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Abstract—Thermal effects are ubiquitous in high-quality res-
onators and microcomb-based high precision measurements. We
present a stability analysis of the thermodynamics in a driven Kerr
microresonator theoretically and numerically, using the thermal
Lugiato-Lefever model. We analyze the spatial bifurcation struc-
ture and existence range of stationary states depending on the ther-
mal parameters. Our study shows that, the thermal effect causes
the original bifurcation structure to change from Hamiltonian-
Hopf bifurcation to Belyakov-Devaney bifurcation. In addition,
a stability map of various stationary regions in the parameter
space of cavity detuning and the pump power is achieved through
numerical simulations of thermal Lugiato–Lefever equation, and
we propose a deterministic route to obtain the stable cavity soliton
state avoiding the chaotic and unstable regions under the influence
of thermal effects. Our approach has potential value for obtaining
stable solitary Kerr comb sources under practical conditions.

Index Terms—Dynamics process, optical frequency comb,
thermal effects, stable soliton.

I. INTRODUCTION

K ERR frequency comb is a set of equidistant spectral
components generated by optically pumping whispering

gallery mode (WGM) resonators with high quality factors and
Kerr nonlinearity. The spacing between adjacent combs is de-
termined by the free spectrum range (FSR) of the microres-
onator In addition, as the Kerr frequency combs exhibit high
coherence, high repetition rate, and small size easy to package,
they provide a powerful tool for broad application prospects,
such as precision frequency /distance measurement [1], [2], [3],
astronomical spectroscopic calibration [4], arbitrary waveform
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generation [5], radio frequency/microwave signal sources [6],
and multi-wavelength light sources for coherent optical com-
munication [7], [8].

In the research field of optical frequency combs based on
micro-nano resonators, there are currently two mainstream theo-
retical models for describing the dynamic evolution of the optical
field. One is the coupled mode equations [9], which describe
the coupling relationships between different modes inside the
resonator from a frequency domain perspective. The other is
the Lugiato-Lefever Equation (LLE) [10], which describes the
envelope evolution of the optical field from a time domain
perspective. However, the LLE can reduce the computational
complexity by several orders of magnitude, greatly improving
simulation efficiency.

To describe the nonlinear dynamics of light in the microres-
onator cavity, in the mean field approximation, such a cavity
can be modelled using the well-known Lugiato-Lefever (LL)
equation. Currently, most of previous research works have been
devoted to the investigation of the dynamics in microresonators
under anomalous dispersion and normal dispersion [11], [12].
Based on this, the steady state and stability characteristics of
Turing patterns, periodic patterns, and soliton crystals have been
well understood [13], [14], [15], [16], [17], [18], [19]. However,
most theoretical progress has overlooked the role of thermal
effects on the waveform and stability of the optical field within
the microresonator cavity. The thermal effect will cause the
resonance frequency of the cavity to shift. Under the influence
of thermal effects, when the pump light is in an effective blue
detuned state, the effective resonance frequency can be locked.
However, when the pump light is in an effective red detuned
state, the frequency cannot be locked, making it difficult for
soliton states to operate in a stable regime. So far, the generation
of solitons has been demonstrated in microresonators, including
forward and backward pumped laser scanning [20], [21], pump
power modulation [22], etc. However, directly and determin-
istically generating and maintaining a single soliton state in
a microresonator remains a challenge. Although many articles
have proposed explicit and systematic theories and approaches
to reach the soliton regime, and these methods include chaos-
avoiding trajectory [23], [24], [25], single-pulse triggering [26],
sudden detuning setting [27], [28], or slow pump modulation
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[29], [30]. Nevertheless, there is a lack of comprehensive re-
search concerning the deterministic generation of solitons in
the presence of thermal effects. Additionally, the nonlinear
dynamic processes are not analyzed in detail after the inclusion
of thermal effects, and the available data is insufficient from
existing theories. Further research on the influence of thermal
effects on soliton formation, especially the nonlinear dynamic
processes and the formation process of deterministic solitons, is
particularly interesting.

In this article, we investigate the stability and thermo-optical
dynamics of Kerr resonators theoretically and numerically [31].
By analyzing the Lugiato-Lefever (LL) equation, the basic
properties and the cubic equation for optical bistability of its
steady-state solutions are given, and the uniform steady-state
characteristics and their linear stability in the main mode of
the system are studied accordingly. It is found that modulation
instability affects both the upper and lower branches of the
bistable equation solution in the absence of thermal effects,
while in the presence of thermal effects, modulation instability
affects the upper branch of the solution. This is because the
spatial branching has changed under the influence of thermal
effects. Therefore, a spatial bifurcation analysis is performed
for the system and different equilibrium states of the equation
are classified. Additionally, we found that under typical thermal
conditions, the lower branch is less susceptible to modulation
instability, and thus the deterministic access path of the soliton
must start from a relatively small detuning. Finally, we propose a
deterministic path that can access the stable cavity soliton (SCS)
region avoiding the unstable chaotic regions in the presence of
thermal instability. Our results provide important insights into
soliton dynamics involving thermal effects.

II. THERMO-OPTICAL EQUATIONS OF MOTION

In order to describe the dynamics of the intracavity field, we
adopted a spatiotemporal LL formalism by including the terms
induced by thermal effects [32]. After performing a normaliza-
tion process from the Ref. [32], the corresponding equation is
the following partial differential equation:

∂ψ

∂t
= − [1 + i (α+ θ)]ψ +

i

2

∂2ψ

∂x2
+ i|ψ|2ψ + F,

ψ(x = 0, t) = ψ(x = L, t) (1)

dθ

dt
= −AP −Bθ, (2)

where

P =

∫ L

0

|ψ|2 dx
L
. (3)

ψ represents the complex envelope of the entire intracavity field,
x is the position along the propagation direction of the resonator
with 0≤ x ≤ L, L is the cavity length, t is the dimensionless
time, α refers to the detuning between the pump light field and
the resonant wavelength of the cold cavity, θ denotes the thermal
detuning, F is the pump intensity. While A is the conversion
coefficient of the thermal detuning, B is the thermal relaxation
coefficient of the resonator [21], the parameters A and B are

usually small, 10−1 or smaller, but the thermal sensitivity ratio
C = A/B can be smaller or larger, meaning that the thermal
effect is moderate or strong. P represents the mean power. All
the parameters in the normalized LL equation are dimensionless,
which allows for numerical calculations without being restricted
to specific resonator parameters, and is beneficial for analyzing
the general laws of Kerr frequency comb evolution.

III. STUDY ON DYNAMIC PROCESS OF OPTICAL FREQUENCY

COMB

A. Steady-State Solutions and Their Stability

To find various equilibrium points of the system and determine
their stability, we start by setting ∂ψ/∂t = 0, such that the
envelope ψs(x) is independent of time. And the heat dissipation
is given by

θS = −CPs, (4)

where Ps is the average power and C = A/B is the thermal
sensitivity parameter. As mentioned above, ψs(x) follows the
equation

− [1 + i (α− CPs)]ψs +
i

2

∂2ψs
∂x2

+ i|ψs|2ψs + F = 0, (5)

By setting ∂2ψ/∂x2 = 0, one can obtain equilibrium so-
lutions of the optical-field equation solution ψs (x) = ψc for
(5), the average power can be expressed as |ψc|2. Therefore, the
thermal nonlinearity can be combined with the Kerr nonlinearity
following

− (1 + iα)ψc + i (1 + C) |ψc|2ψc + F = 0, (6)

Solution ψc can then be expressed as

ψc = UC + iVC , UC =
F

1 + ((1 + C) Ih − α)2
,

Vc =
((1 + C) Ih − α)F

1 + ((1 + C) Ih − α)2
, (7)

where Ih ≡ |ψc|2 satisfies the classical cubic equation of optical
bistability

(1 + C)2Ih
3 − 2 (1 + C)αIh

2 +
(
1 + α2

)
Ih = F 2

= H (α, Ih) , (8)

Ih ≡ |ψc|2indicates the equilibrium cavity field intensity.
Equation (8) is a cubic equation with respect to Ih, and the
number of solutions depends on the values of F and α. To
determine the structure of H(α, Ih), we find the extreme points
with respect to Ih:

∂H

∂Ih
= 3(1 + C)2Ih

2 − 4α (1 + C) Ih + α2 + 1, (9)

the discriminant of the quadratic equation above is Δ =
4(1 + C)2(α2 − 3), and thus when α <

√
3, (8) is monotonic

with only one solution and Ih is single-valued. When α >
√
3,

Ih has three values. In the latter case, a pair of saddle-node
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bifurcations SNb,t occurs at

Ib,t (α) = |ϕb,t|2 =
2α±√

α2 − 3

3 (1 + C)
, (10)

the corresponding pumping term is given as

F 2
± (α) =

2α∓√
α2 − 3

3 (1 + C)

⎛
⎝1 +

(√
α2 − 3± α

3

)2
⎞
⎠ .

(11)
To determine the stability of the steady-state solution, we in-

troduce the perturbations ψ = ψs + ψ1 and θ = −CPs + θ1,
where ψ1 and θ1 are small perturbation quantities. By substitut-
ing ψ and θ into the LL equation and neglecting higher-order
terms, we obtain

∂ψ1

∂t
= − [1 + i (α− CPs)]ψ1 − iθ1ψs +

i

2

∂2ψ1

∂x2

+ 2i|ψs|2ψ1 + iψs
2ψ1

∗, (12)

dθ1
dt

= −AP1 −Bθ1, (13)

due to translational invariance, the (12) has solutions of the form
ψ1 (x, t) = ψk+ (t)eikx + ψk−(t)e−ikx, for uniform ψs ≡ ψc.
And with k �= 0, P1 = 0, we have θ1 = 0. Therefore, the
equation can be presented as

∂ψ1

∂t
= − [1 + i (α− CPS)]ψ1 +

i

2

∂2ψ1

∂x2
+ 2i|ψc|2ψ1

+ iψc
2ψ1

∗ (14)

substitutingψ1(x, t) into (14) and through its complex conjugate
equation, we give the characteristic equation for the perturbation

∂

∂t

[
ψk+
ψk−

]
= (−1 + iM)

(
ψk+
ψk−

)
, (15)

M =[
−
(
α+ 1

2K
2−(2+C) |ψc|2

)
ψc

2

−(ψ∗
c)

2 α+ 1
2K

2−(2+C) |ψc|2
]

(16)

where ∗ represents complex conjugation. Since Ih ≡ |ψc|2, the
expression of the eigenvalue equation of the above matrix is

λ2 +

[
α+

1

2
k2 − (2 + C) Ih

]2
− Ih

2 = 0, (17)

and its eigenvalue solution is given by [33]

λ = ±
√
Ih

2 −
[
α+

1.

2
k2 − (2 + C) Ih

]2
, (18)

therefore, when λ > 1, new frequency comb lines will be gen-
erated and amplified through four-wave mixing, breaking the
steady state of the cavity field. Thus, the non-steady state con-
dition of the cavity field can be obtained through (18) as

W
(
k2
)
=

1

4
k4 + [(2 + C) Ih − α] k2 +

[
(2 + C)2 − 1

]
Ih

2

− 2α (2 + C) Ih + α2 + 1 < 0. (19)

The left side of the equation is a quadratic function with
respect to k2. For the (19) to hold, the following conditions
must be satisfied

1) Discriminant Δ > 0, meaning Δ = Ih
2 − 1 > 0.

2) The right root of W (k2) = 0 is greater than zero, which
means 2[(2 + C)Ih − α] +

√
Ih

2 − 1 > 0.
With the above two conditions, the non-steady state condition

can be described with the consideration of thermal effects and
anomalous dispersion:{

Ih > 1 , α < 2 + C

Ih >
(2+C)α−

√
α2−(2+C)2+1

(2+C)2−1
. α > 2 + C

(20)

In the non-steady state regime, the optical frequency comb
will be generated from noise through four-wave mixing and form
a certain distribution in the time domain. Therefore, studying the
dynamics of the optical frequency comb in the non-steady state
regime is of great significance.

B. Spatial Bifurcation Analysis

Spatial bifurcation analysis is the study of the structure and
stability of steady-state solutions of a dynamic system based
on the variation of parameters [34]. By bifurcation analysis,
the existence region information of specific static solutions in
parametric space can be obtained. In the modified LL equation,
by setting the time derivative term ∂ψ

∂t = 0, and separating the
intracavity field into ψ = ψr + iψi, where ψr is the real part
of ψ and ψi is the imaginary part of ψ, the original (1) can be
expressed as:

∂2ψr
∂x2

= − 2
{
ψr
[
ψr

2 + ψi
2 − (α− CPs)

]− ψi
}
, (21)

∂2ψi
∂x2

= − 2
{
ψi
[
ψr

2 + ψi
2 − (α− CPs)

]
+ ψr − F

}
,

(22)

At this point, we introduce an intermediate variable

∅r,i = ∂ψr,i
∂x

, (23)

and substitute it into the previous two equations, obtaining

∂ψr
∂x

= ∅r, (24)

∂∅r
∂x

= − 2
{
ψr
[
ψr

2 + ψi
2 − (α− CPs)

]− ψi
}
, (25)

∂ψi
∂x

= ∅i, (26)

∂∅i
∂x

= − 2
{
ψi
[
ψr

2 + ψi
2 − (α− CPs)

]
+ ψr − F

}
,

(27)

In order to find possible forms of steady-state solutions, the
linearized characteristic equationψc = ψc,r + iψc,i is obtained
around the equilibrium state shown at the bottom of the next
page.
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Through calculation, it can be obtained that the eigenvalues
of the above characteristic equation follow the condition

λ4 + 4λ2 (2 (1 + C) Ih − α)

+ 4
[
3(1 + C)2Ih

2 − 4α (1 + C) Ih + α2 + 1
]
= 0, (29)

Note that the eigenvalue equation is a quadratic equation as
regard to λ2, and thus for each equilibrium state Ih, it corre-
sponds to four eigenvalues, such that these eigenvalues appear
in pairs that are either opposite (λ2 being real) or conjugate
pairs (λ2 being complex). In the α− F 2 parameter space, if
α <

√
3 or α >

√
3, and F 2 < F 2

−(α) and F 2 > F 2
+(α), each

F 2 corresponds to four eigenvalues; if α >
√
3 and F 2

−(α) <
F 2 < F 2

+(α), each F 2corresponds to twelve eigenvalues; and
if F 2 = F 2

− (α) or F 2 = F 2
+ (α), each F 2 corresponds to

eight eigenvalues. Since the discriminant of the characteristic
equation is Δ = 16[(1 + C)2Ih

2 − 1], the relationship between
Ih and 1/(1+C) determines the style of the eigenvalues λ.

We next analyze the form of the eigenvalues λ in three cases:
Ih > 1/1 + C, Ih = 1/1 + C , and Ih< 1/1 + C. When Ih >
1/1 + C, for discriminant Δ > 0, there are two real roots for
the eigenvalues

λ2 = 2

[
α− 2 (1 + C) Ih ±

√
(1 + C)2Ih

2 − 1

]
, (30)

by analyzing the above formula, it is seen that the sign of
λ2 depends on the relationship between |α− 2(1 + C)Ih| and√
(1 + C)2Ih

2 − 1. Here we define the function

G (α, Ih) = (α− 2 (1 + C) Ih)
2 −

√
(1 + C)2Ih

2 − 1
2

= 4
[
3(1 + C)2Ih

2 − 4α (1 + C) Ih + α2 + 1
]
.

(31)

1) If G(α, Ih) > 0, then the eigenvalue λ takes the
following form: if α− 2(1 + C)Ih > 0, ( λ 1,2; λ3,4) =
(±a;±b). In this case, if α− 2(1 + C) Ih =
0, ( λ 1,2; λ3,4) = (0; 0); and if α− 2(1 + C)Ih <
0, ( λ 1,2; λ3,4) = (±ia;±ib);

2) If G(α, Ih) = 0, the eigenvalue λ takes the following
form: if α− 2(1 + C)Ih > 0, ( λ 1,2; λ3,4) = (±a; 0).
Thus, ifα− 2(1 + C) Ih = 0, ( λ 1,2; λ3,4) = (0; 0); if
α− 2(1 + C)Ih < 0, ( λ 1,2; λ3,4) = (0;±ib);

3) If G(α, Ih) < 0, the eigenvalue λ takes the following
form: ( λ 1,2; λ3,4) = (±a;±ib).

When Ih=1/1 + C , the discriminantΔ = 0, and in this case,
the eigenvalue λ has two identical real roots

λ2 = 2 (α− 2) , (32)

the eigenvalue λ takes the following form if α >
2, (λ1,2; λ3,4) = (±a ; ±a); if α = 2, (λ 1,2 ; λ3,4) = (0; 0); if
< 2, (λ 1,2 ; λ3,4) = (±ia;±ia).

When Ih<1/1 + C, the discriminant Δ < 0, and in this case,
the eigenvalue λ has two complex roots

λ2 = 2

[
α− 2 (1 + C) Ih ± i

√
(1 + C)2Ih

2 − 1

]
, (33)

the eigenvalue λ takes the following form: ( λ 1,2; λ3,4) =
(a± ib; a± ib) .

Fig. 1 shows the spatial characteristic values configuration
corresponding to each segment of the curve (different colors).
Takens-Bogdanov (RTB) bifurcation occurs when the eigenval-
ues consist of a pair of 0 and a pair of purely real numbers. In the
vicinity of this bifurcation line, periodic and localized solutions
can stably exist. Takens-Bogdanov-Hopf (RTBH) bifurcation
emerges when the eigenvalues consist of a pair of zero and
a pair of purely imaginary numbers. In the vicinity of this
bifurcation line, only periodic and quasiperiodic solutions can
stably exist. While the quadruple-zero (QZ) bifurcation rises
when the eigenvalues have two pairs of zeros, and thus it is
also commonly referred to as the “quadruple-zero” bifurcation.
Various dynamics can be observed around it. Fig. 1(b) shows
the stability variation of ψc when the thermal parameter C =
0, indicating no thermal effect. It can be seen that the lower
branch of the solution is initially stable, but becomes unstable
after undergoing a HH bifurcation due to modulation instability.
Compared to Fig. 1(b) and (c) represents the stability of the
solution branch under the same detuning when the thermal pa-
rameter C does not exceed its threshold. It is observed that when
the thermal effect is weak, the stability of the solution branch
and its corresponding bifurcation structure are the same as those
without thermal effect. Fig. 1(d) represents the stability change
of the lower branch of the solution when the thermal parameter
C exceeds a certain threshold, indicating a relatively strong
thermal effect. In this case, the stability of the lower branch
of the solution changes, and some unstable regions without
thermal effect become stable. Additionally, the HH bifurcation
and the boundary between the middle and lower branches change
to BD bifurcation and RTB bifurcation, respectively. Fig. 1(e)
and (f) represent the further increase in detuning and thermal
parameter, respectively, and the corresponding changes in the
stability of the solution and bifurcation structure. At this point,
the lower branch remains stable, indicating that the modulation
instability does not affect the lower branch. Therefore, it can be
observed from Fig. 1 that, in the vicinity of the thermal parameter
threshold, the stability of the solution and bifurcation structure
will change with the thermal parameter C, yet once the thermal
effect exceeds the threshold, the bifurcation structure becomes
stable and insensitive to the thermal parameter.

J =

⎡
⎢⎢⎣

0 1 0 0
−2[3(1 + C)ψ2

c,r + (1 + C)ψ2
c,i − α] 0 −2[2(1 + C)ψc,rψc,i − 1] 0

0 0 0 1
−2[2(1 + C)ψc,rψc,i + 1] 0 −2[(1 + C)ψ2

c,r + 3(1 + C)ψ2
c,i − α] 0

⎤
⎥⎥⎦ (28)
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Fig. 1. Homogeneous steady states and steady-state diagrams for different detunings and thermal parameters under anomalous dispersion. (a)α = 1.5, C = 2;
(b)α = 1.75, C = 0; (c)α = 1.75, C = 0.01; (d)α = 3, C = 2; (e)α = 5, C = 2; (f)α = 5, C = 2.5. Solid lines represent stable states while
dashed lines represent unstable states. The four different bifurcations, namely HH, BD, RTB, and RTBH, are denoted by different symbols. HH bifurcation points
are represented by the blank star (�), BD bifurcation points by the blank circle, and RTB and RTBH bifurcation points by the asterisk. The different pictorial
representations display the corresponding spatial eigenvalue configurations that describe the spatial stability. At , Am and Ab represent the three branches of the
solution.

TABLE I
EIGENVALUES AND REVERSIBLE SPATIAL BIFURCATIONS IN THE THERMAL LUGIATO-LEFEVER MODEL

The Spatial bifurcation analysis developed in section B al-
lows us to obtain bifurcation diagram (Fig. 2) under anoma-
lous dispersion, including thermal effects. Table I shows the
nomenclature and pictograph of the various eigenvalue sets.
Each equilibrium has a set of four eigenvalues, and some clas-
sified bifurcations are attached to certain configurations of the
eigenvalues. As can be seen in Fig. 2, although there exist four
identical bifurcation structures in the diagram, the eigenvalue
structures are different from the case in Ref. [35]. This difference
indicates that some bifurcation structures in the bistable diagram
will change under the influence of thermal effects. Compared to
previous work [35], in the absence of thermal effects, line A1 in

Fig. 2 corresponds to the Hamiltonian-Hopf (HH) bifurcation,
which actually corresponds to modulation instability and leads
to the generation of Turing patterns. HH bifurcation occurs when
the eigenvalues consist of a pair of purely imaginary numbers.
Near this bifurcation, solutions include quasiperiodic, periodic,
and localized solutions [36]. However, after the inclusion of
thermal effects, this bifurcation becomes the Belyakov-Devaney
(BD) bifurcation, and modulation instability does not exist. BD
bifurcation takes place when the eigenvalues consist of a pair
of purely real numbers. Near the BD bifurcation line, Turing
loop formations cannot be generated. However, there is one
exception, which is when the thermal sensitivity parameter C



3000211 IEEE PHOTONICS JOURNAL, VOL. 16, NO. 2, APRIL 2024

Fig. 2. Bifurcation diagram of the eigenvalue with the consideration of thermal effects under anomalous dispersion (not in proportion). The regions separated by
colored lines are labeled with Roman numerals I, II, III. The colored lines are represented by capital letters: The red dashed line represents the bistable curve at Ih=
1/1+C, denoted as line A, which is further divided into segments A1, A2, A3. The blue solid line represents line B, C, which is further divided into segments B1,
B2, C1, C2. The intersections of these colored lines are denoted by lowercase letters (a), (b), (c). In regions II and III, the system has only one equilibrium, while
in region I, there are three equilibria. On the blue solid line, there are two equilibria. Therefore, in regions II and III, there is only one set of spatial eigenvalues
(one eigenvalue bifurcation diagram), while region I corresponds to three sets of spatial eigenvalues (three eigenvalue bifurcation diagrams). On the blue solid line,
there are two sets of spatial eigenvalues (two eigenvalue bifurcation diagrams).

Fig. 3. Influence of modulation instability on the bifurcation of the bistable solution is shown in the α-P plane considering the thermal effect. Each point on
the α-P plane uniquely corresponds to a continuous wave (CW) solution. The solid blue line delineates the boundary of the region with three solutions at the
same pump power, and the dashed blue line distinguishes the branch boundaries. The red-brown area signifies modulational instability, while the blue area marks
intermediate branches that are unreachable. (a)–(c) represent the graphs for the thermal sensitivity parameters C = 0, C = 2, and C = 5, respectively.

= 0.15 is relatively small. In this case, the influence of thermal
effects is not significant and the HH bifurcation still exists, in-
dicating the presence of modulation instability. Therefore, from
a more general perspective, under typical thermal conditions,
the lower branch is not easily affected by modulation instability.
Therefore, the deterministic access path of solitons must start
from a relatively small detuning, which will be reflected in the
formation of deterministic single solitons in Section IV.

To gain more insight into the influence of modulation insta-
bility under thermal effect on the branch of bistable solution, the
bifurcation diagram is depicted in α− P parameter plane with

distinct thermal parameters, as shown in Fig. 3. According to
(8), it is shown that Ih = |ψc|2 follows a cubic (12), with all
real solutions being positive and mapping to unique (8) complex
solutions. Therefore, for any set parameter, one or three continu-
ous wave (CW) solutions exist. When a thermal sensitivity ratio
C = 2, which correspond to Fig. 2, a wedge-shaped coexistence
region for three CW solutions appears in the parameter space
of α− F 2. As C increases, the region of coexistence will move
downward, so for any thermal parameter C, the region of co-
existence is a wedge-shaped domain with boundaries. Unlike
the parameterization with α− F 2, for functions of a and P,
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Fig. 4. Evolution of soliton and Kerr optical frequency comb in a microcavity, when corrections from thermal effects are taken into account. (a) Temporal
waveform of the optical soliton; (b) frequency spectrum of the optical soliton; (c) evolution process of the Kerr optical frequency comb; (d) power variation in the
evolution process of the optical frequency comb, where 1©, 2©, 3©, 4© represent the four stages of comb evolution.

each a and P pairing in Fig. 3 corresponds to a specific CW
solution, making it possible to track specific CW solutions to
study the continuous wave solutions in the α− F 2 parameter
space. Here, three CW branches are demarcated within the blue
solid line boundary, with transitions indicated by blue dashed
lines. Thus, solutions below, between, and above these dashed
lines pertain to lower, middle, and upper branches. Similarly,
as C increases, the coexistence region in the α-P plane also
decreases.

As can be seen in Fig. 3(a), for α < 2 + C, modulation
instability can simultaneously affect both the lower and upper
branches. On this regard, the modulation instability boundary
curve intersects with the coexistence region below its tip, making
the lower branch a modulational instability one (Fig. 3(a)), which
is the case when thermal effects are not considered. Based on
our spatial bifurcation analysis shown in Fig. 1(b), the bifurca-
tions in the corresponding bistable diagram are HH and RTBH
bifurcations in this situation. However, with the increasing of
thermal sensitivity parameter C, the coexistence region moves
downward. When the thermal parameter C exceeds a certain
threshold, the tip of the coexistence region, where the continuous
wave branch meets, crosses the modulation instability boundary.
At this point, modulation instability only affects the upper
branch (Fig. 3(b)). When C has not reached its threshold, the
bifurcations in the corresponding bistable diagram (Fig. 1(c))
are the same as those without thermal effects (C = 0), which are
HH and RTBH bifurcations. Nevertheless, with C exceeding its
threshold, the bifurcations in the corresponding bistable diagram
(Fig. 1(d)) are BD, RTB, and RTBH bifurcations, that is to
say, the bifurcation nature changes from HH bifurcation to
BD bifurcation. Near the HH bifurcation, the equilibrium state
becomes unstable under perturbation and modulation instability
occurs, resulting in the formation of primary sidebands and
Turing ring patterns in the time domain. However, near the
BD bifurcation, modulation instability does not occur. For α
> 2 + C, considering that the middle branch is unreachable,
modulation instability only affects the upper branch of the
coexistence region (Fig. 3(c)). Therefore, from the perspective of
spatial bifurcation, we believe that this is the fundamental reason
why the coexistence region moves downward and modulation
instability affects different branches as C increases. When C
continues to increase, its spatial bifurcation does not change
(Fig. 1(e), and (f)). In short, the thermal effect can affect the
stability of the microcavity frequency comb, that is, under typical
thermal conditions, the HH bifurcation in the bistable curve will

transition to BD bifurcation, resulting in the disappearance of
modulation instability.

IV. DETERMINISTIC SCS GENERATION

A. SCS Excitation With Thermal Effects

To demonstrate the effectiveness of the proposed theory, we
performed a numerical calculation by desolving (1) using a
two-step method. First, we calculate the effective detuning (laser
detuning and thermal detuning) at each step, and then substitute
it into the equation for numerical simulation. For simplicity, the
simulation in this article did not take into account higher-order
dispersion terms and other nonlinear effects (such as Raman,
Self-steepening effect, High order dispersion) that exist in actual
systems. Numerical simulation of the thermal LLE equation is
performed using the split-step Fourier algorithm. By utilizing the
simulated LLE with thermal effects correction, the evolution of
Kerr comb spectrum and temporal waveform with respect to the
pump detuning can be aquired [37]. Generally, with the forward
detuning procedure, the full evolution of the intracavity field
and optical spectrum can be divided into four stages: stable
modulation instability (SMI), unstable modulation instability
(UMI), unstable cavity soliton (UCS), and stable cavity soliton
(SCS) [38], [39].

In the evolution process of Kerr combs, when pump is scanned
from the blue-detuned to the red-detuned region, the intracav-
ity field experiences four stages. In the first stage (SMI), the
intracavity power increases rapidly, and modulation instability
generates the main comb lines in its gain spectrum, and more
secondary comb lines are generated through four-wave mixing.
In the second stage (UMI), the intracavity power continues to in-
crease, the overlapping of different secondary comb lines as well
as quasi-dispersion compensation cause the phase mismatch be-
tween different frequency components, and thus the intracavity
modes become chaotic in both frequency and time domains,
leading to a low-coherence, high-noise modulation instability
phase. In the third stage (UCS), the intracavity power decreases
rapidly, and most of the gains obtained from random jitter cannot
compensate for the cavity losses, gradually disappearing from
the cavity. Finally, the intracavity power stabilizes, and one or
more soliton can be stably created (SCS). Compared with the
evolution process without considering the thermal effect, the
power inside the cavity will suddenly increase in the evolution
process from the third stage to the fourth stage, and then decrease
to a stable state, which is different from the case without thermal
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Fig. 5. (a) By traversing the simulation, obtain the distribution of different types of optical frequency combs in the parameter space (α, |F |2). (b) Distribution map
of Turing rings (green region), solitons (red region), unstable cavity solitons (blue region), and chaotic states (yellow region) in the parameter space of (α, |F |2).
(c)–(f) Four stages in the evolution of the optical frequency comb, with time-domain waveform (left), spectrum (middle), and the relationship between intra-cavity
energy and time (right). (c) SMI region, (d) UMI region, (e) UCS region, (f) SCS region.

effect where the power decreases in a stepwise manner. In addi-
tion, according to our simulation results, the existence range of
solitons ranges is defined from the minimum detuning of solitons
generated to the maximum detuning of solitons disappeared.
It should be noted that in the simulation, the initial field in
the cavity is a weak Gaussian pulse, which is conducive to
generating stable solitons. It is seen that when no thermal effect is
added, the existence range of solitons ranges from 0.079 to 0.25;

when thermal effect is added, the existence range of solitons
ranges from 0.069 to 0.32. Therefore, the inclusion of thermal
effects increases the range of soliton existence and enhances
stability.

In order to present the existence domain of each state and
their mutual relationships, we obtained the existence regions
of various states of the optical frequency comb by traversing
the simulation (Fig. 5(a)). However, it is difficult to determine
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Fig. 6. Simulation results of avoiding chaotic state under different paths and different end points in the presence of thermal effects. (a)–(f) Represent simulation
result figures of the same path with different endpoints, including soliton time-domain waveform (left), spectrum (middle), and soliton evolution (right). (a)–(c)
Indicate the final result as a multi-soliton state optical comb. (d)–(f) Indicate the final result as a single-soliton state. (g)–(i) Represent soliton state optical combs
obtained under different paths.

the boundary of the characteristic region for these states us-
ing theoretical equations. Nevertheless, the boundaries of each
characteristic region can be determined based on the different
characteristics of the optical frequency comb in terms of its
temporal waveform, spectrum, and intra-cavity power evolu-
tion in the four stages of comb evolution. Fig. 5(b) shows the
specific classification of each characteristic region, where the
green region represents the stable stage of modulation instability
(SMI), i.e., the Turing state; the yellow region represents the
unstable stage of modulation instability (UMI), i.e., the chaotic
state; the blue region represents the unstable stage of cavity
solitons (UCS); and the red region represents the stable stage
of cavity solitons (SCS). Fig. 5(c) to (f) respectively depict the
characteristic plots of the Turing state, chaotic state, unstable
cavity soliton state, and stable cavity soliton state, from which
it can be seen that their temporal waveforms, spectra, and
intra-cavity power curves are different. Then, on the parameter
plane of α−|F |2, the existence domains of these states are
obtained, which provides a foundation for deterministic soliton
accessing paths in the following section. And our result confirms
that the Chaotic-avoiding trajectory’s scheme for deterministic
generation of single cavity solitons remains effective with the
inclusion of thermal effects.

B. Deterministic SCS Generation

Generally, with the forward detuning procedure, the pump
frequency is typically scanned from a blue-detuned to a red-
detuned state. The evolution of the intracavity optical frequency
comb is similar to the stages depicted in Fig. 4(d). However, the
final result is the formation of multiple solitons with random
quantities and positions, and the spectral lines of the optical fre-
quency comb are not smooth. Through simulation, we obtained
the distribution regions of different types of optical combs in the
(α, |F |2) parameter space (Fig. 5(a) and (b)). Here, we define a
path that can access deterministic solitons under thermal effects
(Fig. 5(a)). At the same time, this path also avoids the chaotic
state experienced during the soliton evolution process. Due to
the inclusion of thermal effects, we refer to this path as the
“chaos-avoiding path under thermal effects (TCAT)”:

F = −0.03778 + 0.05391 ∗exp (43.01216∗α) . (34)

The path is fitted with an exponential curve. To verify the
feasibility of the chosen path, we linearly swept the frequency
detuning from zero to a certain point at a constant rate and varied
the input power based on the TCAT path in (34). Then, we kept
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the detuning and pump power fixed for a period of time. Ulti-
mately, depending on the different paths selected, we obtained
the stable soliton states. It can be seen in Fig. 6 that the simulated
results obtained in the end correspond to either a multi-soliton
state or a single-soliton state optical comb. From the evolution
graph, it is also observed that the evolution process of the soliton
avoids chaotic states and unstable cavity soliton stages, directly
reaching the stable cavity soliton stage. On one hand, by setting
different starting points, various paths can be defined in the SMI
and SCS regions (Fig. 5(a)), and the desired stable soliton comb
can also be obtained. On the other hand, by setting different
endpoints (in the SCS region), a single soliton state or multiple
soliton states can be switched using the same determined path, as
shown in Fig. 6. Fig. 6(a)–(c) depict the generation path (line A)
of deterministic single solitons. Along this path, single solitons
can be deterministically generated, and the evolution process of
the comb clearly avoids chaotic states. Additionally, on the same
deterministic path, different end points correspond to different
results in the soliton evolution, that is, the number of solitons
obtained is different. As shown in Fig. 6(d)–(f), when we start
at the same point in parameter space but end in a different point,
the corresponding result in a final state becomes a two-soliton
comb. In addition, we also investigate the influence of different
paths on the resulting solitons (Fig. 6(e)–(i)). When choosing
path B, the comb eventually evolves into a multi-soliton state,
but during the evolution process, it transitions from eight solitons
initially to three solitons in the end. Hence, as long as the
chosen paths only pass through Turing states and stable cavity
soliton states, a deterministic soliton state can be obtained in the
end.

V. CONCLUSION

In conclusion, we conduct a detailed study on the bifurca-
tion analysis of the optical frequency comb and investigate
the thermal-optical dynamic stability and spatial bifurcation
problem of the optical frequency comb using the thermal LL
equation. The influence of thermal effects on modulation in-
stability (HH bifurcation) is investigated. The results show
that thermal effects can affect the stability of microresonator
frequency combs, the HH bifurcation in the bistable curve will
transform into the BD bifurcation, resulting in the disappearance
of modulation instability. In addition, we found that the thermal
effect can increase the range of existence of solitons and improve
its stability. Besides, we propose a method to obtain stable
soliton states in a deterministic way under thermal effects by
simultaneously tuning the cavity detuning and pump power. The
deterministic access path of solitons must start with a relatively
small detuning, because the resulting Turing rings in the case
of small detuning have low intensity noise and high stability,
making the Turing ring a good choice as our starting point. These
soliton states can be multi-soliton states or single soliton states
depending on the endpoint and the evolution process avoids the
unstable chaotic states. The simulation results presented in this
paper contribute to the practical application of microresonators
as high-coherence and stable Kerr microcomb sources.

REFERENCES

[1] J. Zheng et al., “Optical ranging system based on multiple pulse train
interference using soliton microcomb,” Appl. Phys. Lett., vol. 118, no. 26,
Jun. 2021, Art. no. 261106.

[2] L. Jia et al., “Nonlinear calibration of frequency modulated continuous
wave LIDAR based on a microresonator soliton comb,” Opt. Lett., vol. 46,
no. 5, pp. 1025–1028, Mar. 2021.

[3] J. Wang et al., “Long-distance ranging with high precision using a soliton
microcomb,” Photon. Res., vol. 8, no. 12, pp. 1964–1974, Dec. 2020.

[4] R. A. Probst et al., “A crucial test for astronomical spectrograph calibra-
tion with frequency combs,” Nature Astron., vol. 4, no. 6, pp. 603–608,
Feb. 2020.

[5] M. Tan et al., “Photonic RF arbitrary waveform generator based on a
soliton crystal micro-comb source,” J. Lightw. Technol., vol. 38, no. 22,
pp. 6221–6226, Nov. 2020.

[6] X. Xu et al., “Advanced RF and microwave functions based on an integrated
optical frequency comb source,” Opt. Exp., vol. 26, no. 3, pp. 2569–2583,
Feb. 2018.

[7] J. N. Kemal et al., “Multi-wavelength coherent transmission using an
optical frequency comb as a local oscillator,” Opt. Exp., vol. 24, no. 22,
pp. 25432–25445, Oct. 2016.

[8] J. Li et al., “All-optical synchronization of remote optomechanical sys-
tems,” Phys. Rev. Lett., vol. 129, no. 6, Aug. 2022, Art. no. 063605.

[9] Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever for-
malism for Kerr-comb generation in whispering-gallery-mode resonators,”
Phys. Rev. A, vol. 87, 2013, Art. no. 053852.

[10] L. A. Lugiato and R. Lefever, “Spatial dissipative structures in passive op-
tical systems,” Phys. Rev. Lett., vol. 58, no. 21, pp. 2209–2211, May 1987.

[11] C. M. Arabí, P. Parra-Rivas, T. Hansson, L. Gelens, S. Wabnitz, and
F. Leo, “Localized structures formed through domain wall locking in
cavity-enhanced second-harmonic generation,” Opt. Lett., vol. 45, no. 20,
pp. 5856–5859, Oct. 2020.

[12] P. Parra-Rivas et al., “Quartic Kerr cavity combs: Bright and dark solitons,”
Opt. Lett., vol. 47, no. 10, pp. 2438–2441, May 2022.

[13] R. D. Dikandé Bitha and A. M. Dikandé, “Soliton-comb structures in ring-
shaped optical microresonators: Generation, reconstruction and stability,”
Eur. Phys. J. D, vol. 73, no. 7, p. 152, Jul. 2019.

[14] R. D. Dikandé Bitha and A. M. Dikandé, “Elliptic-type soliton combs
in optical ring microresonators,” Phys. Rev. A, vol. 97, no. 3, Mar. 2018,
Art. no. 033813.

[15] P. Parra-Rivas, E. Knobloch, L. Gelens, and D. Gomila, “Origin, bifur-
cation structure and stability of localized states in Kerr dispersive optical
cavities,” IMA J. Appl. Math., vol. 86, no. 5, pp. 856–895, Oct. 2021.

[16] P. Parra-Rivas, S. Coulibaly, M. G. Clerc, and M. Tlidi, “Influence of stim-
ulated Raman scattering on Kerr domain walls and localized structures,”
Phys. Rev. A, vol. 103, no. 1, Jan. 2021, Art. no. 013507.

[17] P. Parra-Rivas, D. Gomila, L. Gelens, and E. Knobloch, “Bifurcation struc-
ture of localized states in the Lugiato-Lefever equation with anomalous
dispersion,” Phys. Rev. E, vol. 97, no. 4, Apr. 2018, Art. no. 042204.

[18] P. Parra-Rivas, C. M. Arabí, and F. Leo, “Dissipative localized states
and breathers in phase-mismatched singly resonant optical parametric
oscillators: Bifurcation structure and stability,” Phys. Rev. Res., vol. 4,
no. 1, Jan. 2022, Art. no. 013044.

[19] B. A. B. Cho, I. N. Ngek, and A. M. Dikandé, “Soliton crystals in optical
Kerr microresonators in the presence of thermo-optic effects,” J. Opt.,
vol. 24, no. 11, Nov. 2022, Art. no. 115501.

[20] X. Xue et al., “Thermal tuning of Kerr frequency combs in silicon nitride
microring resonators,” Opt. Exp., vol. 24, no. 1, pp. 687–698, Jan. 2016.

[21] C. Joshi et al., “Thermally controlled comb generation and soliton mod-
elocking in microresonators,” Opt. Lett., vol. 41, no. 11, pp. 2565–2568,
Jun. 2016.

[22] P. Del’Haye, K. Beha, S. B. Papp, and S. A. Diddams, “Self-injection
locking and phase-locked states in microresonator-based optical frequency
combs,” Phys. Rev. Lett., vol. 112, no. 4, Jan. 2014, Art. no. 043905.

[23] Z. Qi et al., “Deterministic access of broadband frequency combs in
microresonators using cnoidal waves in the soliton crystal limit,” Opt.
Exp., vol. 28, no. 24, Nov. 2020, Art. no. 36304.

[24] J. A. Jaramillo-Villegas, X. Xue, P.-H. Wang, D. E. Leaird, and A. M.
Weiner, “Deterministic single soliton generation and compression in mi-
croring resonators avoiding the chaotic region,” Opt. Exp., vol. 23, no. 8,
pp. 9618–9626, Apr. 2015.

[25] H. Zhou et al., “Soliton bursts and deterministic dissipative Kerr soliton
generation in auxiliary-assisted microcavities,” Light: Sci. Appl., vol. 8,
no. 1, May 2019, Art. no. 50.



FANG et al.: STABILITY ANALYSIS OF LOCALIZED STATES 3000211

[26] Z. Kang et al., “Deterministic generation of single soliton Kerr frequency
comb in microresonators by a single shot pulsed trigger,” Opt. Exp., vol. 26,
no. 14, pp. 18563–18577, Jul. 2018.

[27] H. Guo et al., “Universal dynamics and deterministic switching of dissipa-
tive Kerr solitons in optical microresonators,” Nature Phys., vol. 13, no. 1,
pp. 94–102, 2017.

[28] M. R. E. Lamont, Y. Okawachi, and A. L. Gaeta, “Route to stabilized ul-
trabroadband microresonator-based frequency combs,” Opt. Lett., vol. 38,
no. 18, pp. 3478–3481, Sep. 2013.

[29] Q. Li et al., “Stably accessing octave-spanning microresonator fre-
quency combs in the soliton regime,” Optica, vol. 4, no. 2, pp. 193–203,
Feb. 2017.

[30] T. Wildi, V. Brasch, J. Liu, T. J. Kippenberg, and T. Herr, “Thermally stable
access to microresonator solitons via slow pump modulation,” Opt. Lett.,
vol. 44, no. 18, pp. 4447–4450, Sep. 2019.

[31] H. Nejadriahi, A. Friedman, R. Sharma, S. Pappert, Y. Fainman,
and P. Yu, “Thermo-optic properties of silicon-rich silicon nitride for
on-chip applications,” Opt. Exp., vol. 28, no. 17, pp. 24951–24960,
Aug. 2020.

[32] A. Leshem, Z. Qi, T. F. Carruthers, C. R. Menyuk, and O. Gat, “Thermal
instabilities, frequency-comb formation, and temporal oscillations in Kerr
microresonators,” Phys. Rev. A, vol. 103, no. 1, Jan. 2021, Art. no. 013512.

[33] P. Parra-Rivas, E. Knobloch, D. Gomila, and L. Gelens, “Dark solitons
in the Lugiato-Lefever equation with normal dispersion,” Phys. Rev. A,
vol. 93, no. 6, Jun. 2016, Art. no. 063839.

[34] P. Colet, M. A. Matías, L. Gelens, and D. Gomila, “Formation of localized
structures in bistable systems through nonlocal spatial coupling. I. General
framework,” Phys. Rev. E, vol. 89, no. 1, Jan. 2014, Art. no. 012914.

[35] C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability
analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical
frequency combs in the anomalous and normal dispersion regimes,” Phys.
Rev. A, vol. 89, no. 6, Jun. 2014, Art. no. 063814.

[36] A. Coillet et al., “Azimuthal Turing patterns, bright and dark cavity solitons
in Kerr combs generated with whispering-gallery-mode resonators,” IEEE
Photon. J., vol. 5, no. 4, Aug. 2013, Art. no. 6100409.

[37] J. A. Jaramillo-Villegas et al., “Towards automated deterministic comb
generation in microresonators: Overcoming thermal shift,” in Proc. Front.
Opt., 2015, Paper FM2D.3.

[38] P. Parra-Rivas, D. Gomila, M. A. Matías, S. Coen, and L. Gelens, “Dynam-
ics of localized and patterned structures in the Lugiato-Lefever equation
determine the stability and shape of optical frequency combs,” Phys. Rev.
A, vol. 89, no. 4, Apr. 2014, Art. no. 043813.

[39] S. Coen and M. Erkintalo, “Universal scaling laws of Kerr frequency
combs,” Opt. Lett., vol. 38, no. 11, pp. 1790–1792, Jun. 2013.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


