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A MIMO Detector With Deep-Neural-Network
for Faster-Than-Nyquist Optical

Wireless Communications
Minghua Cao , Ruifang Yao , Qinxue Sun , Yue Zhang , Qing Yang , and Huiqin Wang

Abstract—Conventional multiple input multiple output (MIMO)
detection algorithms face challenges related to computational com-
plexity and limited performance when handling high-dimensional
inputs and complex channel conditions. In order to enhance sig-
nal recovery accuracy in atmospheric turbulence channels for
faster-than-Nyquist (FTN) optical wireless communication (OWC)
systems, a deep learning (DL) based MIMO detector is proposed.
By leveraging a deep neural network (DNN), it becomes possible
to learn nonlinear mappings within MIMO systems, resulting in
improved detection performance while reducing computational
overheads. Simulation results validate that our proposed DNN
detector achieves comparable performance to the maximum like-
lihood (ML) method, while reducing complexity by 40%.

Index Terms—Deep neural network, faster-than-nyquist,
multiple input multiple output, optical wireless communication.

I. INTRODUCTION

THE implementation of fast multiplexing and demultiplex-
ing for non-orthogonal frequency-division multiplexing

(NOFDM) is achieved through the utilization of inverse fast
Fourier transform and fast Fourier transform [1]. The authors
propose a novel approach called non-orthogonal discrete multi-
tone (NODMT), which combines the advantages of NOFDM
and discrete multi-tone (DMT). This integration has the potential
to significantly enhance spectral efficiency in future optical
networks. The multiple input multiple output (MIMO) system,
renowned for its capability to improve spectral efficiency and
enhance link reliability, has emerged as a prevalent technology in
contemporary wireless communication standards [2]. Compared
to single input single output (SISO) systems, MIMO systems ef-
fectively utilize spatial resources and augment channel capacity
without requiring additional bandwidth because each receiver
antenna can simultaneously receive signals transmitted by all
transmitting antennas [3]. With the growing demand for high
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data rate communication networks, Mazo demonstrated in 1975
that higher transmission rates could be achieved using faster-
than-Nyquist (FTN) technology [4]. In [5], the authors intro-
duced the concept of non-orthogonal wavelength division mul-
tiplexing (WDM) and provided a comprehensive review of the
principle of FTN. A performance comparison between FTN and
constellation shaping was presented. The authors extensively
discussed the underlying principles of FTN signaling, empha-
sizing its orthogonality and distinguishability relative to Nyquist
and Mazo limits. Furthermore, they demonstrated single carrier
time domain FTN signals using the cascaded binary-phase-
shift-keying iterative detection (CBID) algorithm [6]. In [7],
the authors investigated the capacity of FTN signaling for both
frequency flat and frequency selective (FS) MIMO channels.
Considering that FTN introduces additional frequency selectiv-
ity, it was found that precoding in time (or equivalent frequency
on the spectrum) combined with waterfilling in spatial domain
achieves capacity for frequency flat MIMO channels with FTN.
This combination of FTN technology and MIMO technology
further enhances spectrum efficiency by artificially compressing
symbol intervals to transmit more symbols. However, it also
increases the complexity of signal detection. Maximum likeli-
hood (ML) detection [8] represents the optimal choice capable of
achieving peak performance. However, its computational grows
exponentially with both modulation order and the number of
antennas, posing challenges for practical implementation. On
the other hand, algorithms with lower computational complexity
such as zero forcing [9] (ZF) and Minimum Mean Square Error
[10] (MMSE) achieve detection through straightforward linear
transformations but exhibit a significant gap compared to the ML
algorithm and have unsatisfactory performance for FTN signals
with a high acceleration factor.

In recent years, deep learning (DL) has garnered significant
attention from both academia and industry due to its powerful
learning capabilities. The main advantage of DL lies in its ability
to extract crucial information from premarked training data
[11]. Consequently, DL approaches have become increasingly
popular for solving MIMO signal detection problems. For
example, [12] explores an unsupervised DL-based MIMO
detection method that utilizes an autoencoder to learn the
entire system. Moreover, DetNet [13] represents one of the
earliest DL-based detection approaches for MIMO detection by
employing a model-based algorithm that unfolds the iterations of
the projected gradient descent method. In [14], authors proposed
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a simplified version of DetNet by reducing inputs dimensions
and simplifying network structure. Corlay et al. [15] suggest
replacing the sigmoid activation function used in DetNet with a
multi-plateau version and implementing two networks with dis-
tinct initial values to simultaneously detect transmitted signals,
resulting in improved detection performance through selection
based on a smaller loss function solution. The authors conducted
a comprehensive evaluation of four prominent model-based deep
learning techniques, namely DetNet, MMNet, GEPNet, and
Recurrent Equivariant MIMO (RE-MIMO), based on different
working principles. They assessed the reliability, complexity,
and robustness of these techniques against the practical
Massively Parallel Non-Linear (MPNL) processing detection
approach [16]. Similar to DetNet, orthogonal approximate
message passing network (OAMP-Net) was developed by
unfolding the OAMP algorithm [17], [18]. It has been proven
that OAMP-Net requires minimal training time and is capable
of adapting to varying channels. However, it necessitates prior
estimation of noise variance. Additionally, two data-driven ap-
proaches called deep neural network (DNN) and convolutional
neural network (CNN) are employed for MIMO detection over
a fixed channel case in [19]. Another data-driven approach is
presented in [20], where conventional DL network structures are
utilized for signal detection in a typical MIMO system over an
erroneous channel scenario. In [21], authors propose a DL-based
detection method utilizing neural networks to obtain optimal
decision regions for multi-user MIMO systems. Furthermore,
in [22], a MIMO detection method employing DNN is proposed
for an optical transmission system, indicating the growing
trend of applying DL to communication technology. The
authors propose the modified expectation propagation network
(MEPNet), which employes the DL scheme and unfolds iterative
the modified expectation propagation detector (MEPD) to
provide the best damping factor and initial variance in [23]. The
authors in [24] propose a parallel detection network (PDN) that
achieves a significant diversity effect by incorporating a tailored
loss function and minimizing the similarity between detection
networks. Notably, the performance of PDN exhibits substantial
improvement with an increasing number of parallel detection
networks in time-varying MIMO channels. The authors [25]
introduce the learn iterative search algorithm (LISA), which
treats the signal detection problem as a tree-based decision
problem with the objective of learning the optimal decision
strategy. The authors develop a model-driven DL detector
based on variational Bayesian inference, where their proposed
unfolded DL architecture is inspired by the non-invertible
variational Bayesian learning framework, effectively avoiding
matrix inversion by maximizing the relaxed evidence lower
bound in [26]. In [27], authors propose an efficient data-driven
detection network, i.e., accelerated multiuser interference
cancellation network (AMIC-Net), for uplink massive MIMO
systems.

However, the design and implementation of DL-based MIMO
detection algorithms present their own challenges. These chal-
lenges encompass the selection of an appropriate network archi-
tecture, optimizing of hyperparameters, mitigation of overfitting

issues, and management of the computational complexity asso-
ciated with training large-scale DNNs. Nonetheless, numerous
research endeavors have demonstrated the feasibility and effi-
cacy of DL-based MIMO detection in various wireless commu-
nication scenarios. In this research context, the paper is dedicated
to overcoming the challenges of high complexity in DL detection
algorithms, particularly focusing on time complexity. Therefore,
a DNN-based detection method is proposed for pulse position
modulation (PPM) signal detection in MIMO-FTN OWCs.

The remaining part of this paper is organized as follows:
Section II presents the system model, followed by the detection
scheme is in Section III. Numerical results and complexity anal-
ysis are presented in Section IV. Finally, Section V concludes
the paper.

II. SYSTEM MODEL

Traditionally, intensity modulation/direct detection based on
an on–off keying (OOK) is widely accepted in OWC owing to
its easy implementation and lower cost [28]. To further improve
spectrum efficiency and anti-interference capability, PPM has
been considered for OWC communications. Compared with
OOK, PPM significantly increases the data transmission rate
and system reliability [29]. Fig. 1 illustrates a DNN-based
MIMO-FTN OWC system utilizing 4PPM modulation. User
data is initially encoded using Gray code and then mapped into
4PPM format. Subsequently, the mapped signal undergoes FTN
shaping via a filter [30] before being converted from digital
to analog through a digital-to-analog converter (DAC), and
transmitted through multiple optical antennas in the atmospheric
channel. At the receiver end, the optical signals are received
by multiple optical antennas and converted into electrical sig-
nals which are then forwarded for analog-to-digital conversion
(ADC), matched filtering, and sampling. Finally, the signal is
sent to the DL module for data recovery.

According to the Nyquist criterion, in a bandwidth-
constrained channel, the maximum code rate for high-speed
data transmission should not exceed twice the channel band-
width if we want to avoid inter-symbol interference (ISI). If
this limit is exceeded, severe ISI will occur and result in a
degradation of the system’s bit error rate (BER) performance.
This maximum rate for ISI-free transmission is also referred to
as the Nyquist rate. Therefore, for an ideal low-pass channel
with the bandwidth of W, the symbol transmission rate must
be less than 2W Bd, where 2W Bd is defined as the Nyquist
rate [31]. For an ideal band pass channel, the corresponding
Nyquist rate is W Bd. In FTN rate communication, the symbol
transmission rate exceeds 2W Bd while maintaining a low-pass
channel of just W. With the same symbol rate, FTN technology
directly improves spectrum efficiency [32]. Assuming that h(t)
represents a band-limited pulse with finite energy and H(f) is
its Fourier transform, h(t) is considered T-orthogonal when it
satisfies (1).
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Fig. 1. Schematic of DNN-based MIMO-FTN OWC system.

Since the sin c(t) = sin(πt/T )
(πt/T ) pulse, which is a T-orthogonal

pulse, can be obtained by normalizing its energy:

gT (t) =
sin(πt/T )

(πt/
√
T )

(2)

Using the pulse gT (t) to transmit binary data with a symbol
period T, assuming the transmitted data is an all “1” sequence
and there is no ISI, this transmission mode is referred to as
orthogonal transmission. In this case, the transmitted signal can
be represented as:

s(t) =

N2∑
n=N1

angT (t− nT ) (3)

where an ∈ {−1, 1}, N1 and N2 are integers that satisfy N2 >

N1. Assuming transmission through an Additive White Gaus-
sian Noise (AWGN) channel with a noise two-sided power
spectral density of N0 /2, the BER at the receiver using optimal
detection can be expressed as:

Pe = Q

(√
2E

N0

)
(4)

where Q(x) = 1
2erfc(

x√
2
), erfc(·) is the complementary error

function, E is the energy of pulse gT (t). Sending data with
smaller time intervals while keeping the transmission power
constant can be expressed as:

s(t) =

N2∑
n=N1

an gT (t− nT ′) =
N2∑

n=N1

an gT (t− nτT ) (5)

where an denotes the information carried by the n− th sym-
bol, τ signifies the time acceleration factor (0 < τ < 1), which
characterize the Nyquist compression ratio, and T corresponds
the symbol period, T ′ = τT < T . It should be noted that when
τ = 1, the entire process is equivalent to Nyquist transmission

Fig. 2. Transmitted symbol waveforms with Nyquist and FTN signaling.

without any ISI. When 0 < τ < 1, the system can be considered
as an FTN transmission system. FTN improves the spectral ef-
ficiency by reducing distance between adjacent symbols within
limited bandwidths.

Fig. 2 illustrates the transmitted symbols with Nyquist and
FTN signaling, respectively. Each symbol’s waveform is subject
to interference from other symbols, thereby introducing chal-
lenges in demodulation and symbol detection.

The atmospheric channel fading coefficient h follows
Gamma–Gamma distribution [33], and its probability density
function can be expressed as:

ϕ =
2(αβ)

α+β
2

Γ(α)Γ(β)
· hα+β

2 −1 ·Qα−β(2
√

αβh), h > 0 (6)

where Qα−β(·) is the second class modified Bessel function of
order α− β; Γ(·) is the Gamma function, α and β are the large
and small scale scattering coefficients, respectively. The values
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Fig. 3. Schematic diagram of an 8-layer deep neural network.

of α and β can be determined as

α =

{
exp

[
0.49σ2(

1 + 0.18d2 + 0.56σ12/5
)7/6

]
− 1

}−1

(7)

β =

{
exp

[
0.51σ2(

1 + 0.9d2 + 0.62σ12/5
)5/6

]
− 1

}−1

(8)

where σ2 = 0.5C2
nk

7/6L11/6 is the Rytov variance, C2
n is the

refractive-index structure constant, L is the transmission dis-
tance, k = 2π/λ, λ is the wavelength, d =

√
kD2/(4L), D is

the receiver aperture diameter.
The considered system is a MIMO configuration, where the

number of receiving antennas (Nr) and transmitting antennas
(Nt) are defined. The received signal can be mathematically
expressed as

ȳ = H̄x̄ + n̄ (9)

where x̄ denotes the transmitted symbol vector, H̄ denotes the
channel matrix and n̄ denotes the noise.

When employing ML detection, the estimated signal can be
mathematically represented as follows:

xML = argmin ‖y −Hx‖2 (10)

where y, H , and x denote the received signal, channel matrix,
and transmitted signal respectively. The ML detection technique
achieves optimal performance when there is perfect knowledge
of the channel state information (CSI). It is widely acknowl-
edged as the most effective approach for detecting signals in
MIMO systems. However, its exponential complexity renders
it impractical for real-world applications. Therefore, DL-based
algorithms are being considered for signal detection.

III. DEEP NEURAL NETWORK DETECTION SCHEME

A. The Structure of the DNN

The schematic diagram in Fig. 3 illustrates a fully connected
DNN with 8-layer, consisting of an input layer, 6 hidden layers,
and an output layer. The primary function of the input layer is to
receive initial input data and propagate it through the network.
The hidden layers play a crucial role in learning and extracting
pertinent features from the input data. The output layer servers as
the final stage of the DNN, responsible for generating predictions

Fig. 4. Structure of m-th hidden layer.

or outputs based on the processed input data. To achieve multi-
classification, the Softmax activation function is employed to
produce the final output of the network. These interconnected
layers are weighted connections that are learned during training
process. As illustrated in Fig. 3, we can describe this complete
DNN as a function f(·) that maps input vectors to output vectors
at each layer through neuron calculations. The mapping function
of the entire DNN can be represented as:

xout = f(xin; θ) (11)

where xin denotes the input vector, xout denotes the output
vector, and θ = {θ1, θ2, . . . , θL} denotes parameter set of DNN
which includes subset parameters in each layer.

As depicted in Fig. 4, for an M-layered DNN, the xM−1 refers
to m−th layer’s input vector which acts as (m−1)−th layer’s
output vector. The mapping function can be expressed as:

xm = fm(xm−1; θm)

= ρm(wm xm−1 + bm) (12)

where xm denotes m− th layer’s output vector, wm ∈ θm and
bm ∈ θm denote weight and bias respectively for m−th layer,
ρm(·) signifies activation function adding non-linearity to enable
arbitrary fitting capability [34]. Furthermore, we have opted to
utilize the Sigmoid function [35] as the activation function for
output layers and the rectified linear unit (ReLU) [36] activation
function for hidden layers. Specifically, these functions can be
expressed as:

fS(x) = Sigmoid(x) =
1

1 + e−x
(13)

fR(x) = ReLU(x) =

{
x, if x ≥ 0
0, if x < 0

(14)

The Sigmoid function yields an output value ranging from
0 to 1, rendering is suitable for binary classification methods.
On the other hand, the ReLU function exhibits characteristics of
simplicity, low computation cost and fast convergence speed.

B. The Structure of the DNN-based MIMO Detector

The proposed DNN-based MIMO-FTN detector is illustrated
in Fig. 5. At the receiving end, the signal is sampled and fed into
a DL module, which can be considered as a “black box” that
decodes the signal using a neural network, thereby achieving
demodulation of the signal. In the DL module, the model is
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Fig. 5. Schematic diagram of the signal detector.

optimized through training the dataset. Each hidden layer within
the network consists of a fully connected (FC) sublayer and
a ReLU. The numbers of neurons in each layer are 16, 100,
200, 300, 300, 200, 100 and 16, respectively. The output layer
only contains a FC sublayer. To train this model, we utilize the
cross-entropy function as the loss function within the Tensorflow
framework. Initially, output values are mapped to the interval
(0, 1) using a Sigmoid function and then we calculate the
cross entropy between these practical output values and training
targets.

C. Training Procedure and Details

The training process of DNN consists of the following steps
and procedures: (a) Data preparation. Initially, Matlab soft-
ware is utilized to generate a random 1× 106 (0–1) sequence.
Subsequently, the data sequence is mapped into 4PPM signal,
followed by dividing the data into training and testing dataset.
(b) Parameter initialization. The weights and biases of the
network are randomly initialized to introduce an element of
randomness. (c) Forward propagation. Data is input from the
input layer and propagated through the hidden layer, with the
output layer responsible for generating predictions or final result.
This involves utilizing the output of each preceding layer as
input of subsequent layers until reaching the output layer itself.
(d) Loss Calculation. The network’s output is compared with true
labels in order to calculate loss function values accordingly. (e)
Backpropagation. Data flows from the output layer back to the
input layer while gradients of each parameter with respect to loss
function are calculated using chain rule principles. The param-
eters are then updated iteratively via an optimization algorithm
that minimizes loss. (f) Parameter update. Network parameters
such as weights and biases are updated using an optimization
algorithm based on gradients. (g) Iteration. By repeatedly feed-
ing data into the network and performing aforementioned steps,
network parameters continue being updated until a desired cri-
terion is achieved. Once all iteration has been completed, DNN
detector can serve as a MIMO system detector equipped with
trained parameters. Specifically, we employ adaptive moment
estimation optimizer during our training process.

Fig. 6. Testing process. (a)Accuracy curve, (b) loss curve.

D. Testing Process

The testing process of a trained DNN involves evaluating
the model’s performance and generalization ability using an
independent testing dataset. By utilizing the learned weights and
biases, the testing data is propagated through the trained network
via forward propagation to obtain predictions or outputs from
the output layer of the network. Finally, the SoftMax function
classification can be utilized for signal detection.

The accuracy and Loss curves are depicted in Fig. 6. As
illustrated in Fig. 6(a), it becomes apparent that the network’s
testing accuracy tends to stabilize after undergoing 40 epochs
of training. Furthermore, as observed from Fig. 6(b), the loss
exhibits no further reduction beyond the 40th epoch. Ultimately,
the network achieved an accuracy rate of approximately 99.99%,
with a loss value below 10−4.

IV. SIMULATION ANALYSIS

The choice of training or test dataset size contingent upon the
complexity of the system and the employed DL algorithm. Uti-
lizing a small dataset may lead to subpar detection performance,
as it might not adequately capture the diverse characteristics
inherent to the system. Conversely, using a large dataset can
escalate computational complexity [37]. Therefore, multiple
simulations are conducted to determine the appropriate dataset
size and parameters that can yield optimal BER performance.
It should be noted that the accuracy of the neural network is
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TABLE I
SUMMARY OF SIMULATION PARAMETERS

TABLE II
RELATIONSHIP BETWEEN LEARNING RATE AND ACCURACY

Fig. 7. Relationship of BER and modulation format.

affected by the DL algorithm itself, which plays a crucial role in
solving nonlinear problems. Hence, evaluating the performance
and robustness of our proposal is essential. The simulation
parameters used are listed in Table I.

Table II displays the accuracy of the network under different
learning rates. A validated system necessitates an appropri-
ate learning rate, as convergence becomes unattainable with
excessively large values and slow or nonexistent convergence
occurs with excessively low values. Furthermore, increasing
the learning rate may cause a transition from underfitting to
overfitting [38]. It is evident from the Table that a learning rate
of 0.001 yields optimal performance.

Fig. 7 shows the BER curves under different modulation
formats. Pulse amplitude modulation (PAM) commonly em-
ployed for intensity modulation, where the pulse amplitude
is adjusted according to a specific law to regulate the output.
However, achieving ideal sampling of the impulse sequence

Fig. 8. BER under different atmospheric turbulence channels.

proves challenging in practical scenarios. Quadrature phase
shift keying (QPSK), a form of quadrature modulation, enables
transmission of two bits per symbol by dividing the carrier
signal into in-phase (I) and quadrature (Q) components that
are modulated independently. PPM modulation stands out due
to its simplicity, ease of implementation, and high robustness,
leading to significant improvements in data transmission rate and
system reliability. As shown in Fig. 7, it can be observed that
QPSK outperforms 4PPM modulation when the signal to noise
ratio (SNR) falls below 17.5 dB. However, when SNR exceeds
this threshold value, 4PPM surpasses QPSK as a result of DL
being consistently performed within the real-valued domain
with consideration given to treating imaginary part signals as
equivalent real-valued representations. Henceforth, we adopt
4PPM modulation due to its superior performance at high SNR
levels.

As depicted in Fig. 1, the signal is transmitted via the antennas
and directed towards the Gamma-Gamma atmospheric channel.
It is widely acknowledged that various atmospheric factors, such
as rain, snow, sleet, fog, haze, pollution, etc., significantly impact
laser beams by inducing reflection, refraction, scattering, and at-
tenuation [39], [40], [41]. The accuracy of modeling atmospheric
turbulence using the Gamma-Gamma distribution has been
demonstrated with distinct levels of turbulence intensity (weak,
moderate, and strong) categorized by refractive-index structure
constant values [42] of C2

n = 1× 10−17, C2
n = 1× 10−14, and

C2
n = 1× 10−13, respectively. The curves depicted in Fig. 8

illustrate the correlation between different levels of atmospheric
turbulence intensities and BER, with a roll-off factor of 0.5, τ=
0.8, and a transmission distance of 1000 m. It is evident from the
figure that weak turbulence conditions result in superior BER
performance. Specifically, when BER= 3.8× 10−3, the BER
performance under weak turbulence is approximately 1 dB and
2 dB better than that under moderate and strong turbulence,
respectively. Moreover, as the intensity of turbulence increases,
the adaptability of DL gradually deteriorates.

The BER performance of the 2 × 2 MIMO-FTN system
gradually deteriorates with increasing transmission distance at
a specific wavelength, as depicted in Fig. 9, where the accel-
eration factor is set to 0.8 and SNR is maintained at 20 dB.
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Fig. 9. Curve of transmission distance and BER at different wavelengths.

Fig. 10. Relationship of BER and acceleration factor τ .

This degradation can be attributed to atmospheric turbulence
within the channel, leading to varying degrees of reflection,
refraction, scattering, and attenuation of the laser signal. Fur-
thermore, a comparison among different wavelengths reveals
that DL method and longer laser wavelengths exhibit superior
BER performance and enhanced ISI resistance for the system.

Fig. 10 shows the impact of the acceleration factor on the
system’s BER performance. As the BER reaches 10−4, reducing
the acceleration factor from 1 to 0.9 and further to 0.8 results in
a degradation of approximately 2.5 dB and 5 dB, respectively.
Similarly, when the BER is 10−3, decreasing the acceleration
factor from 1 to 0.9 and then to 0.8 leads to a decline in BER
performance by about 3 dB and 4 dB, respectively. It can be
inferred from this figure that as acceleration factor decreases,
there is a rapid decrease in BER curves observed. Moreover,
it is evident that with an acceleration factor of only 0.8, our
proposed approach can still ensure satisfactory communication
quality. Additionally, the spectrum efficiency has enhanced by
approximately 25%.

The BER curves for different numbers of antennas is depicted
in Fig. 11. The MIMO-FTN system exhibits a significant re-
duction in BER compared to the SISO-FTN system. At a BER
is 10−4, the SNR for 2 × 2 and 2 × 4 MIMO-FTN system

Fig. 11. Correlation between BER and the number of antennas.

Fig. 12. Correlation between the BER and training time as well as the number
of network layers.

is reduced by approximately 7.5 dB and 14 dB, respectively,
relative to the SISO-FTN system. Hence, increasing the number
of antennas can effectively mitigate the impact of atmospheric
turbulence on BER. In addition, augmenting the number of an-
tennas at the receiving end confers greater advantages in mitigat-
ing the effects of atmospheric turbulence compared to increasing
them at the transmitting end. Compared to the massive MIMO
method proposed in [26], our proposal shows comparable BER
performance in 4 × 4 MIMO-FTN systems. Additionally, the
trained neural network by the [26] can only accommodate a
particular channel realization.

Fig. 12 shows the BER performance and required training
time of the DNN versus the number of network layers. We can
find that when the network is with an increasing number of
network layers, the training time becomes larger indicating that
it becomes more difficult to train the parameters in the network.
Moreover, the BER performance is improved when the number
of network layers increases from 6 to 8, since more layers can
help capture the interference correlation characteristics among
different symbols. However, too many parameters will cause
the training result inaccurate due to inefficient back propagation
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of gradients in deep networks [43], [44], which leads to a
poorer BER. Additionally, studies in [45], [46] have shown that
increasing the number of network layers results in a significant
rise in computational complexity and overfitting. Overfitting can
be categorized into three causes [47]. Firstly, when the training
dataset consists of a small number of samples, it may not accu-
rately represent all possible scenarios, resulting in less accurate
predictions by the trained network. Therefore, it is important for
the training dataset to encompass various types of data as much
as possible. Secondly, the network is unable to precisely estimate
the relationship between input and output due to excessive in-
terference from training data. Lastly, high complexity within the
network requires processing numerous parameters to fit every
data point in the training dataset accurately; consequently, this
prevents generalization to test datasets. Henceforth, selecting
an appropriate number of network layers plays a crucial role in
system performance optimization. By taking into account both
the BER performance and training time, we can validate that it is
reasonable to set the number of network layers to 8. It becomes
evident that the performance of DNN approaches that of ML and
the complexity reduced by 40%. This can be attributed to ML’s
exhaustive search over all possible transmitted signals in order
to find the global optimal solution, resulting in prohibitively
high time complexity. Furthermore, compared to the method
presented in [27], our approach exhibits improved performance
and achieves a certain level of complexity reduction.

V. CONCLUSION

We propose a DNN decoder for MIMO-FTN signal detec-
tion, which utilizes the backpropagation algorithm to compute
gradients from the output layer to the input layer and updates
each parameter using the chain rule to minimize loss. Simulation
results demonstrate that this network exhibits comparable BER
performance to the ML method while reducing complexity by
40%. Consequently, this scheme effectively reduces system
complexity while ensuring spectral efficiency. In addition, the
DL-aided detection method holds promise as a candidate for
high-speed FTN-MIMO OWC systems.
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