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Combustion Field Prediction and Diagnosis via
Spatiotemporal Discrete U-ConvLSTM Model
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Abstract—Considering the importance of combustion diagno-
sis in industrial manufacturing and many fields, efficient, quick,
and real-time multidimensional reconstruction is necessary and
indispensable. Hence, focusing on the combustion field dynamic
and multi-dimensional reconstruction, a modified U-ConvLSTM
model was proposed to combine with the TDLAS method to resolve
the real-time reconstruction and short prediction. By dividing the
combustion field into space and time slices, we used discretized spa-
tiotemporal slices to complete the 2-D distribution reconstruction
and then expanded them into higher dimensions. The simulation
results demonstrate that our design can effectively reconstruct
different 2-D distributions, achieving a reconstruction error of less
than 5%. Three-step predictions also performed well, a PSNR no
less than 30 dB, and an SSIM no less than 0.75. In general, our
multidimensional combustion field reconstruction method, based
on the spatiotemporal discretization U-ConvLSTM model, can en-
hance the accuracy of combustion field reconstruction and provide
short-term predictions. This work will contribute to closed-loop
control in industrial fields.

Index Terms—Tunable diode laser absorption spectroscopy
(TDLAS), U-model convolutional long short-term memory (U-
ConvLSTM), combustion site, reconstruction, predicted.

I. INTRODUCTION

A S THE environment changes everywhere, global warming
accelerates [1], [2], [3], [4], [5]. How to use limited energy

to meet production and living needs and control greenhouse gas
emissions is crucial. Combustion is one of the most important
processes in industrial production, covering energy consump-
tion and gas emissions. Combustion diagnostics are an effec-
tive method to detect combustion performance, efficiency and
emissions.

Because of the critical role of multi-parameter detection in
combustion, many re-searchers have focused on typical com-
bustion fields in industrial manufacturing and military defense.
These include detection and monitoring of high-temperature
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boilers, combustion diagnosis of aerospace engine combustion
chambers [6], and assessment of damage efficiency of high-
temperature explosion fireballs. However, fire detection, moni-
toring, and prediction are also necessary to ensure life safety.

The distribution of the temperature field and gas concentration
field can directly and effectively reflect the combustion state,
providing an essential method for evaluating the combustion
field. Therefore, many researchers aim to redefine combustion
diagnostics as temperature and concentration field diagnostics
rather than focusing solely on flames or chemical reactions.

Common temperature measurement methods can be broadly
categorized into two types: contact and non-contact measure-
ments, each applicable in different scenarios. With the advance-
ment of new sensors and sensor techniques, particularly spec-
tral detection methods such as absorption spectroscopy, non-
contact measurement methods have gained popularity. These
techniques, known for their non-invasive nature, rapid response,
and high sensitivity [7], [8], are generally well-suited to meet
the demands of a wide variety of complex and harsh combustion
sites. To accurately represent the combustion field’s distribution
and analyze combustion conditions, researchers are working
on reconstructing the 2-D or 3-D distributions of temperature,
concentration, or pressure.

On the one hand, due to the limitations of line of sight (LOS)
[9], the detected data represent the integral along the optical
path. Therefore, it’s necessary to utilize computed tomography
(CT) techniques to reconstruct the distribution of parameters.
Traditional methods, such as filtered back projection (FBP) and
the algebraic reconstruction technique (ART) [10], [11], [12],
[13], are used to invert the actual distribution of temperature or
other parameters in the combustion field. Xu, Liu, et al. [14],
[15], [16], [17] used a pentagonal TDLAS detection system and
CT-TDLAS to accomplish the 2-D reconstruction of temper-
ature and H2O concentration in swirl combustion. Choi et al.
[18] deployed multi-angle temperature detection equipment that
divided the combustion field into a 22 × 22 square mesh grid.
Jeon et al. [19] constructed a CT-TDLAS system with 16-path
cells to measure the 2-dimensional temperature distribution
of a propane-air pre-mixed flame, which covered various fuel
mixing conditions.

On the other hand, given the complexity of the combustion
sitest, it is challenging to arrange a large number of lasers
and detectors for detection, leading to data scarcity and recon-
struction difficulties. Conversely, an excess of data can hinder
real-time reconstruction, failing to meet the demands of dynamic
combustion detection and reconstruction.
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Therefore, some researchers have tried soft measurements
to realize high-quality re-construction of the region of interest
(ROI). Cai et al. [20] used a deep learning method to improve
the reconstruction, such as the convolutional neural network
(CNN), and indicated that unsupervised or semi-supervised
deep learning models such as deep belief networks (DBN) and
generative adversarial networks (GAN), have a possible and
better application in the tunable diode laser absorption (TDLAS)
tomography reconstruction field.

The concept of spatiotemporal discretization was introduced
by Klapproth et al. [21] in 2015. Since then, the rise of deep learn-
ing has led some researchers to explore this concept further. They
aim to predict movement and forecast precipitation using images
like radar echo maps [22], [23]. Wang et al. [24] also improved
the PredRNN method to obtain good results for both action-free
and action-conditioned predictive performance. Through these
studies, we determined that the dynamic combustion process can
also be discretized with the spatiotemporal slice; using these
slices, we can realize the reconstruction under the time and
spatial dimensions, which will be beneficial for the detection,
diagnosis, and prediction. However, in the field of dynamic
combustion, there are few reports on predicting temperature
distribution.

In the article, we propose an improved U-ConvLSTM model
to reconstruct and predict the multi-parameter distribution
within the combustion field. Based on the TDLAS temperature
detection and reconstruction method, the feasibility of a multi-
parameter distribution reconstruction technology is demon-
strated, and the dynamic reconstruction of the temperature distri-
bution is achieved through spatio-temporal discretization. First,
we select appropriate laser spectrum line pairs, build a TDLAS
detection system to measure the combustion field, get projection
data and thereby establish an optical detection model. Then, the
U-ConvLSTM model is designed for subsequent reconstruction,
training, prediction and performance verification of combustion
field temperature distribution. Finally, we can demonstrate the
superior performance of our U-ConvLSTM reconstruction and
prediction method through comparison with different tempera-
ture reconstruction methods.

II. MATH

A. Tunable Diode Laser Absorption Spectroscopy and
Tomographic Methods

Tunable diode laser absorption spectroscopy (TDLAS) is a
popular absorption spectroscopy technique [8], [9], [10], fea-
turing a quick response and high selectivity. The mathematical
background of TDLAS is the Beer–Lambert law, which is shown
in Fig. 1, and the absorbanceα(ν) dependent on the wavenumber
ν [cm−1] can be defined as:

α(ν) =
It(ν)

Io(ν)
= exp{−kνL} = exp{−S(T )PXϕ(ν, T ) · L}

(1)
where It(ν) and Ii(ν) are the intensities of the transmitter laser
and the incident laser, P [atm] is the total pressure of the region
of interest, X is the concentration of the material under test,

Fig. 1. Schematic diagram of Beer-Lambert law.

Fig. 2. Schematic diagram of TDLAS: (a) the relationship of incident light and
the transmitted light with development of wavenumber; (b) the relationship of
the center wavenumber and ab-sorption coefficient under different temperature.

and S[T(x)] [cm−2·atm−1] is the line strength of the molecular
transition of the absorbing species, which is dependent on the
temperature [22], [23], ϕ(ν, T) [cm] is the line-shape function.
The relationship between the incident light and the transmitted
light is shown in Fig. 2(a), and the relationship between the
absorption coefficient α(ν) and wavenumber at different tem-
peratures is shown in Fig. 2(b).

The path based integrated absorbance Ai is:

Ai =

∫ b

a

aνi
(l)dl =

∫ b

a

P · Sνi
[T ] ·X · ϕ(ν, T )dl (2)

where line strength S[T] is a function of temperature, and the
relationship can be described as:

S(T ) = S(T0)
Q(T0)

Q(T )

T0

T

· exp
⎧⎨
⎩−hcE′′

i

k

(
1

T
− 1

T0

) 1− exp
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kT0

)
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⎭
(3)

Q(T0) and Q(T) are partition functions of gas absorption
molecules at temperatures T0 and T, which can be fitted by a
third-order polynomial of temperature and can be ex-pressed as:

Q(T ) = a + bT + cT 2 + dT 3 (4)

In addition, the HITRAN spectral database [25] online web-
site (HITRAN on the Web) provides a large number of molecular
partition function curve with temperature change, which can be
queried, or directly called by Python through HAPI.

In this way, we can calculate the value of temperature T based
on the two selected spectral lines as follows, where h [J·S] and
c [m/s] are the Planck constant and speed of light, respectively,
h [J/K] is Boltzmann constant, T0 is defined as 296 K, A1 and
A2 are the absorbances of different absorption lines.

T =
hc
k (E1

′′ − E2
′′)

ln
(

A1

A2

)
+ ln

(
S2(T0)
S1(T0)

)
+
(
hc
k

) (
E1

′′−E2
′′

T0

) (5)
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Meanwhile, the concentration X of the detected gas molecules
shall be:

X =
A

PS(T )ϕ(ν, T )L
(6)

In practical applications, we divide the ROI into grids to
simplify the calculation, and (2) can be discretized as:

Ai(ν) =

M∑
m=1

N∑
n=1

αmn(Tmn, Xmn, ν) · lνmn (7)

where m × n is the distribution of the grids, k is the number
of beams, and lνmn is the ab-sorption path length of the kth laser
beam through the pixel (m, n). It can be expressed in matrix form
in (8).

An absorption path isn’t comprised solely of one parameter’s
information about the combustion field. Consequently, when we
select different types of absorption lines, we can simultaneously
reconstruct multiple parameters. This technique is referred to
as Nonlinear Tomographic Absorption Spectroscopy (NTAS)
[21] in some studies, which uses known projection data to infer
the spatial distribution of the entire field, and can use regu-
larization techniques and optimization algorithms to improve
reconstruction the difference between the value and the actual
measured value.

Aνi
= F · ανi

,

F =

⎡
⎢⎢⎢⎢⎢⎣

f1,1 f1,2 . . . f1,n−1 f1,n
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(8)

Similarly, 2-D detection and reconstruction can be described
as shown in Fig. 3. X and Y make up the meshing grid of the
2-D distribution, and each grid is on behalf the absorbance of
this place, which is dependent on the wavenumber and is shown
with dimension Z. By computing the 3-D tensor, we realize the
multi-parameter distribution reconstruction.

B. Deep Convolutional Neural Networks

The 2-D reconstruction of the combustion field can be trans-
formed into an image generation problem for extracting, gen-
erating, and predicting image features. Therefore, the key can
be considered as how to extract and learn from image features,
including color, texture, shape, and local feature points. Among
these, local features exhibit good stability and are not easily
influenced by the external environment.

Fig. 3. Transforming 2-D parameter distribution into 3-D tensor based on the
TDLAS combustion diagnosis method.

Fig. 4. Schematic diagram of the typical structure of deep convolutional neural
network for prediction and generation.

Deep Convolutional Neural Networks (DCCNs) have proven
effective in addressing the problem of image feature extraction,
which benefits from their local receptive fields, shared weights,
and pooling. A typical DCCN includes multiple sets of convolu-
tional layers, pooling layers, and non-linear activation functions.
The convolutional layer is used to extract spatial information
represented in images, while the pooling layer is used to re-duce
the spatial size and prevent overfitting. This way, it can decrease
the amount of data processing while retaining useful informa-
tion, fulfilling the need for rapid computation. Through multiple
convolutional layers, discriminative local image features can
be de-scribed and extracted, which play a significant role in
subsequent generation.

The typical model of DCCN is shown in Fig. 4 and the whole
process can be de-scribed:

a) Design and select the convolutional and pooling layers,
including the kernel size, number, and connection, with the
aim of extracting the deep features of the input projection
data.

b) By driving the feature maps into a one-dimensional feature
vector with a full connection, we can then multiple the
coefficient matrix and add the biases on the vector to the
vector and generate the predicted distribution.

c) Calculate the loss function, set a reasonable learning rate,
decrease the loss, and optimize the model.

d) Deploy and invoke the optimal model.
In our design, the DCNN model was used to generate and

predict a distribution, so the loss function we used was the mean
squared error (MSE), defined as:

lossMSE =
1

n

n∑
i=1

(y∗i − yi)
2 (9)
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Fig. 5. Schematic diagram of ConvLSTM spatiotemporal discretization re-
constructive method based on the combustion field.

where n is the size of the output of the model, y∗ and y are the
true value and the generated value (predicted value) of the output.
By repeating training and optimizing the model, decreasing the
loss function value, the structure parameters are determined and
ready to be used for the generation and prediction.

C. Spatiotemporal Long Short-Term Memory

The combustion field is a dynamic and continuous process,
which is difficult to calculate, and must be discretized. Inside
every cell in the m× n discretized grid, several measurements are
determined by ν, varying over time. Therefore, the observation
at any time can be represented by a tensor like χ ∈ Rv×m×n,
sharing the same structure as in Fig. 3, where R denotes the
domain of the observed features. By recording the observations
peri-odically, we obtained a sequence of tensors χ̂1, χ̂2, · · · , χ̂t.

The spatiotemporal sequence forecasting problem is to predict
the most likely length-K sequence in the future, given previous
J observations that include the current one [18].

χ̂t+1, χ̂t+2, · · · , χ̂t+K

= argmax
χ̂t+1,χ̂t+2,··· ,χ̂t+K

× p (χt+1,, · · · , χt+K |χ̂t−J+1, χ̂t−J+2, · · · , χ̂t) (10)

To forecast the combustion field multi-parameter, the observa-
tion at each timestamp is the 2-D distribution feature map when
we are forced on just one parameter, such as the temperature
2-D distribution.

Long short-term memory (LSTM) is a type of RNN, which
has shown a good effect in the time prediction process, such
as aero-engine remaining useful life prediction [26], [27]. How-
ever, when it comes to image prediction, LTSM has a weak effect
on the spatial correlation.

The integration of Convolutional Neural Networks (CNNs)
and Conv-LSTM [22] is pivotal in extracting image features.
This is especially true for predicting and generating spatiotem-
poral discrete fields. For example, Fig. 5 shows the discretized
combustion temperature distribution divided into spatiotemporal
slices. These slices are dependent on dynamic time and display
spatial distribution information. Initially, distribution images are

Fig. 6. Typical Structure of LSTM.

fed into the CNN model. This model extracts feature informa-
tion, which includes both the statistical 2-D distribution and dy-
namic changing rules. The extracted feature maps, now in vector
form, are inputted into the LSTM. This process is designed to
capture temporal relations. In this two-step approach, the focus
of the first step is primarily on spatial information. The second
step, in contrast, concentrates on temporal information.

The principle of the LSTM is described in (10) and shown
in Fig. 6. The key process of the LSTM is how to handle the
new input, the status to be forgotten, and save the useful data,
covering the three different gates.

(χt : input at time t; W : weight; ◦ : Hadamard product).
a) Input process: If the input gate it is activated, the informa-

tion will be accumulated in the cell.
b) Forget process: if the forget gate ft is on, the past cell status

ct-1 could be “forgotten”.
c) Save process: whether the latest cell output ct will be

propagated to the final state ht is further controlled by
the output gate ot.

it = σ(Wxi ∗ χt +Whi ∗ Ht−1 +Wci ◦ ct−1 + bi)

ft = σ(Wxf ∗ χt +Whf ∗ Ht−1 +Wcf ◦ ct−1 + bf )

ct = ft ◦ ct−1+it ◦ tanh (Wxc ∗ χt+Whc ∗ Ht−1+bf )

ot = σ (Wxo ∗ χt +Who ∗ Ht−1 +Wco ◦ ct + bo)

Ht = ot ◦ tanh(ct) (11)

More complex structures can be formed if more layers can
be stacked and temporally concatenated, meeting different en-
vironmental needs, and can be applied to solve many real-life
spatiotemporal prediction problems.

The above describes the working principles of TDLAS and
ConvLSTM. The function of TDLAS is to detect the optical
projection information of the temperature in the combustion
field, which is used as the input of the subsequent prediction
model. The role of ConvLSTM is to extract image features. As
the third step of the prediction model, it will solve the problem
of prediction and generation of spatiotemporal discrete fields.

III. IMPLEMENTATION OF THE RECONSTRUCTION METHOD

A. Simplified Mathematical Model

With the aim of making our designed combustion field multi-
dimensional reconstructive method based on spatiotemporal
discretization easier to understand, we have analyzed the math-
ematical model of the entire system.
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Fig. 7. Schematic diagram of combustion field diagnosis based on TDLAS
photoelectric detection system.

Fig. 8. Schematic diagram of conversion between cartesian coordinates and
polar coordinates.

A schematic of the TDLAS combustion field detection system
is shown in Fig. 7. From left to right are the DFB laser controller,
the combustion field, often called the region-of-interest (ROI)
and the photoelectric detection device. With the aim of saving
the equipment input, we take advantage of a lens to change the
collimation laser to cone-beam and realize the 3-dimensional
field measurement detection, which will make a 2-dimensional
surface projection on the detector. We have made only one
angle projection process in Fig. 7, where (xk, yk, zk) is the
3-dimensional combustion field coordinate and (xω, yω, zω) is
the photoelectric detection and projection coordinate.

Through the conversion between Cartesian and polar coor-
dinates, we can calculate the spatial coordinates of the points
on the cone beam in the ROI. The conversion process is shown
in Fig. 8. In this way, we can drive the body measurement into
surface measurement, which means we only care for one slice
of the body. ⎧⎨

⎩
x = l · sinϕ · sin θ
y = l · cosϕ
z = l · sinϕ · cos θ

(12)

Hence, we only need to take the 2-D surface detection and
reconstruction, which is shown in Fig. 9, which is one of the
detection angles. In this design, we coupled the three types of
lasers and took advantage of the lens to drive it into a cone
beam (shown as a fan shape in 2-D). Through multi-angle
detection and nonlinear computing reconstruction, the parameter
distribution information is obtained.

Focusing on the slice measurement and the features of TD-
LAS, the nonlinear tomography reconstruction from 1-D LOS

Fig. 9. One measurement slice of ROI.

Fig. 10. Schematic diagram of nonlinear reconstruction from 1-D LOS to
multi-dimension measurement.

to multi-dimensional measurement can be described as shown
in Fig. 10.

B. Design of the U-ConvLSTM Model Based on
Spatiotemporal Discretization and Implementation of the
Reconstruction Method

The core of our method was the design and realization of the
U-ConvLSTM model, which was used to generate the multipa-
rameter distribution in the combustion field from two dimensions
to multiple dimensions. The design of the model can be divided
into two parts: 2-dimension distribution reconstruction and spa-
tiotemporal discretization sequence generation and prediction.

The first step in our research involves dataset preparation. Real
distribution data is hard to obtain and verify, posing challenges
for proving the training and testing efficiency of our method.
To tackle this, we used COMSOL, a commercial physical field
simulation software. With COMSOL, we generated simulated
combustion fields that featured different modal fields. These
included one to three burning centers and random mixed burning
peaks, as shown in Fig. 11. From these combustion simulations,
we collected transient temperature distribution data of specific
slices at 0.05-second intervals. To simplify computations, we
applied pooling operations on the original distributions. This
process resulted in 200000 distributions with a reduced reso-
lution of 64 × 64. These distributions maintained an inherent
spatiotemporal connection. We arranged them into sequences
of 20 and randomly shuffled these 10000 groups of discrete
temperature simulation sequences. We then divided these se-
quences into three subsets: 6000 for training, 2000 for validation,
and 2000 for testing. Our main objective was to learn how to
generate a 2-D distribution from projection data obtained at
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Fig. 11. Different models of temperature distribution of the simulation com-
bustion field. (a) 1-peak temperature distribution; (b) 2-peak temperature distri-
bution; (c) 3-peak temperature distribution; (d) mixed-peak temperature distri-
bution.

various angles from the detector. In addressing the complexities
of traditional reconstruction methods in intricate combustion
sites, we considered several factors. These include the structure
of the distribution, feature extraction methods, and the size of
the data.

The features of the combustion field distribution are as fol-
lowed:

a) In contrast to automatic driving and other image recog-
nition fields, the distribution of the combustion field is
simpler and the structure is always fixed, meaning that the
image information is relatively small and all of the features
are all important.

b) Compared with some complex images, the distribution of
the combustion field had fewer parameters to describe.
improving the risk of overfitting if we use large models
such as DeepLabv3+ or SOTA.

c) In real industrial production, it was difficult to obtain a
large amount of distribution data, causing the model train-
ing to drop into small sample over-fitting or un-der-fitting
of the target task.

To overcome the several problems and meet the combustion
field reconstruction requirements, we chose the U-Net [24]. as
the base model of a deep convolutional neural network, with
these three advantages:

a) Taking the low-level and high-level distribution features
into consideration with the skip connection structure,

b) Maximum use limited supervisory information and a priori
knowledge to design and improve the model.

c) Take the splice of feature maps, making up for the loss
of edge information when we use the convolution, which
cannot be recovered by deconvolution.

d) Light-weight and easy to transplant to other projects and
different dynamic combustion modal needs.

In our design, we used the modified U-DCCN to realize a
2-D distribution reconstruction. The uniqueness of the U shape
greatly extracts the deep feature, capture contextual, and location
information, which benefits from the skip connection structure
or splicing of feature maps. The deeper the network layer, the
larger is the field of vision. The shallow convolution focuses

Fig. 12. Schematic diagram of the U-DCNN model structure for the 2-D
distribution generation.

on texture features, whereas the deep network focuses on the
essential features.

The input to the network consists of the detected projection
data. In the initial design and development phase, we used gener-
ated simulation temperature distributions to vali-date the model
and algorithm. The temperature distribution had dimensions of
(64, 64), and the virtual laser projection setup included three
center wavenumbers, 20 projection angles, and 64 detectors on
one side. The laser path followed a fan-like pattern, as shown in
Fig. 9. Therefore, the input size of the model was 3# (20, 64),
where 3# represents the three types of center wavenumbers. The
model architecture, as depicted in Fig. 12, can be divided into
two parts: the encoder and the decoder. The encoder comprises
two max-pooling layers with a kernel size of (2 × 2) and five
convolutional layers with a kernel size of (3 × 3). Its primary
function is to extract deep features from the input data. On the
other side of the model, we have the decoder, responsible for
upsampling and feature fusion. It consists of two upsampling
layers (deconvolution layers) with a kernel size of (2 × 2) and
two convolutional layers with a kernel size of (3 × 3). The
upsampling layers in-crease the size of the feature map, while the
key process involves copy and concatenation operations. Copy-
ing and concatenating allows us to preserve information lost
during the max-pooling process, such as edge features that can be
recovered through deconvolution. The skip connection structure
enables us to fuse features from different layers, leveraging the
strengths of shallow layers in capturing texture and morphology
features and deep layers in capturing essential characteristics,
such as the temperature distribution. This approach ensures
that both low-level and high-level features are retained and
well-suited for the reconstruction of the combustion field.

According to the dimensions of the projections and the shape
of the temperature (T) distribution, the design of the U-DCCN
architecture is shown in Fig. 12, where after the full connection
layer, the feature vector is put into the spatiotemporal discretiza-
tion ConvLSTM model.

The second part of our design addresses the issue of temporal
correlation. Unlike most 3D reconstruction methods for the com-
bustion field, which are time-consuming and computationally
intensive, we adopted a multiple slice reconstruction approach
for 3D combustion reconstruction, as illustrated in Figs. 7 and
9. By focusing on one slice of the field, we were able to rapidly
reconstruct the parameter distribution. Using multiple models to
process all the slices, we achieved parallel and efficient 3D field
reconstruction. Additionally, since combustion is a dynamic
process, it is crucial to consider the temporal relationship, which
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Fig. 13. Schematic diagram of the U-ConvLSTM model structure based on
spatiotemporal discretization distribution sequence.

reflects the laws of combustion and is often overlooked in
reconstruction methods.

To tackle this, we designed the U-ConvLSTM model to ad-
dress these challenges. In our design, the ConvLSTM serves as a
connection to learn the relationships among the spatiotemporal
discretization slices. The entire system can be visualized as
shown in Fig. 13.

From the global angle, the input of the model was continuous
projection sequences, and each sequence consisted of 20 pro-
jection distribution slice data. We divided the sequence into two
parts: the first 15 data [0:14] shall be put into the U-ConvLSTM
model to train, calculate the loss, and optimize the model and
generate the prediction value of the model, and the last five data
points [15:19] were considered as the target output of the model.
The objective function can be expressed as (12), and the aim is
to generate and predict the distribution of the combustion:

χ̂t+1, χ̂t+2, · · · , χ̂t+5

= argmax
χ̂t+1,χ̂t+2,··· ,χ̂t+5

p (χt+1,, · · · , χt+5|χ̂t−14, χ̂t−13, · · · , χ̂t)

= gforecasting (fencoding (χ̂t−14, χ̂t−13, · · · , χ̂t)) (13)

where fencoding was used to encode the former 15 data to search
the inner link of the distribution slices and gforecasting was used
to generate the following distribution status.

The loss function we chose to identify and optimize the
prediction process was:

lossBCE (xi, yi) = −wi [yi log xi + (1− yi) log(1− xi)]
(14)

which was primarily used to create a standard for measuring the
binary cross entropy between the target and output. Thus, the
total loss can be described as:

loss = λlossMSE + (1− λ)lossBCE (15)

In general, the U-ConvLSTM reconstruction method de-
signed in this study has the following characteristics:

a) Modular design. We divided the different function parts
into different models and designed them as shown in
Fig. 14. Each part of the reconstruction method can be
implemented independently, which is easier to train and
transplant.

b) Lightweight small networks the total model of our design
was 51.36 MB, which could be used on the embedded

Fig. 14. Flow chart of the combustion field multi-dimensional reconstructive
method via spatiotemporal discretization U-ConvLSTM model.

terminal equipment, with the aim of realizing distributed
and real-time reconstruction.

C. The Quality Assessment Standard

To estimate the quality of the combustion field reconstruction,
we chose three main indexes to assess the temperature distri-
bution reconstruction image, including the root mean squared
error (RMSE), peak signal-to-noise ratio (PSNR), and structural
similarity (SSIM).

Combustion field reconstruction can be seen as a regression
process, which means training and generating a new distribution
to increasingly approach the original image, and the main eval-
uation criterion is the MSE or the RMSE. They can be defined
as:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (16)

RMSE =
√
MSE (17)

PSNR is one of the most widely used objective measurements
of image quality, which can be calculated using the MSE.

PSNR = 10 · log10
(
MAX2

I

MSE

)
= 20 · log10

(
MAXI√
MSE

)

(18)
where MAX = 2n − 1, n is the number of bits of one pixel.
The higher the PSNR value, the less distortion it represents.

SSIM is a measure of the similarity between two images, x
and y. It can be defined as:

SSIM(x, y) =
(2μxμy + c1) · (2σxy + c2)(

μ2
x + μ2

y + c1
) · (σ2

x + μ2
y + c2

) (19)

where μx and μy are the averages of the two images x and y,
σ2
x, σ2

y is the variance of x, y. Constant c1 and c2 are used to
maintain the stability of (11), and can be de-scribed as:

ci = (kiL)
2(i = 1, 2) (20)

where k1 = 0.01, k2 = 0.03 and L is the dynamic range of pixel
values, defined as L = 255 in our study. The closer the SSIM
value is to 1, the more similar are the two images.

IV. RESULTS AND DISCUSSION

Our designed multi-dimensional reconstruction method
mainly consists of a 2-D slice and spatiotemporal discretization
multi-D combustion field reconstruction, and the accuracy and
result are largely dependent on the parameters of the two neural
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Fig. 15. Evolution of the loss function for each of the 9-learning rate; (a)
excessive learning rate; (b) suitable learning rate; (c) low learning rate.

networks, such as the learning rate lr, the design of the convolu-
tion kernels Nk that determine the features to be extracted, and
the number of the latent layer Nl that determines the prediction
accuracy and the number of training samples Ns.

Hence, in this section, we focus on these parameters to
determine how they affect our reconstruction results and how
they should be determined to optimize our network structure.
The designed method was then compared to the other two
reconstruction methods.

A. Determination of Learning Rate

The choice of learning rate plays a significant role in network
training. As shown in Fig. 15, a proper learning rate will show
a good performance on the results, while on the other hand, a
low learning rate will make it difficult to converge and cost a
large amount of computing source, and a large learning rate can
converge in a short but it is difficult to train and control.

B. Influences of the Number of Training Samples, Latent
Layers, and the Design of the Convolution Kernels

Deep learning models are data-driven, and a sufficient number
of samples should be used to extract the features during the
learning process [29].

As shown in Fig. 16, by separately changing the three aspects,
comparing the training time and the optimal PSNR of the results,
we find that:

a) An adequate sample size is the foundation for high-quality
learning. When the number was less than 10000, the model
could not learn the inner relation. However, when the

Fig. 16. The relationship between calculation time consumption, opti-
mal PSNR and hyperparameters: (a) the number of the training samples;
(b) the design of the convolution kernels; (c) the number of the latent layers.

number was more than 10000, the accuracy did not show
obvious improvement, which meant that 10000 samples
could provide enough features for our mode, and more
samples had too much computing time.

b) The design of convolution kernels had a greater impact
on the results, determining the number of kernels or the
number of deep features. Our target was 64 × 64, and the
suit-able design was 32 + 64 + 128 + 64 + 32, with more
kernels causing high computing cost and low affect.

c) The number of latent layers did not have much influence
on the results of training time and optimal PSNR, and we
chose five layers in this design.

C. Comparison With the Different Reconstruction Methods

After determining the learning rate, number of convolution
kernels, latent layers, and number of training samples, the novel
U-ConvLSTM model for the reconstruction of the temperature
distribution was designed with lr = 1e-5, Nk = 32 + 64 +
128 + 64 + 32, Nl = 5, and Ns = 10000. To demonstrate the
good performance of our proposed model, we compared it with
the classic SART algorithm optimized through NSGA-III and a
simple CNN model, and compare it with our method.

The results are shown in Fig. 17. It can be found that as
the number of peaks increases, the reconstruction error also
increases. The U-ConvLSTM model proposed in this article has
good reconstruction performance, with a maximum relative error
of only 4.2%, while the maximum reconstruction error of the
CNN model is 8.6%, the SART maximum reconstruction error
of the model is 7.4%. Simple CNN models perform poorly in
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Fig. 17. Comparison of the three reconstruction methods results based on the
two-dimensional temperature distribution, which was one slice of the spatiotem-
poral discretization combustion field. (a) Showcases the results obtained from
our proposed U-ConvLSTM reconstruction method. (b) Displays the results
obtained from a CNN-based computational re-construction method. (c) Exhibits
the results obtained from the NSGA-III optimized SART technique. The num-
bers (1)–(3) represent different distribution patterns, specifically single-peak,
double-peak, and triple-peak distributions, respectively.

TABLE I
THIS IS A SAMPLE OF A TABLE TITLE

multimodal reconstruction, and SART performs poorly due to
the influence of CT artifacts.

D. Results of the Different Preprocessing Steps and Prediction
Steps

To compare the results of different prediction steps, we
conducted tests using five sets of spatiotemporal discretization
temperature distribution sequence data. Each sequence data
comprised 10 to 30 distribution slices, with a time interval of
0.05s. In these tests, the previous slice data were utilized as
the prior step, while the remaining data were employed for the
prediction step. The complete results of these tests are presented
in Table I.

It can be concluded from Table I that the first, second and third
results can better predict the temperature distribution informa-
tion. Their PSNR is greater than 30 dB and SSIM is greater
than 0.75. However, as the number of predictions increases,

the accuracy of the predictions decreases. It also decreases,
their overall PSNR values are less than 13 dB, and their SSIM
values are less than 0.35. It is worth noting that more prior
steps will improve the prediction accuracy, but when the prior
steps reaches 25, the total performance is basically the same
as 20 prior steps, which means using too many distributions
as prior knowledge, the model will be overfitted and degraded.
Therefore, considering the computational and time costs, we
combine the 20 distributions into a sequence and predict the
short-term results for 3 time steps.

Predicting long-term outcomes still poses many challenges. It
is crucial to consider additional combustion evolution rules and
effectively incorporate them into the reconstruction or prediction
process. This requires further algorithm development and careful
handling of prior knowledge. By addressing these challenges,
we can enhance the accuracy and reliability of predictions in the
temporal dimension.

V. CONCLUSION

This paper proposes a multi-dimensional reconstruction
method of combustion fields based on spatio-temporal dis-
cretization, implemented through the improved U-ConvLSTM
model, aiming to solve the problem of rapid multi-dimensional
reconstruction and prediction of combustion fields. According to
the simulation experiment results of this study, we can find that
compared with the existing simple CNN model and the NSGA-
III algorithm optimized simultaneous algebraic reconstruction
technology (SART), the designed U-ConvLSTM model shows
better reconstruction performance and Lower time cost, and
considers the time dimension to learn the inter-temporal cor-
relation of combustion, expands the reconstruction dimension,
realizes slice distribution reconstruction and short-term pre-
diction, is more suitable for dynamic combustion processes,
and quickly reconstructs and predicts temperature field dis-
tribution has good application prospects. In future research,
we will try some semi-supervised or unsupervised learning
methods to modify our models and methods, such as gener-
ative adversarial networks (GAN) and graph neural networks
(GNN), to extract latent information from spatial and tempo-
ral data. The effectiveness of the features improves the accu-
racy of temperature distribution prediction in the combustion
field.
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