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Optical Mode Calculation in Large-Area Photonic
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Abstract—We discuss algorithms and numerical challenges in
constructing and resolving spectral problems for photonic crystal
surface-emitting lasers (PCSELs) with photonic crystal layers and
large (up to several tens of mm2) emission areas. We show that finite
difference schemes created using coarse numerical meshes provide
sufficient accuracy for several major (lowest-threshold) modes of
particular device designs. Our technique is applied to the example
of large-area all-semiconductor PCSELs, showing how it can be
used to optimize device performance.

Index Terms—Modeling, numerical algorithm, calculations,
PCSEL, photonic crystal, optical modes, semiconductor diode,
surface-emitting laser.

I. INTRODUCTION

S EMICONDUCTOR diode lasers are small, efficient, and
relatively cheap devices compared to other lasers. Many

applications require emission powers exceeding tens of watts
from a single diode and up to a few kilowatts from a com-
bined laser system [1]. Such emission can be achieved using
high-power broad-area edge-emitting lasers (EELs) [2], which,
unfortunately, have limitations. Although they remain the most
efficient of all light sources, when operating at high power,
the EEL emission is typically determined by multiple lateral
modes and has a poor quality, i.e., it irregularly fluctuates in time
(has a broad optical spectrum) and has large divergence, hardly
improvable by external optical elements. In addition, the output
facets of edge emitters require sophisticated facet passivation
to suppress failures due to catastrophic optical mirror damage
(COMD) and hence ensure long lifetimes, but at added cost and
complexity [3].

In this work, we consider photonic crystal (PC) surface-
emitting lasers (SELs), see Fig. 1, which, in contrast to EELs,
can emit high-power (up to 80 W pulsed [4] and 50 W CW [5])
beams of nearly perfect quality in the (z) direction, perpendicular
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Fig. 1. Schematic depiction of exemplary PCSEL (a) with the PC layer
consisting of three vertically homogeneous sublayers (b) and different features
within the PC unit cell in these sublayers (c). (d) and (e) are schematics of the
PC sublayers in vertical crosssections of the unit cell.

to the lateral (x/y) plain of the active material. Comparable
to vertical cavity surface emitting lasers (VCSELs), the output
surface of a PCSEL is a wide-bandgap crystalline GaAs-layer, so
that COMD is not an issue and facet passivation is unnecessary.
Unlike VCSELs, the optical cavity of a PCSEL is in the plane
of the structure, guided by the material layers in the vertical (z)
direction, see Fig. 1(a). A properly designed PCSEL explores the
two-dimensional band-edge resonant effect of the PC to select a
single stable longitudinal and transverse mode that induces co-
herent large-area lasing. The critical part of the PCSEL, enabling
an efficient coupling of counter- and cross-propagating optical
fields generated within the active layer and their redirection
along the z axis, is a-periodic in both lateral directions PC
layer. For achieving field emission in the vertical direction, the
lattice constant a must be closely related to the ratio of the
central wavelength λ0 and the effective index neff of the whole
PCSEL, a ≈ λ0/neff, which is satisfied at the second-order Γ
point of the photonic band. Moreover, for high outcoupling
from a chosen surface (here, via the n-doped substrate), PCSELs
require a backside reflector (e.g., Bragg grating, see Fig. 1(a))
to recycle part of light outcoupled into the opposite direction to
the emission surface.

Each a× a unit cell of the PC has one or several features
(e.g., triangles in Fig. 1(c)); materials inside and outside these
features have different refractive indices. In simple cases, the
PC layer is vertically homogeneous. In more complex cases,
this layer can have several sublayers (e.g., three sublayers in
Fig. 1(b)), and the 3-dimensional PC features should not nec-
essarily have perpendicular side walls. Multiple sublayer cases
can be designed intentionally or arise due to, e.g., imperfect
material etching/regrowth procedure; see a schematic of such
PC unitary cell in Fig. 1(d). Note that only the 2nd, 4th, and 6th
sublayers in this diagram contain PC features that have the same
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shape, size, and position but are filled with different materials.
PC layers containing vertically inhomogeneous features can also
be treated as a composition of several vertically homogeneous
layers; see, e.g., schematic crosssection of a tapered feature [6]
in Fig. 1(e) or a top-view of such a feature at three different
sublayers in Fig. 1(c).

The periodic features of the PC layer in the highest power
PCSELs reported up to date are filled with air, which guarantees
a large refractive index contrast and, thus, a large coupling of
optical fields within the PC. This high index contrast yields well-
centered main modes already in moderate (∼0.1mm2) emission
area PCSELs [7] so are very well suited to the realization of
compact devices with output up to the watt-class, for example
for application in short-reach pulsed LIDAR. For power scaling,
much larger area PCSELs are needed, to enable sufficient heat
extraction. Scaling to optical output powers into levels as high as
kilowatts is estimated to require the use of very large apertures
with many millimeters in cross section [8], to enable sufficient
cooling. Proper numerical tools to handle PC structures of such
large sizes require more efficient numerical algorithms, and
these are the subject of the presented work. Specifically, this
paper aims to present algorithms and numerical methods for the
construction and numerical resolution of the spectral problem
and discuss calculation-induced numerical errors. We illustrate
the capability of the numerical tool using a low-index contrast
PCSEL design that relies on an established right-angle triangle
PC arrangement, taken from [8].

In Section II, we present and briefly explain the derivation of
the field equations of the dynamic three-dimensional coupled
wave model and introduce the related spectral problem used
for calculations of optical modes that can be excited close
to the lasing threshold. Section III discusses the algorithms
used to derive nontrivial complex field coupling matrix and the
numerical challenges arising during the derivation. Section IV
introduces finite-difference schemes for solving the spectral
problem and discusses their performance in dependence on the
numerical mesh step. Section V gives a couple of examples
showing the dependence of the leading optical mode relations on
the size of the PCSEL. Conclusions and outlook are presented
in Section VI.

II. MODEL

A. Field Equations

We exploit a three-dimensional coupled-wave model [9], [10],
derived from Maxwell’s equations using lateral Fourier expan-
sions of the dielectric constant ñ2(�r, t) = n2

S(�r) + δ2n(z,N, T )

and TE-polarized electrical field �E(�r, t) = (Ex, Ey, 0)
T to

model large emission area (�0.1mm2) PCSELs. The real-
valued n2

S(�r) represents (real) material indices in the cold-
cavity PCSEL. It accounts for tiny periodic structures of the
PC layers, see, e.g., Fig. 2(a), and is laterally uniform in the
remaining PCSEL layers. δ2n also accounts for small-scale lat-
erally averaged field losses in all material layers (defined by
non-vanishing imaginary parts of corresponding dielectric con-
stants), losses within the active material, and gain and refractive

Fig. 2. Structure of the considered PCSEL example. (a) Refractive in-
dex nS(�r) within the PC cell. (b) Several factors |ξr,s| for |r|+ |s| > 0.
(c) Function n0(z) (red), corresponding neff (black dashed), and vertical mode
intensity |Θ|2 (violet).

index change induced by the carrier density N and temperature
T . The field equations are formulated for along lateral directions
counterpropagating complex, slowly varying field amplitudes
u±(x, y, t) and v±(x, y, t), which, after multiplication by the
vertical mode function Θ(z), are proportional to the electrical
field Fourier components Ey,±1,0 and Ex,0,±1 at the rapidly os-
cillating harmonics exp(i(ω0t∓ β0x)) and exp(i(ω0t∓ β0y)),
respectively. By scaling ofu± and v±,

∑
ν=±(|uν |2 + |vν |2) is a

local two-dimensional photon density. The amplitudesu = (u
+

u− )

and v = (v
+

v− ) evolve according to the 1(time)+2(space) dimen-
sional partial differential equations

i

vg

∂

∂t

(
u
v

)
= H(Δβ)

(
u
v

)
+Fsp, (x, y) ∈ [0, L]×[0, L], (1a)

u+(0, y) = u−(L, y) = v+(x, 0) = v−(x, L) = 0, (1b)

H(Δβ) = Δβ − i

(
σ ∂

∂x 0

0 σ ∂
∂y

)
−C, σ =

(
1 0

0 −1

)
, (1c)

Δβ =
β2 − β2

0

2β0
+

k20
2β0

∫
δ2n(z,N, T )|Θ(z)|2dz. (1d)

L,Fsp, and vg in (1a) denote the lateral dimension of the PCSEL,
the Langevin noise source vector, and the group velocity. Bound-
ary conditions (1b) suggest no reflections (i.e., full absorption) of
the fields escaping through the lateral bounds of the domain, but
can be easily modified, allowing non-vanishing reflections at the
borders. The effects of nonvanishing field reflections, however,
will be discussed elsewhere. (1c) shows the structure of the
operator H, which depends on the complex 4× 4 field coupling
matrix C and relative complex propagation factor Δβ(x, y, t)
defined in (1d). Here,k0 = 2π/λ0 andβ0 = 2π/a are the central
and the Bragg wavevectors, respectively. β = k0neff ≈ β0 is the
propagation factor defined by the effective index neff, which,
together with Θ (black-dashed and violet lines in Fig. 2(c)), can
be found by solving one-dimensional Helmholtz problem[

d2

dz2
+ k20(n

2
0(z)− n2

eff)

]
Θ(z) = 0,

∫
|Θ|2dz = 1, (2a)[

d

dz
− σb

]
Θ(z = 0) =

[ d

dz
+ σt

]
Θ(z = Lz) = 0, (2b)

σj = k0

√
n2

eff − n2
j , �σj ≥ 0, j ∈ {b, t}, (2c)
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where z = 0 and z = Lz are the bottom and top sides of the
PCSEL, whereas nb and nt are (in general, complex) refractive
indices of media behind these borders. Real-valued function
n2
0(z) in (2) (red dots in Fig. 2(c)) is a PC cell-wise lateral average

of n2
S(�r): n

2
0(z) = 〈n2

S〉a = 1
a2

∫∫ a/2

−a/2 n
2
S(�r)dxdy. A detailed

knowledge ofn2
S(�r), n

2
0(z), andΘ(z), all shown in Fig. 2(a) and

(c), is also needed to construct the coupling matrix C, which
will be discussed in Section III. Unlike the air-semiconductor
PC-based PCSELs [4], [5], [6], [7], [8], [9], [10], this theoretical
example explores an all-semiconductor PC with a smaller index
contrast and, thus, larger n0(z) within the PC layer.

B. Spectral Problem

In general, the field equations (1) should be supplemented
with the model for δ2n(z,N, T ), see, e.g., [11], and models
accounting for dynamics of carrier density N [10], [11] and
temperature distribution T [12]. This paper considers PCSELs
whereΔβ remains stationary in time. For example, once operat-
ing close to the lasing threshold, Δβ remains time-independent
and (nearly) uniform in space, such that it can be well rep-
resented by a single complex constant Δβ. By substituting
(uv ) = Φ(x, y)eiω̃t into (1), we get the spectral problem [9][
C+i

(
σ ∂

∂x 0

0 σ ∂
∂y

)]
Φ = ΩΦ, (x, y) ∈ [0, L]×[0, L], (3a)

Φ+
u (0, y) = Φ−

u (L, y) = Φ+
v (x, 0) = Φ−

v (x, L) = 0, (3b)

Ω = Δβ +
ω̃

vg
, ‖Φ‖2 =

∫∫ L

0

|Φ(x, y)|2dxdy = 1. (3c)

Here, |Φ(x, y)|2 = Φ∗ · Φ is a real-valued mode intensity distri-
bution function, whereas ‖ξ‖2 and later used (ξ, ζ) denote the
squared norm and the standard scalar product of four-component
vector functions. (3) defines (Δβ-dependent) optical modes
(ω̃,Φ(x, y)) [13], with ω̃ andΦ(x, y) =

(
Φu

Φv

)
denoting complex

frequency and scaled four-component distribution of the mode,
respectively. Positive and negative ω̃ indicate exponential
damping or amplification of the modes, whereas the mode with
constant in time amplitude should have ω̃ = 0. When the
PCSEL is not lasing, all modes are damped, ω̃ > 0. The com-
plex frequency ω̃ enters the spectral problem together with the
propagation factor Δβ, whose imaginary part, Δβ = g−α0

2 ,
is determined by the gain g and internal field losses α0. Like
Δβ, the factor Ω in (3c) is, in general, a complex spatially
distributed function and, thus, can not be directly treated as the
eigenvalue (or scaled eigenfrequency) of the problem (3a), (3b).
In the close-to-threshold case, when Δβ = Δβ, however, Ω is
a complex constant depending only on the field coupling matrix
C (defined by the heterostructure of the cold cavity PCSEL)
and the lateral size factor L. Real and imaginary parts of Ω, �Ω
and Ω, represent frequency detuning from the Bragg condition
and the gain required for the corresponding mode to reach its
threshold [9] (i.e., ω̃ = 0).1 Thus, complex eigenfrequencies

1Mode threshold Ω = Δβ also includes a field loss term. If this loss is
constant, it gives only a correcting up-shift of the mode threshold gain value.

Ω with low Ω are crucial in selecting PCSEL heterostruc-
tures. Finding several major (low-threshold) modes allows for
predicting the lasing threshold and estimating the side mode
suppression (damping) in the close-to-threshold operating state.
While Δβ of just switched-on laser remains fixed by Ω1,
the threshold gap (Ωj − Ω1) =

ω̃j

vg
, j > 1, defines damping

of higher order modes. Additional information on the quality
of each mode at its threshold can be obtained from the integral
relation [9] derived using the scalar product of (3a) with Θ∗:

g = α0 + αe + gr, gr = 2(Φ,CradΦ),

αe =

∫ L

0

|Φ+
u (L, y)|2 + |Φ−

u (0, y)|2dy

+

∫ L

0

|Φ+
v (x, L)|2 + |Φ−

v (x, 0)|2dx. (4)

Here, gr is part of the gain used for the field outcoupling into
the vertical direction, Crad is by the radiative field components
Ex/y,0,0 induced contribution to matrix C, and the loss factor
αe represents the fields escaping through the lateral borders.

III. COUPLING MATRIX C

A. Construction of the Coupling Matrix

To complete the construction of the models (1) and (3), one
still has to define the coupling matrixC, which is a a combination
of the following set of parameters [9], [10]:

ξ(j)r,s = ξr,s(z)|z∈Sj
= 〈n2

S(x, y, z)|z∈Sj
eiβ0(rx+sy)〉a, (5a)

P(j) =

∫
Sj

|Θ(z)|2dz, (5b)

G(k,j)
(r,s) =

∫
Sk

Θ∗(z)
∫
Sj

G(r,s)(z, z
′)Θ(z′)dz′dz. (5c)

Here, r and s belong to the infinite set of integer numbers,
whereas the indices k and j represent the finite set of material
layers Sk and Sj . ξr,s(z) in (5a) are Fourier coefficients of the
functionn2

S(�r) =
∑

r,s ξr,s(z)e
−iβ0(rx+sy), see, e.g., red dots in

Figs. 2(c) and (b), representing n0(z) =
√

ξ0,0(z) in all layers
and |ξr,s(z)| of several most essential coefficients within the
single PC layer, respectively. For the real-valued n2

S , we have
ξ−r,−s = ξ∗r,s. Liken2

S(�r), ξr,s are layer-wise constant functions
of z and, thus, can be represented by a finite set of complex
constants ξ(j)r,s . P(j) in (5b) represents part of the vertical mode

intensity within the material layer Sj . Factors G(k,j)
p with p =

(r, s), |p| = √
r2 + s2 �= 1 in (5c) are obtained by integrating

the expressions involving Green’s function Gp(z, z
′), which

solves the inhomogeneous problem[
∂2

∂z2
+ k20n

2
0(z)− β2

0 |p|2
]
Gp(z, z

′) = −δ(z − z′),[
∂

∂z
− σp,b

]
Gp(0, z

′) =
[
∂

∂z
+ σp,t

]
Gp(Lz, z

′) = 0,

σp,j = k0

√
β2
0 |p|2 − k20n

2
j , �σp,j ≥ 0, j ∈ {b, t}. (6)
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Fig. 3. Calculations ofC using different truncation parametersD. (a) Relative

error of C(D)
2D elements as function of D, decaying as 1/D with growing D.

(b) Spectrum of C in dependence on D. Crosses show eigenfrequencies of C
obtained using D = 20.

For real-valued nj and |p| = 0, �σ0,j in (6) vanishes, meaning
that the tails of Gp(z, z

′) are fixed-amplitude oscillations when
z → ±∞. We use σ0,j = i|σ0,j |, which reminds us of Sommer-
feld’s radiation conditions, even though those are formulated
only for two- and three-dimensional cases.

The Fourier coefficients ξ
(j)
r,s with |r|+ |s| �= 0 are non-

vanishing only whenSj is a PC sublayer. Since these coefficients

are only used as multipliers of the factors P(j) and G(k,j)
p or

G(j,k)
p , we should calculateP(j) andG(k,j)

p only for those indices
k, j which correspond to the PC sublayers. For the formulas
defining C as function of ξr,s, P , and Gp, see [9], [10]. The
algorithms for optimizing the matrix C and its eigenfrequencies
by selecting the PC configuration and, thus, tailoring the set
of coefficients ξr,s were discussed in [8]. This work briefly

introduces the algorithms used to calculate P(j) and G(k,j)
p

and the challenges arising during these calculations [14]. For
a mathematically rigorous description of these algorithms, see
[15].

Typically, C is written as a sum of a non-hermitian matrix
Crad(G(0,0), ξ±1,0, ξ0,±1) (out-of-plane coupling via radiative
waves), and two Hermitian matrices C1D(P, ξ±2,0, ξ0,±2) (cou-
pling of counterpropagating waves) and C2D (2D coupling via
higher order, |r|+ |s| > 1, modes). The Hermitian nature of
the last two matrices, which is because n2

s(�r), P(j), and G(k,j)
p

for |p| > 1 are real-valued, is explored when calculating the
fields at the upper or lower edges of the PCSEL, for example.
Small imaginary dielectric constant contributions in cold cavity
PCSEL ignored when constructing C should be included into
δn and, thus, Δβ.

The last matrix C2D is an infinite sum,

C2D =
∑

|r|+|s|>1

C
(r,s)
2D (P,G(r,s), ξr±1,s, ξr,s±1). (7)

In our calculations, we truncate this sum, i.e., replace C2D

with C
(D)
2D , which accounts only for parameter sets (r, s) with

{|r|, |s|} ≤ D [16]. Fig. 3, which explores the PCSEL configu-
ration defined by the multiple material layers with indicesn0(z),
see Fig. 2(c), and the PC cells containing isosceles right triangle
features with leg lengths of 0.8a, Fig. 2(a), shows a typical
relatively slow convergence of calculations with growing D.

Panel (a) of this figure shows a (1/D)-type decay of the rel-

ative errors
|C(D)

2D,ij−C2D,ij |
|C2D,ij | of four well-distinguishable matrix

elements with increasing D. An unknown exact matrix C2D

was substituded by C
(1000)
2D in the relative error estimates. At

D ∼ 150, these errors are below 1%, and adding further terms
induces only minor changes of C. Another representation of
this convergence is given in Fig. 3(b), where changes of four
eigenfrequencies ΩC of the matrix C (each corresponding to
one of the band-edge modes of the infinitely broad PCSEL) with
an up-sweep of D (yellow: small D, dark: large D) are shown.
Since we explore analytic formulas [15] for constructing C,
matrix calculations using D = 500 in the presented case could
be done in only 20 seconds on a standard notebook. Note that this
time includes not only an estimation ofC2D but also reading and
reorganization of the input parameters, 2D-Fourier transform of
n2
S(�r) within the PC layer, solution of the Helmholtz problem

(2), and calculation of the factors P , matrices C1D, and Crad.
However, the time needed for estimation of C2D grows nearly
quadratically with the increasing number of PC sublayers, such
that using relatively small D can be an attractive option when
fast estimation of C is essential. Matrices constructed using
D = 20 andD = 500 are explored in example simulations in the
remainder of the paper. Even thoughΩC calculated withD = 20
is still apart from the final position, see the inset of Fig. 3(b),
this D can be sufficient for practical calculations. Estimation of
C using D = 20 and fully numerical procedures for G(k,j)

p and
P(j) in PCSELs with multilayer PCs are less precise and takes
much more time.

B. Numerical Algorithms

To solve the Helmholtz problem (2), we replace it with a
characteristic equation constructed using transfer matrices [17].
Within each material layer Sj , functions Θ(z) satisfying (2a)
and their derivatives d

dzΘ(z) can be written as linear combina-
tions of eσj(z−zj) and eσj(zj−1−z), where zj−1 = zj − |Sj |, zj ,
and |Sj | are two edges and thickness of the layer Sj , while

σj = k0

√
n2

eff − n2
0|z∈Sj

with �σj ≥ 0. Thus, provided neff

and Θ(z) at the edges of Sj are known, the field intensity
factor P(j) can be written using analytic formulas. When neff

is not known, e±σj |Sj | can be interpreted as functions of the
variable n•. We use them to construct 2× 2-transfer matrices
Mj(n•), translating vector V (z) = (Θ, d

dzΘ)T across material
layers Sj . The consequent product of these matrices built for
all layers gives us an overall transfer matrix M(n•), translating
V (z) from z = 0 up to z = Lz , where both components of V
are related by Robin-type boundary conditions (2b), and σb,t

are functions of n•. The complex characteristic equation reads
as χ(n•) = (σt, 1)M

(
1
σb

)
= 0.2 For real n0, the roots n• are

also real and are located between maximal and minimal n0(z).
We find these roots using Newton iterations, exploring analytic
formulas for χ(ξ) and d

dξχ(ξ). For each root n•, we reconstruct
related Θ(z) using transfer matrices. The mode with the largest

2For Dirichlet boundary conditions used in the example of Fig. 2, [ d
dz ∓ σb,t]

in (2b) are replaced by 1, and the characteristic function is χ = M21(n•).
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intensity within the QW and PC layers is the main vertical mode
Θ(z), and a corresponding n• is the effective index neff. For
more details, see [15].

For some structures, exponentials e�σj |Sj | can be huge. To by-
pass computer arithmetic problems [18], we introduced bounded
matrices M̃j = Mje

−σj |Sj | and explored them to construct the
characteristic function. An example of calculated vertical mode,
the corresponding function n0(z) and neff, is given in Fig. 2(c).

In [15], we also demonstrated that for any (z, z′) ∈ Sk × Sj ,
the Green’s function Gp(z, z

′) can be written as

Gp =

{
e−σp,j |z−z′ |

2σp,j
+ ET

p,j(z
′)Bp,jEp,j(z) k = j

ET
p,j(z

′)Aj
p,kEp,k(z) k �= j

,

Ep,j(ζ) = 2

1 + e−σp,j |Sj |

(
eσp,j(ζ−zj)

eσp,j(zj−1−ζ)

)
,

σp,j =
√

β2
0 |p|2 − k20n

2
0(z), �σp,j ≥ 0, (8)

where Bp,j and Aj
p,k are 2× 2 constant matrices, which

can be calculated using analytic expressions. Since
Θ∗(z)Gp(z, z

′)Θ(z′) for (z, z′) ∈ Sk × Sj is given by a

linear combination of exponentials, the integral factors G(k,j)
p

in (5c) can also be expressed by analytic formulas.
We fixed z′ ∈ Sj and used the homogeneity of (6) for z <

z′ and z > z′ to derive these formulas. Within each Sk, k �=
j, the transfer matrices M̃p,k (built using σp,k instead of σk)
translate Robin-type boundary conditions between the edges of
the layer. Thus, we can translate these conditions defined by
σp,b and σp,t in (6) from z = 0 to zj−1 and form z = Lz to zj ,

obtaining (z′-independent) factors η
(j)
p,b and η

(j)
p,t , respectively.

Similarly, we build z′-dependent transfer matrices M̃+
p,j and

M̃−
p,j translating the vector (Gp, ∂zGp)

T from zj−1 to z′ − 0
and from zj to z′ + 0. These matrices, Robin-type conditions at
the edges of Sj , continuity of Gp, and δ-function induced jump
down by 1 of ∂zGp at z = z′ imply the following system of two
inhomogeneous linear equations:

M̃+
p,j

(
1

η
(j)
p,b

)
Gp(zj−1, z

′) + M̃−
p,j

(
−1

η
(j)
p,t

)
Gp(zj , z

′) =
(
0
1

)
.

The formulas for constant matrixBp,j in (8) directly follow from
the z′-dependent expressions of Gp(zj−1, z

′) and Gp(zj , z
′).

Translation of the Robin-type conditions at zj−1 and zj over Sk,
k �= j, allows a quick calculation of Gp(z, z

′) at the remaining
material interfaces, which are sufficient for deriving formulas
for matrices Aj

p,k in (8).
Notably, analytic formulas representing Gr,s and related dou-

ble integrals G(k,j)
(r,s) for large |r| and |s| can imply floating-

number-arithmetic-related problems [18] since we must handle
very large and small exponentials e±

√
r2+s2β0z . By treating large

and small exponentials separately (i.e., replacing possibly huge
matrices Mp,j with bounded matrices M̃p,j), avoiding division
of very large and small numbers, and accounting for further
computer-arithmetic problems (such as ε+ 1− 1 ≡ 0 whereas

ε+ (1− 1) ≡ ε for |ε| < 10−16), we could use otherwise un-
available large values of D: see, e.g., Fig. 3, where calculations
were performed up to D = 510.

IV. SOLUTION OF THE SPECTRAL PROBLEM

A. Finite Difference Scheme

Let us return to the solution of the spectral problem (3).
Since we cannot resolve this problem analytically, we rely on
fully numerical procedures and finite difference schemes, and
instead of vector functions Φ(x, y) and eigenfrequencies Ω, we
look for their discrete analogs Φh and Ωh, which for properly
constructed schemes should provide good approximations of
the original values. The domain [0, L]× [0, L] is discretized
to q2 equal small squares (cells) with the edge length h = L

q .
Each of the four model equations in (3a) is approximated in
the center of each such cell, i.e., at q2 positions (xr, ys) =
((r − 0.5)h, (s− 0.5)h), r, s ∈ {1, . . . , q}. We introduce the
mesh function Φh with elements Φh±

u,r,s−0.5 (including r = 0)
and Φh±

v,r−0.5,s (including s = 0), which approximate origi-
nal continuous functions Φ±

u and Φ±
v at (rh, (s− 0.5)h) and

((r − 0.5)h, sh), i.e., at the center of vertical and horizontal
edges of all cells, respectively. Overall, the mesh functionΦh has
4q(q + 1) complex elements. Whereas 4q of them at the edges
of the whole domain fulfill (3b) and are zeros, the remaining
4q2 variables should be related by numerical approximations of
(3a). A simple central finite difference scheme, consisting of
4q2 linear equations and constructed using two-point stencils, is
realized by substituting

Φ±
u (xr, ys) =

Φh±
u,r,s−0.5 +Φh±

u,r−1,s−0.5

2
+O(h2),

∂xΦ
±
u (xr, ys) =

Φh±
u,r,s−0.5 − Φh±

u,r−1,s−0.5

h
+O(h2),

Φ±
v (xr, ys) =

Φh±
v,r−0.5,s +Φh±

v,r−0.5,s−1

2
+O(h2),

∂yΦ
±
v (xr, ys) =

Φh±
v,r−0.5,s − Φh±

v,r−0.5,s−1

h
+O(h2), (9)

into (3a) at each of q2 positions (xr, ys). Terms O(h2) in (9),
obtained using Taylor’s expansion ofΦ at (xr, ys), show that our
scheme is of second order (w.r.t. the small step h). We note that
such scheme possesses a discrete version of the conservation
law (4) [15] which we use to estimate the quality of the modes.
After eliminating trivial boundary elements of Φh and ordering
all elements ofΦh into a single vector, we can write the resulting
discrete spectral problem as

LhΦ
h = DhΩhΦ

h ⇔ D−1
h LhΦ

h = ΩhΦ
h. (10)

Lh, Dh are complex 4q2 × 4q2matrices, each having ∼ 32q2

and ∼ 8q2 non-vanishing elements. Dh is easily invertible;
construction of D−1

h Lh requires only 4q2 arithmetic operations,
but the matrix itself has ∼ 8q3 non-vanishing entries.

When simulating large PCSELs, which, in general, requires
large q and, thus, substantial memory resources and processing
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Fig. 4. (a) Exact eigenfrequencies of (3) when L → ∞ (black triangles ΩC)

or field cross-coupling terms in C are omitted (red squares/rhombs Ω
x/y
1D ),

and numerically estimated Ωh of (9), (10) for q = 48 (light blue dots). Inset:
surrounding of the lowest threshold modes. (b) Dependence of three mainΩh on
q and D (filled/empty bulets: D = 20 and 500, respectively). Inset: 2nd order
convergence of two main Ωh with an increase of q. (c) Intensity distribution
|Φ(x, y)|2 of five dominant modes, located within the black ellipse in the inset
of (a). L=1mm, other parameters as in Figs. 2, 3.

time, one can use higher-order schemes. Redefinition of the
mesh function Φh is not needed; the schemes in the discretized
domain’s larger (inner) part can be constructed using centered
differences and straight 2ν-point stencils (2ν: order of the
scheme). The drawback of such schemes is that at each of
the ν − 1 cell layers at the domain borders, one has to use
(2ν + 1)-point stencils and non-centered finite differences. Stil
sparse matrices Dh, Lh have additional nonzero entries, and,
compared to the standard scheme, the solution of the same size
problem (10) takes more time. A clear advantage is an enhanced
precision in approximating several leading eigenfrequencies Ω,
which can be achieved using moderate step h. Thus, if achieving
good precision is essential, schemes with moderate h and ν > 1
can be significantly faster, compared to the standard scheme (9)
with much finer h.

B. Example

The (finite-dimensional) numerical scheme (10) does not
approximate all (i.e., an infinite number of) modes of the original
problem (3); the numerically induced error of mode approxima-
tion grows with an increasing mesh step h. For large-area PC-
SELs and moderate or small discretization steps (e.g,L ≥ 5mm,
h = 10μm, q ≥ 500), (10) defines millions of modes, but not
all of them can be found because of computer memory and time
constraints. Fortunately, only a few modes are essential. Thus,
we exploit the sparseness of the matrices and look only for a few
dominant modes preselected in preliminary calculations with a
coarse numerical mesh.

For the construction and solution of the discrete spectral prob-
lem (10), we used the Julia programming language (version 1.9)
[19] and the available spectral solvers. The example calculations

presented in Fig. 4 were performed using coupling matrix C
from Fig. 3 estimated for D = 20 or 500. We assumed that
L = 1mm and the PC lattice constant a = λ0/neff is defined by
the central wavelength λ0 = 1.07μm and the effective refractive
index neff determined by (2). Light blue dots in Fig. 4(a) show
only a small part of Ωh calculated using D = 20 and q = 48.
Five lowest threshold modes are represented by blue dots within
the black ellipse in the inset of Fig. 4(a) and the diagrams of
Fig. 4(c), which show the intensity distribution |Φ(x, y)|2 of
these modes. The operation on the main mode, with a single
broad, well-centered circular peak of |Φ(x, y)|2 and a balance
between the edge losses and mode separation is desirable in
applications.

To understand numerical errors induced by discretization, we
also find the eigenfrequencies of two related systems that can be
solved exactly, i.e., do not depend on the domain discretization
factor q. Black triangles in Fig. 4(a) are eigenfrequencies ΩC

of the 4× 4-matrix C, which properly represent accumulation
points of Ωh at very large L. Even for moderate L = 1mm used
in our example calculations, one can recognize how multiple
blue dots (Ωh) approach the black triangles (ΩC). Another
system that can be treated analytically is obtained by ignor-
ing field cross-coupling in the original system (3), i.e., setting
off-diagonal 2× 2 blocks of C to zero. System (3) decouples
into two effectively one-dimensional spectral problems, similar
to those that arise when considering linear lasers, and can be
treated using discretization-independent transfer-matrix-based
methods [13]. Red squares and rhombs represent finite sets of
eigenfrequencies Ωx,y

1D of this limit case problem in Fig. 4(a).
Slight differences between Ωx

1D and Ωy
1D, see, e.g., inset of

panel (a), are due to tiny (in praxis - unavoidable) distortion
of the PC feature’s symmetry w.r.t. the diagonal of the PC
cell which also violates symmetry ξr,s = ξs,r for the Fourier
coefficients and induces corresponding changes of C. Most
of the light blue dots appear in prolonged clusters. For low
thresholds, Ωh < 10/cm, one side of nearly all clusters with
densely located eigenfrequencies therein is attached to one of the
red boxesΩ1D, which suggests a weak cross-coupling of the field
components in the related modes. This agreement is degraded for
higher thresholds because of discretization-induced numerical
dispersion that implies too large damping of the modes having
Ωh far away from zero.

Thus, several main modes of (3) with a low threshold Ω
can be properly estimated even with coarse numerical mesh
defined by a small factor q. The precision of this approximation
in dependence on q is further analyzed in Fig. 4(b). The filled
bullets in this diagram represent three lowest-threshold modes
calculated using different (still small) q, varying it from 16 to 48.
For all these q, the eigenfrequencies do not change significantly;
an increase of q implies some shifts, but the magnitude of these
shifts decreases with the growth of q. Second and third modes
have more pronounced shifts, which agrees with our previous
discussion of numerical dispersion issues. Filled bullets in the
inset of the same diagram represent the quadratic decay of the
relative error |Ωh(q)−Ω

Ω | for two main modes. For convenience,
the inset is drawn using log-log scaling of both axes. The dashed
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Fig. 5. Threshold Ω (a), detuning �Ω (b), and losses αe (c) of the five main
modes, and the threshold separation (Ωj −Ω1) between the fundamental
(first) and the remaining four higher-order modes (d) as functions of the size
factor L. Dashed lines in (a), (b): lowest threshold mode ΩC of C. D = 20,
q = 32, while other parameters as in Fig. 4.

line, which is proportional to 1
q2 = h2, shows the expected

second-order convergence rate. “Exact” Ω in the relative error
formula was estimated by extrapolating the shift of calculated
Ωh(q) for q → ∞.

At least in the considered example, the discretization step-
induced error is small when comparing it to matrixC-truncation-
induced changes. This is shown in Fig. 4(b) and its inset,
where filled and empty bullets represent eigenfrequencies of
the problems constructed using truncated matrices C

(D)
2D with

D = 20 and 500, respectively. Shifts of bullets in panel (b)
show that real and imaginary parts of q-induced absolute errors
of Ωh(q)|q≥12 in both cases do not exceed (0.0057, 0.021)/cm
for the main mode and about seven-fold values for the second
and third modes. On the contrary, the parameter D induced
changes of three main Ωh vary between (0.128, 4.877)/cm and
(0.147, 4.965)/cm, similar to (0.118, 4.995)/cm dislocation of
the lowest thresholdΩC shown in the inset of Fig. 3. On the other
hand, the mode landscape in Fig. 4(a) and the relations between
the main eigenfrequenciesΩh calculated forD = 20 and 500 are
almost preserved, which suggests that a constant contribution
to real and imaginary parts of Δβ can nearly compensate the
differences induced by the selection of small parameter D.

V. PARAMETER STUDY

Finally, we use our algorithms and code for numerical param-
eter continuation experiments to receive quick information about
the PCSEL structures considered. Fig. 5 summarizes the main
mode calculations of in Fig. 4 considered PCSEL with different
size factors L, varying from 100μm up to 3mm (D = 20
and q = 32 in this case). Since the vertical configuration is
unchanged, the matrixC should be constructed only once during
the initiation step. We are interested in PCSEL configurations
with low threshold gain of the main mode, see black bullets
panel (a), low losses αe at the lateral edges of PCSEL, panel (c),
and large threshold separation to the remaining modes, panel
(d). In panel (b), we also show shifts of Ω for considered

five modes with the increase of L. Due to insufficient field
coupling in small emission area (L ≤ 0.2mm) PCSELs, the
mode intensity |Φ(x, y)|2 at the lateral borders of the domain
is large, which implies high field escape losses αe and, thus, a
huge mode threshold Ω. Without recycling the escaping fields
by, e.g., high-reflecting boundaries, such PCSEL configurations
are useless; the switching-on performance of these devices can
be compared with that of short edge-emitting DFB diodes with
weak coupling and antireflective coating of the facets or short
Fabry-Pérot lasers with nearly vanishing facet reflectivities.
Excellent operation of similar-sized PCSELs discussed in [9],
[10] could be achieved because of a much larger refraction index
contrast between the surrounding semiconductor material and
the air-filled features in the elementary PC cells. With an increase
of L, the main mode’s eigenfrequency Ω (black bullets in panels
(a) and (b)) rapidly approaches the lowest threshold band-edge
mode ΩC (horizontal lines in the same panels). Loss αe, panel
(c), decreases as well and is below 0.1/cm for L ≥ 1.5mm. Un-
fortunately, the threshold gap (panel (d)) decays with increasing
L as well, which is due to the accumulation of eigenfrequencies
Ω atΩC in the largeL limit. Thus, at very largeL, one can expect
multimode emission with suboptimal beam characteristics.

In the last example, we performed a similar continuation of
L assuming the PCSEL configuration with vertically tilted side
walls of features within the PC layer [6]. Such PC layers can
be designed intentionally but also unintentionally induced by
material etching/regrowth procedures. Thus, such simulations
can be helpful when testing the robustness of selected structures
to minor technology imperfections. To perform simulations, we
subdivided the (previously sole) PC layer into 15 sublayers,
assuming that the central sublayer has isosceles right triangle
features with0.8a-short legs, Fig. 2(a), considered in all previous
examples. We linearly changed the triangle leg size across the
whole PC layer, such that at the bottom/top sublayers, it was
0.7a/0.9a (up-taper) or 0.9a/0.7a (down-taper). Such a down-
taper configuration in a 3-sublayer PC is shown in Fig. 1. Note
that the hypotenuse of the triangular feature in our example
still defines an unchanged vertical feature’s wall within all PC
sublayers. Since neff for three considered structures was slightly
different (neff = 3.3073, 3.309 and 3.3059 for PCSELs with
uniform, up- and down-tapered PC features, respectively), we
have also adapted the corresponding PC cell size a = λ0/neff.

The calculations of the main mode are presented in Fig. 6. Be-
sides both tapered feature configurations, here we show again the
modes of an above-studied PCSEL with vertically uniform PC
cells (black bullets). Compared to the uniform-feature PCSEL,
lasers with down-tapered features (orange) have reduced ΩC,
see triangles in panel (d), and, consequently, reduced thresholds
of the main mode, panel (a). The edge losses and gain gap are
also slightly improved; cf. orange and black bullets in panels (b)
and (c). The mode landscape (such as in Fig. 4(a), for example)
and the locations of the main modes, except of slightly reduced
Ω and increased separation of different stop-band side modes,
have no significant differences. On the other hand, in the PCSELs
with up-tapered features (light blue), which have only slightly
changed mode threshold, loss factor αe, and threshold gap, cf.
light blue and black dots in panels (a)-(c), the mode relations are
quite different. In contrast to the previously considered cases,
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Fig. 6. Main modes of PCSELs with down-tapered (orange), up-tapered (light
blue), and uniform (black) PC features. ThresholdΩ (a), lossαe (b) of the main
mode, and the threshold gap �(Ω2 −Ω1) (c) as functions of L. (d) Down-shifts
of Ω with increasing L. Empty triangles: eigenfrequencies ΩC. Note different
y-axis scaling at the top and bottom of (d).

the dominating mode is now located close to the band-edge
mode on the other side of the stopband, see down-shifting light
blue bullets at the right side of Fig. 6(d). Thus, tapering of
PC features can not only cause relatively smooth small-scale
shifts of the band edge modes (as, e.g., observed in Fig. 3)
and corresponding smooth changes of the mode landscape and
the main eigenfrequencies Ω there but also induce a jump to a
new group of dominant modes determined by another band edge
mode with significantly differing optical frequency.

At L ≈ 0.15mm, two different stop-band side modes of the
PCSEL with down-tapered PC features have equal thresholds:
see the light blue dots at L = 0.13mm and 0.16mm in panel (d)
and rapidly reduced threshold gap at theseL in panel (c). Here, an
increase of L implies the role exchange for these modes, visible
as a “jump” of the main mode over the stopband in Fig. 6(d). All
such mode role exchanges are due to different mode sensitivity
d
dpΩ to the change of the considered parameter p (L in our
example). Similar (even though on a smaller scale) swaps of the
mode roles in Figs. 5 and 6 are represented by small defects of
otherwise smooth parameter-depending curves. For example,
the light blue curve in Fig. 6(c) and green/orange curves in
Fig. 5(b) and (c) show such defects for L ≈ 0.75mm, where
the second and third modes are swapped; at L ≈ 0.95mm in the
same panels of Fig. 5 a new mode takes role of the fourth-lowest
threshold mode. In Fig. 5(d), the local minimum of the orange
curve also indicates the exchanging roles of the modes with
the lowest and the second-lowest thresholds at L = 0.2mm.
An understanding and controlling the mode shift rates d

dpΩ
with the changes of model parameters could be very helpful
when designing the PCSEL configuration and will be discussed
elsewhere.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have presented analytic-expression-based
algorithms for constructing the field coupling matrix of a

three-dimensional coupled wave model for PCSELs. Our al-
gorithms bypass computer arithmetic-induced problems when
dealing with large and small exponentials; they are fast and
exact, in contrast to approximative approaches [6], [9], [16]
or procedures based on numerical integration methods. We
have also demonstrated how coarse numerical meshes, 2nd-
order precision finite difference schemes, and standard spectral
solvers provide a good approximation of a few major optical
modes in PCSELs with large (several tens of mm2) emis-
sion areas. Once better precision, more modes, or handling
of even large PCSELs are required, we suggest higher-order
numerical schemes, which can reduce discretization-induced
errors by a few orders or more, depending on the mesh
step h.

Optical mode calculations and analysis of their properties in
this work were performed assuming time independent and uni-
form in space propagation factor Δβ, which is typically the case
at the sub-threshold or near-threshold operation of lasers. Close
to the threshold, potentially important modes are well distin-
guished, and the mode with the lowest threshold Ω determines
the emission properties. Even if remaining stationary in time,
above threshold Δβ is a spatially distributed function, account-
ing for the distribution of carrier density (which itself depends on
the inhomogeneous injection and carrier hole burning) and tem-
perature, which typically induces enhancement of the refractive
index within the lateral region where the field intensity is high
(thermal lensing effects). Deviations of Δβ from the spatially
uniform state change the mode landscape, implying the mode
wavelength shifts towards or from the Bragg condition, causing
a reduction or enhancement of the threshold gaps between the
main and higher-order modes. As we have shown in this paper,
these gaps in large-area PCSELs are reduced, which is due to
increasing concentration of eigenfrequenciesΩ close toΩC with
growing L. A theoretical understanding of (hot cavity) PCSEL
operation can be improved by performing complex theoretical
analysis and simulations of the dynamical model [10] (field
equations (1) supplemented with models for gain dispersion,
carrier density [11] and temperature [12], for example) along
with simulations and analysis of instantaneously on Δβ(x, y, t)
depending optical modes, their coupling, and changes with
time [13].

The numerical examples used in this work assumed a single-
lattice PC crystal characterized by a single isosceles right
triangle feature within the PC cell and a low-index contrast
PC technology. Efforts to scale power and conversion effi-
ciency in large area PCSELs are expected to benefit from
the use of more sophisticated PC designs, for example, as
discussed in [8]. The newly developed numerical tool pro-
vides sufficient precision and provides solutions with short
calculation times, so that design development can proceed
rapidly, especially when laser operation is properly included.
A key challenge remains designing large area PCSELs with
enhanced threshold gap between the main and the higher-
order modes, which would remain robust w.r.t. technology-
induced misalignments and laser operation-induced shaping of
Δβ(x, y).
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