n1}. Equation (42) also implies

Sk = {(n1 + hΓk, nk + hΓ1)

: for integershwith |h| < min (γk, γ1)} . (46)

If n̄1 ∈ S, then n̄1 ∈ Sk,1(2 ≤ k ≤ K), according to the
definition of Sk,1 in (11) and (13), we have n̄1 − n1 = hΓk

for some integer h with |h| < min(γk, γ1) (2 ≤ k ≤ K). This
means that n̄1 − n1 can be divided by all Γk (2 ≤ k ≤ K), so
it is a multiple of the product of Γk (2 ≤ k ≤ K), a multiple of
γ1. Because n̄1 ≥ 0, n1 ≤ γ1 − 1, we conclude n̄1 − n1 = 0.
This proves that S = {n1}. Meanwhile, n̄1 = n1 implies h = 0
in (43), i.e., n̄k = nk (2 ≤ k ≤ K). Thus, Theorem 1 is proved.

APPENDIX B
PROOF OF LEMMA 1

Proof: From Sk in (11), for 2 ≤ k ≤ K and any (n̄1, n̄k) ∈
Sk, we have (n̄1, n̄k) ∈ Sk∣∣∣n̄kfMk+f̃Rk−n̄1fM1−f̃R1

∣∣∣≤ ∣∣∣nkfMk+f̃Rk−n1fM1−f̃R1

∣∣∣ .
(47)

According to the derivation process from (39) to (43) in
Appendix A, it can be inferred that μkΓk = μ1Γ1, k =
2, 3, . . . ,K, Γk and Γ1 are co-prime, thus

μ1 = mkΓk and μk = mkΓ1 i.e.,

n̄1 = n1 +mkΓk and n̄k = nk +mkΓ1 (48)

for some integers mk. Because (n̄1, n̄k) ∈ Sk, we have 0 ≤
n̄k ≤ γk − 1 (2 ≤ k ≤ K).

For the necessity, if n̄1 = n1 +mkΓk

and n̄k = nk +mkΓ1 for some integer, we
can obtain |n̄kfMk + f̃Rk − n̄1fM1 − f̃R1| =
|nkfMk + f̃Rk − n1fM1 − f̃R1|. From Theorem 1, we know
that (n1, nk) ∈ Sk which implies (n̄1, n̄k) ∈ Sk.

Lemma 1 indicates that all elements (n̄1, n̄k) ∈ Sk share the
attribute (48) without exception.

APPENDIX C
PROOF OF LEMMA 2

Proof: Lemma 2 follows from Lemma 1, forcing 0 ≤ n̄1 +
mkΓk ≤ Γk − 1 or 0 ≤ n̄k +mkΓ1 ≤ Γ1 − 1.

APPENDIX D
PROOF OF LEMMA 3

Proof: Due to (n̄1, n̄k) ∈ Sk, we have

L (n̄1, n̄k) =
∣∣∣n̄kfMk + f̃Rk − n̄1fM1 − f̃R1

∣∣∣ ≤ Γ1

2
(49)

otherwise L(n̄1 − 1, n̄k) or L(n̄1 + 1, n̄k) would be smaller
than L(n̄1, n̄k), which means that (n̄1, n̄k) does not reach the
minimum value of the function L(., .),which contradicts with
(n̄1, n̄k) ∈ Sk

From (52), we have

−Γ1

2
≤ n̄kfMk + f̃Rk − n̄1fM1 − f̃R1 ≤ Γ1

2
. (50)

We first consider the case when n̄1 is fixed. In this case, from
(53), we obtain the searching range for n̄k

n̄k ∈
(
Γ1

Γk
n̄1 +

b1fR1

MΓk
− bkfRk

MΓk
− Γ1

2Γk
,
Γ1

Γk
n̄1

+
b1fR1

MΓk
− bkfRk

MΓk
+

Γ1

2Γk

)
. (51)

The length of this searching range for n̄k is(
Γ1

Γk
n̄k +

b1fR1

MΓk
− bkfRk

MΓk
+

Γ1

2Γk

)

−
(
Γ1

Γk
n̄1 +

b1fR1

MΓk
− bkfRk

MΓk
− Γ1

2Γk

)

=
Γ1

Γk
< 1 (52)

it means that at most one possible integer value for n̄k within
the range to be selected, i.e., n̄k is uniquely determined by (51).

We next consider the case when n̄k is fixed. From (50), we
can obtain the searching range for n̄1

n̄1 ∈
(
Γk

Γ1
n̄k +

bkfRk

MΓ1
− b1fR1

MΓ1
− 1

2
,
Γk

Γ1
n̄k

+
bkfRk

MΓ1
− b1fR1

MΓ1
+

1

2

)
. (53)

The length of this range for n̄1 is(
Γk

Γ1
n̄k +

bkfRk

MΓ1
− b1fR1

MΓ1
+

1

2

)

−
(
Γk

Γ1
n̄k +

bkfRk

MΓ1
− b1fR1

MΓ1
− 1

2

)
= 1. (54)

According to Lemma 1, two distinct n̄1 in Sk,1 differ by
mΓk > Γ1 for some integer m, i.e., the difference absolute value
between any two distinct n̄1 in Sk,1 is larger than 1. This proves
that in the searching range in (54), there is only one valid element
n̄1 in Sk,1, i.e., n̄1 is uniquely determined and given in (53).
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