
IEEE PHOTONICS JOURNAL, VOL. 16, NO. 2, APRIL 2024 8800108

Overcoming Hardware Imperfections in
Optical Neural Networks Through a Machine
Learning-Driven Self-Correction Mechanism

Minjoo Kim , Beomju Kim , Yelim Kim , Lia Saptini Handriani , Suhee Jang , Dae Yeop Jeong ,
Sung Ik Yang , and Won Il Park

Abstract—We developed an optical neural network (ONN) for
efficient processing and recognition of 2-dimensional (2D) images,
employing a conventional liquid crystal display panel as optical
neurons and synapses. This configuration allowed for optical sig-
nal outputs proportional to matrix-vector multiplication for 2D
image inputs. However, our experimental results revealed a 26.6%
decrease in the optical classification accuracy, despite utilizing
digitally pre-trained parameters with 100% accuracy for 500 hand-
written digits. This decline can be attributed to system imperfec-
tions associated with non-ideal functions of optical components and
optical alignment. Rather than pursuing an elusive, imperfection-
free ONN or attempting to calibrate these defects individually, we
addressed these challenges by introducing a self-correction mech-
anism that utilizes a machine learning algorithm. This approach
effectively restored the recognition accuracy and minimized loss of
our ONN to levels comparable to the digitally pre-trained model.
This study underscores the potential of constructing defect-tolerant
hardware in ONNs through the application of machine learning
techniques.

Index Terms—Hardware imperfections, matrix-vector multi-
plication (MVM), optical neural networks (ONNs), recognition
accuracy, self-correction approach, training algorithm.

I. INTRODUCTION

ARTIFICIAL neural networks (ANNs) have been developed
to emulate the efficient information processing capabilities

of biological neural networks (BNNs). However, traditional
computer systems based on the Von Neumann architecture [1],
[2], with separate central processing units (CPUs) and memories,
face limitations in parallel neuromorphic data processing. To
overcome these limitations, hardware solutions such as graphics

Manuscript received 23 December 2023; revised 25 January 2024; accepted
30 January 2024. Date of publication 5 February 2024; date of current ver-
sion 27 February 2024. This work was supported by the National Research
Foundation (NRF) of Korea funded by the Ministry of Science, ICT and
Future Planning (MSIP) of Korea under Grant 2021R1A5A1032996 and Grant
2021R1A2B5B02002596. (Minjoo Kim, Beomju Kim, and Yelim Kim con-
tributed equally to this work.) (Corresponding authors: Won Il Park; Sung Ik
Yang.)

Minjoo Kim, Beomju Kim, Yelim Kim, Lia Saptini Handriani, Suhee Jang,
Dae Yeop Jeong, and Won Il Park are with the Division of Materials Science
and Engineering, Hanyang University, Seoul 04763, South Korea (e-mail:
wipark@hanyang.ac.kr).

Sung Ik Yang is with the Department of Applied Chemistry, Kyung Hee
University, Yongin 17104, South Korea (e-mail: siyang@khu.ac.kr).

This article has supplementary downloadable material available at
https://doi.org/10.1109/JPHOT.2024.3361930, provided by the authors.

Digital Object Identifier 10.1109/JPHOT.2024.3361930

processing units (GPUs) and field programmable gate arrays
(FPGAs) have been incorporated into neuromorphic computing
[3], [4]. [5], [6]. Additionally, hardware-implemented neural
networks using devices like memristor crossbar arrays [7],
[8], [9] and transistor-based memory arrays [10], [11], [12]
have demonstrated energy-efficient computations in neural al-
gorithms. However, electronic systems have inherent limitations
such as nonlinear potentiation/depression characteristics and
small differences in memory conduction states [13]. The issues
of electronic interconnections and crosstalk interference further
restrict the construction of high-density neuromorphic networks
comparable to BNNs [14], [15].

In contrast, optical neural networks (ONNs) have emerged as
an alternative solution for implementing neuromorphic compu-
tations using optical signals. ONNs offer advantages in terms
of processing speed, energy efficiency, and low heat generation
compared to their electronic counterparts [16], [17], [18], [19].
Leveraging the parallel processing capabilities of optical com-
ponents, ONNs enable fast and simultaneous computations on
large amounts of data [20], [21]. The use of optical rays with
multiple wavelengths allows for parallel transmission in free
space with minimal interference. This hardware could offer an
effective solution for implementing various deep learning mod-
els, including transformers [22], convolutional neural networks
(CNNs) [23], and spiking neural networks (SNNs) [24], to meet
their computational demands across a range of applications.

II. BACKGROUND AND RELATED WORKS

Recent advancements in ONNs have demonstrated fast
and energy-efficient computations, achieving vector computing
speeds of 11 trillion operations per second (TOPS) [25] and
energy efficiency up to 2.5 × 10−19 J per weight multiplication
[17]. To achieve high computation power and accuracy, many
ONN implementations import digitally pre-trained parameters
and utilize sophisticated components and systems [17], [20],
[25], [26]. However, the integration of optic-to-electronic and
electronic-to-optic conversions, modulation, and optical cou-
pling in ONNs introduces potential challenges in terms of non-
ideal operations and noise generation [27]. These factors can
result in reduced system performance and computation accu-
racy. Despite efforts to minimize these imperfections, achieving
imperfection-free hardware remains a challenge. The individual

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0009-0007-0316-9839
https://orcid.org/0009-0007-5588-5810
https://orcid.org/0009-0009-1254-2863
https://orcid.org/0009-0002-6877-1015
https://orcid.org/0009-0005-3253-241X
https://orcid.org/0009-0003-4364-8165
https://orcid.org/0000-0001-9254-2496
https://orcid.org/0000-0001-8312-4815
mailto:wipark@hanyang.ac.kr
mailto:siyang@khu.ac.kr
https://doi.org/10.1109/JPHOT.2024.3361930

8800108 IEEE PHOTONICS JOURNAL, VOL. 16, NO. 2, APRIL 2024

calibration of these imperfections demands additional digital
computations, eroding the inherent advantages of analog com-
putations in ONNs. Additionally, the majority of experimental
validations of ONN performance have been confined to assess-
ing system accuracy solely during the optical feed forward (i.e.,
forward propagation), with few notable exceptions [28]. This
constraint arises from the incapacity to effectively leverage pre-
viously computed information in the current stage, potentially
impeding the learning of diverse patterns. In contrast, the human
visual system, despite its inherent diversity and irregularity,
outperforms artificial machines in the perception and recogni-
tion of diverse and irregular images directly collected from the
environment.

In this study, we developed an ONN that emulates the effi-
cient processing and recognition of 2-dimensional (2D) images,
inspired by the human visual system. Instead of pursuing a
completely imperfection-free ONN, we chose to implement the
ONN hardware using readily available and cost-effective optical
components. The RGB color pixel array in conventional liquid
crystal display (LCD) technology served as our optical neurons
and synapses, facilitating optical signal outputs proportionate
to matrix-vector multiplication for 2D image inputs. The RGB
color pixel array allows independent computation for each color
signal. For clarity, this means that computations can be per-
formed separately for each color channel. Notably, we harnessed
this capability to represent both positive and negative weights
simultaneously. During the evaluation of our ONN, utilizing dig-
itally pre-trained parameters for 500 MNIST (Modified National
Institute of Standards and Technology) [29] handwritten digits,
we observed a decrease in recognition accuracy by 20–30%. This
decrease can be attributed to system imperfections associated
with non-ideal functions of optical components and optical
alignment. However, by applying our self-correction approach
that leverages a machine learning algorithm, we compensated
for any hardware deficiencies so that our ONN can restore the
recognition accuracy and loss of our ONN to levels compa-
rable to the digitally pre-trained model. This study highlights
the potential of constructing defect-tolerant hardware using a
machine learning algorithm inspired by biological acclimation
and adaptation processes.

III. METHODS

A. Principle of ONN

Fig. 1(a) illustrates the operational scheme of a single-layer
perceptron in our ONN system designed for the classification of
MNIST handwritten digits among 10 categories (0, 1, 2, …, 9)
[19], [30]. The input vector (Xi) and synaptic weights (Wij) are
represented as 2D pixel arrays, where i and j denote the order of
each element among 784 pixels (i.e., 28 × 28) and the order of
each class (j = 0, 1, 2, …, 9) of output nodes, respectively.

The input image generated by beam projector (1st plane) is
projected onto the LCD plane (2nd plane), where the transmit-
tance of each pixel is set proportionally to its corresponding Wij

value. The pixels of Xi and Wij overlap in a one-to-one cor-
respondence, allowing the transmitted light intensities of each
pixel (Iij) to be proportional to Xi×Wij (Fig. S1). This results in
optical signals undergoing scalar multiplications between each

element of the input image and its corresponding weight. We
also employed a white dot and bias Bj in the input and weight
planes, respectively, to introduce an offset and enable the model
to be more flexible. These were treated as the last element of the
pixels (referred to as X785 and W785j here after). Finally, optical
MVMs are implemented by focusing the image outputs on fine
points and detecting the intensities of the focused beams for the
10 classes of Wij in parallel [31], [32].

B. ONN Hardware

We implemented the ONN hardware, as shown in Fig. 1(b),
utilizing commercially available affordable components such
as a beam projector and an LCD panel (see Supplement for
additional details). These components were used to generate
MNIST handwritten digit images and electronically updateable
weights, corresponding to the 1st and 2nd planes in Fig. 1(a),
respectively. The pixel values (Xi and Wij) of both the beam
projector and LCD are expressed with an 8-bit color depth,
consisting of subpixel color indices (R, G, B) [33]. Each color
index (R, G, and B) defines the intensity of red, green, and
blue colors, respectively, with values ranging from 0 to 255.
For monochromatic image recognition, one color channel is
sufficient. However, since our system, based on incoherent light,
cannot represent negative values for weights, we used red and
blue colors to denote positive and negative signs of weights.
Specially, unlike conventional digital neural networks where
weight values typically range from -1 to 1, we normalized the
weights to integer values within the range of –255 to 255. This
allowed us to represent the weights directly using color indices,
such that a Wij value of 255 and –255 is expressed as (255, 0,
0) and (0, 0, 255) respectively.

After modulation of the input light by the LCD, the optical
signals were focused by a lens onto an optical fiber to measure
the intensities of red and blue light, IjR and IjB, respectively.
Their difference Ij is assumed to be proportional to the true
MVM outputs Oj:

Ij = IRj − IBj (1)

Oj =

785∑

i=1

Xi · Wij = α Ij. (2)

whereα (0.02) is employed to ensure comparability between the
Ij values and the digital MVM outputs. Representative spectra
and outputs achieved from a specific handwritten image (the 78th

digit from the MNIST training dataset) are shown in Fig. 1(c).
Based on these measurements, our system infers the image input
as the digit ‘1’ since the signal output I1 (or O1) is the highest
among the 10 classes.

C. Digital Training and Optical Training

To obtain the weight and bias parameters for our ONN, we de-
veloped a single-layer neural network using LabVIEW (Fig. 2).
As comparable to the conventional ‘backward propagation of
errors’, the training algorithm for our ONN system involves Data
loading, Training Loop, and End processes, as detailed follows:

[Data Loading]
� MNIST data (training data, N) is loaded from .csv files.

KIM et al.: OVERCOMING HARDWARE IMPERFECTIONS IN OPTICAL NEURAL NETWORKS 8800108

Fig. 1. (a) Operational scheme of a single-layer perceptron in the ONN system for MNIST handwritten digit classification. The input image in the first plane is
projected onto a second plane, where the transmittance of each pixel corresponds to its weight value. Optical signals undergo scalar multiplications between the
input image pixels and their corresponding weights, generating multiple 2D image outputs. Optical MVMs are implemented by focusing the image outputs and
detecting the intensities of the focused beams. (b) Schematic (top) and photo image (bottom) of the hardware implementation of ONN. (c) Representative spectra
and optically measured outputs Ij for the 78th MNIST handwritten image from training dataset for 10 classes (left and center panel). The outputs Yj of the softmax
function converted from the Ij (right panel). The optical measurement results and corresponding outputs for class “1” are highlighted in yellow. (d) Operational
scheme of a conventional neural network system.

� Features and labels are extracted, converting 1D arrays of
each image into 2D arrays.

� Labels undergo one-hot encoding.
� Weights are initialized.
[Training Loop]
� Feed-forward (MVM operation): Performs digital/optical

MVM operation to compute the weighted sum
(Oj(n)/Ij(n)).

� Calculate Loss: Applies softmax activation to generate
output probabilities and computes the loss.

� Calculate Loss Gradient: Computes the loss gradient with
respect to the weights of the network.

� Weight Update: Repeats the feed-forward and loss gradient
calculation steps for N training data. Updates weights, it-
erating through epochs until accuracy exceeds target level.

� Return Accuracy and Loss: Returns the computed accuracy
and loss for monitoring training progress.

[End]
� Shuts down the system.
1) Digital Training: In the data loading step, the network

received input data comprising 500 handwritten digit images
from the MNIST training dataset and initial weight values.
For the digital training phase, weights were randomly assigned
within the range of −255 to 255, after which they were fed into
the network.

In the training loop, an iterative process involving feed-
forward, loss calculation, loss gradient calculation, and weight
update are employed. During feed-forward in the digital training
phase, the network computed the MVM outputs Oj(n) for the nth

input image. These outputs were then used to compute Yj(n),

8800108 IEEE PHOTONICS JOURNAL, VOL. 16, NO. 2, APRIL 2024

Fig. 2. Schematic illustrating the Digital and Optical Training Procedures. Our ONN system operates through a sequence of steps, including data loading,
the Training Loop, and the end process. The weight parameters were initially randomly assigned and then optimized using the digital training process. These
parameters were subsequently fed into the ONN system and further updated through optical training (i.e., the machine learning-based self-correction process)
designed to address and compensate for hardware imperfections in our ONN. The Training Loop (gray box) is initiated with a feed-forward employing Matrix-Vector
Multiplication (MVM) to calculate weighted sums. Subsequently, it calculates losses and loss gradients, traversing backward through the network. The averaged loss
gradients for N inputs were employed to update weights, thereby facilitating a training process aimed at minimizing loss and maximizing classification accuracy.

which represents the output of the softmax function and is
expressed as:

Yj (n) =
exp [Oj (n)]∑10

j = 1 exp [Oj (n)]
(3)

The loss δj(n) of jth class was then computed using:

δj (n) = Yj (n)− Tj (n) (4)

where Tj(n) represents the target value for each input digit
image.

Our training algorithm employed the cross-entropy error
loss function [34], denoted as E(n), to iteratively optimize the
weights and minimize the loss, thereby enabling the model to
generate accurate outputs for given inputs. The E(n) is defined
as:

E (n) = −
10∑

j = 1

[Tj (n) · lnYj (n)] (5)

To calculate the delta-rule weight increment, we leveraged the
gradient of the loss with respect to Wij, which can be computed
as:

∂E (n)

∂Wij
= δj (n) ·Xi (n) (6)

After repeating the feed-forward and loss gradient calculation
steps for N training data, we calculate the average loss gradient
∂E
∂Wij

for N inputs:

∂E

∂Wij
= δj · Xi (7)

where δj and Xi are the averages of δj(n) and Xi(n) for N inputs.
From the averaged loss gradient, the weights are adjusted using

the following equation:

Wij ←Wij +ΔWij (8)

where

ΔWij = −η · ∂E

∂Wij
(9)

Here, η represents the training rate. In our ONN system, η was set
to 2, which is approximately two orders of magnitude larger than
in a conventional digital training model [4], [35]. This choice was
made due to the normalization of weights within the range of+/-
255 in our ONN system, which is also two orders of magnitude
larger than the weights in a conventional digital training model.
This process was repeated for multiple iterations (epochs) until
a satisfactory level of accuracy was attained.

2) Optical Training (Correction of Hardware Imperfections):
The ONN operation program employed algorithms similar to
the digital neural network, differing only in the import of
weight parameters and the implementation of MVM during
the feed-forward stage (Fig. 2, indicated by blue broken lines).
The weight parameters, pre-trained through the digital training
process described above, were exported to our LCD synaptic
layer in the ONN hardware.

In the feed-forward stage, the ONN hardware conducted
optical MVM operations by measuring the Ij value for each
class, as described in the previous Section B. Similar to digital
training, the outputs of the softmax functions Yj were computed
from the optically measured outputs (1)–(3), as typical example
is illustrated in the left panel in Fig. 1(c).

IV. RESULTS AND DISCUSSION

The basic operation principle of our ONN is analogous to
the Stanford-Vector-Multiplier architectures [31], but it is more

KIM et al.: OVERCOMING HARDWARE IMPERFECTIONS IN OPTICAL NEURAL NETWORKS 8800108

Fig. 3. Non-ideal performance and imperfections in the ONN System. (a) Non-linear behavior of light transmittance through the LCD pixels. (b) Non-uniform
beam collection observed during fiber coupling. The plots in the top panels depict line profiles along the white dashed line in the images of the red and blue beams,
respectively. The RGB indices of the single-pixel beams from the beam projector in (a) and (b) were set to (255, 0, 255) for both cases.

efficient for image recognition. In conventional neural networks,
as shown in Fig. 1(d), 2D image inputs are converted to a 1D
array and delivered to input nodes for subsequent signal process-
ing and transfer to the output nodes. However, implementing
conventional neural networks in hardware using 1D arrays for
input nodes faces challenges as the number of input neurons
increases. This results in increased system complexity. In this
regard, our ONN architecture has an advantage in that 2D images
can be directly imported without flattening the image or estab-
lishing individual wirings corresponding to the total number of
pixels [19], [30], [36], [37]. Additionally, diverse wavelengths
of light rays can be exploited as independent signals. In this
case, different colors were employed to represent positive and
negative signs of weights, as explained in Section III-B.

To assess the performance of our ONN, we selected an initial
set of 500 samples from the MNIST training dataset, which
comprises a total of 60000 samples. We created a digital model
with a single fully connected layer, analogous to our ONN,
and optimized the weights using a standard training algorithm
(see Section III-C.1 and III-C.2 for more details). The training
process for our digital model was continued until it achieved
100% classification accuracy specifically for the selected 500
samples.

After obtaining the digitally trained parameters, we imported
them into our ONN hardware and conducted experimental
classification using the same set of MNIST digits. However,
our optical classification test yielded results that significantly
deviated from the expected outcomes based on simulations. In
fact, the classification accuracy in our optical test decreased
by approximately 26.6% compared to the performance of the

digital model [Fig. 4(a) and (b)], despite our dedicated efforts to
minimize errors.

To investigate the reasons behind the observed discrepancy
between the digital and optical tests, we examined the non-ideal
performance of the components in our ONN. The analysis
revealed several imperfections within the system. First, the light
intensities of the input image from the beam projector were
not linearly proportional to the target values of Xi and also
varied depending on the color, as illustrated in Fig. S2. While we
attempted to digitally compensate for the intensity differences
between red and blue lights (by reducing the red input values
by a factor of 2.3), the nonlinearities and offsets still persisted.
Second, the light transmission through each pixel of the LCD
varied non-linearly with the weight values represented by the
R and B color indices of the LCD. In Fig. 3(a), we plotted
the measurement results of transmitted light intensities for a
single-pixel beam with an RGB index of (255, 0, 255) from
the beam projector. It was noted that the transmitted intensities
barely changed when the R and B indices were set below
approximately 50, and gradually increased as the RGB values
were further incremented. Third, we discovered non-uniform
beam collection related to fiber coupling for both the red and
blue beams. Despite our efforts in beam alignment, we observed
that the beam at the core region exhibited approximately 1.3 to
1.5 times higher intensity compared to the beam at the edge
region for both the red and blue beams [Fig. 3(b)].

Instead of rectifying the inherent hardware imperfections or
substituting the existing components with faultless counterparts,
we have devised a machine learning-based training algorithm
to address and compensate for these imperfections, utilizing

8800108 IEEE PHOTONICS JOURNAL, VOL. 16, NO. 2, APRIL 2024

Fig. 4. Evaluation and analysis of the machine learning-based self-correction process. (a) Classification accuracy (left) and loss (right) during training epochs
for subsets of 100, 200, and 500 handwritten digit images from the MNIST training dataset. (b) Confusion matrices illustrating the relationship between predicted
classes and actual classes for the classification of 500 handwritten digits before and after the self-correction process. (c) 2D plots of the weights before (left) and
after (center) self-correction, accompanied by their differences (right), for classes “0” and “1”. The dots in the lower right corners correspond to the biases (or the
last elements of weights, W785j). (d) Histogram showcasing the distributions of weights before (left) and after (center) the self-correction process, along with their
differences (right), for classes “0” and “1”. In (b)–(d), the data labeled as “Digitally Trained” are obtained via optical feed-forward (i.e., optical MVM) operations
employing the digitally pre-trained weights and biases. Digital pre-training was performed over 500 training datasets until the classification accuracy for the entire
dataset reached 1 (after 45 iterative epochs). The data labeled as “Self-Corrected” are acquired after 59 epochs of optical training (self-correction) process, starting
from the digitally pre-trained weights.

the algorithm described in the Section III-C.1 and III-C.2 (also
refer to Fig. 2). As a result of iterative self-correction based
on optical measurements, the classification accuracy of our
system gradually improved. Notably, when subjected to testing
with 100 and 200 handwritten digits, perfect classification (i.e.,
accuracy of 1) was achieved after 11 and 18 update epochs,
respectively [Fig. 4(a)]. In pursuit of a more challenging bench-
mark, we extended our evaluation to include the Fashion MNIST
dataset. Despite the heightened challenge posed by Fashion
MNIST, particularly for our single-layer neural networks, our
ONN system overcome hardware imperfections after training
via our self-correction approach, restoring accuracy from 40%
to 83% after 79 iterative epochs. We anticipate that upgrading
our system to DNNs could potentially enhance its performance
(Fig. S3).

While larger training sets required more iterations, optimal
classification was primarily accomplished within 60 epochs for
training sets containing fewer than 500 samples. For instance, a
recognition accuracy of 100% was attained for 500 handwritten
digits after 58 epochs. Throughout the training process, our ONN
system effectively adjusted the weights to minimize the loss
value, resulting in improved prediction accuracy. Consequently,

the loss attributed to optical measurement errors exhibited a
decrease of approximately three orders of magnitude as the
accuracy approached 1. It should be noted that evaluation of
our hardware performance focused solely on the training set
consisting of 500 handwritten digits, rather than utilizing the
MNIST test set. While achieving a classification accuracy above
∼0.93 for the MNIST test set is feasible even with a single-layer
perceptron model, the experimental implementation of our ONN
is limited by suboptimal operating speed, thereby constraining
its training capabilities to a level comparable to that of a digital
neural network.

The confusion matrices in Fig. 4(b) depict the relationship
between predicted classes and actual classes for the classifi-
cation of 500 handwritten digits. Initially, when the weights
were trained digitally, frequent misclassifications occurred, such
as ‘9’ being mistaken for ‘4’ and ‘3’ being mistaken for ‘2’
[Fig. 4(b), left panel]. These incorrect predictions were likely
due to the similarities in shape between the digits. However, after
updating the weights to compensate for hardware imperfections,
our ONN was able to accurately classify all 500 test digits from
‘0’ to ‘9’ [Fig. 4(b), right panel]. Fig. 4(c) illustrates 2D plots
of the weights for classes ‘0’ and ‘1’ before (left panel) and

KIM et al.: OVERCOMING HARDWARE IMPERFECTIONS IN OPTICAL NEURAL NETWORKS 8800108

after (center panel) the self-correction process. Additionally, it
presents the overall change in the weights. Similar plots are
shown for other classes in Fig. S4. The corresponding histograms
of these weight distributions are depicted in Fig. 4(d) and Fig. S5,
which represent the fine adjustment process for system errors.
It is evident that the magnitude of weight changes follows a
Gaussian distribution with a standard deviation of approximately
23. A similar tendency was observed for most other classes.
These findings suggest that slight changes in the weights can
effectively eliminate hardware imperfections, leading to a nearly
1000-fold decrease in loss. In our implementation of the ONN,
we initially utilized only a small portion of the display. However,
the potential for achieving higher throughput is substantial and
can be realized by (1) increasing the number of input neurons
(Xi) and (2) performing parallel operations for multiple classes
(Wj). Recent studies [30] exploring the use of megapixels of op-
tical components suggest the potential for enhanced throughput,
reaching up to 1 million multiply–accumulate (MAC) per elec-
tronic clock cycle (∼petaMAC/s). The incorporation of state-
of-the-art high-speed photodetector arrays [37] could potentially
push this throughput even higher. In addition, while we used only
red and blue color pixels to represent sign in weights in this study,
employing the entire RGB color pixel array allows for more
independent computation for each color signal, thereby further
improving computation power. In terms of energy efficiency,
the use of LCD has some limitations due to the energy cost
associated with refreshing the LCD pixels and high optical
loss during light transmission (∼95% optical loss). Strategies
such as employing fixed or static weights, including optical
phase change materials [38] or photochromic materials, and/or
high-speed optical sources [39], present promising approaches
to potentially approach the theoretical quantum limit, set by shot
noise[16], [19].

V. CONCLUSION

We have presented the development and evaluation of an
ONN using inexpensive components that emulates the efficient
processing and recognition capabilities of the human visual
system. Our ONN system incorporates a self-correction mech-
anism that leverages a machine learning algorithm to address
the inherent imperfections of the hardware. By incorporating a
self-correction mechanism that leverages machine learning, we
address hardware imperfections. Despite a 20–30% decrease in
recognition accuracy caused by optical alignment and non-ideal
functions of components, our self-correction approach restores
accuracy to levels comparable to pre-trained models. This study
highlights the potential of using machine learning for defect-
tolerant hardware in optical neural networks, enhancing per-
formance and reliability for image processing and recognition
systems. Furthermore, we anticipate a substantial increase in
throughput by harnessing most RGB pixels for computation,
taking advantage of the high resolution of the display. This
suggests a significant improvement in throughput at a larger
scale, highlighting the scalability and potential performance en-
hancements of our ONN architecture in real-world applications.

REFERENCES

[1] J. Von Neumann, “First draft of a report on the EDVAC,” IEEE Ann. Hist.
Comput., vol. 15, no. 4, pp. 27–75, 1993.

[2] Z. Wang et al., “Resistive switching materials for information processing,”
Nature Rev. Mater., vol. 5, no. 3, pp. 173–195, 2020.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 84–90.

[4] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based accelerator design for deep convolutional neural networks,”
in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, 2015,
pp. 161–170.

[5] X. Liu, H. A. Ounifi, A. Gherbi, Y. Lemieux, and W. Li, “A hybrid
GPU-FPGA-based computing platform for machine learning,” Procedia
Comput. Sci., vol. 141, pp. 104–111, 2018.

[6] S. Mittal, “A survey of FPGA-based accelerators for convolutional neu-
ral networks,” Neural Comput. Appl., vol. 32, no. 4, pp. 1109–1139,
2020.

[7] M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K.
Likharev, and D. B. Strukov, “Training and operation of an integrated neu-
romorphic network based on metal-oxide memristors,” Nature, vol. 521,
no. 7550, pp. 61–64, 2015.

[8] Y. Li and K.-W. Ang, “Hardware implementation of neuromorphic com-
puting using large-scale memristor crossbar arrays,” Adv. Intell. Syst.,
vol. 3, no. 1, 2021, Art. no. 2000137.

[9] S. Li et al., “Wafer-scale 2D hafnium diselenide based memristor crossbar
array for energy-efficient neural network hardware,” Adv. Mater., vol. 34,
no. 25, 2022, Art. no. 2103376.

[10] S. Dai et al., “Recent advances in transistor-based artificial synapses,” Adv.
Funct. Mater., vol. 29, no. 42, 2019, Art. no. 1903700.

[11] Y. Li et al., “One transistor one electrolyte-gated transistor based spiking
neural network for power-efficient neuromorphic computing system,” Adv.
Funct. Mater., vol. 31, no. 26, 2021, Art. no. 2100042.

[12] J. Shi et al., “A fully solution-printed photosynaptic transistor array with
ultralow energy consumption for artificial-vision neural networks,” Adv.
Mater., vol. 34, no. 18, 2022, Art. no. 2200380.

[13] M. M. Waldrop, “The chips are down for Moore’s law,” Nature News,
vol. 530, no. 7589, 2016, Art. no. 144.

[14] F. Lacroix, M. Châteauneuf, X. Xue, and A. G. Kirk, “Experimental
and numerical analyses of misalignment tolerances in free-space optical
interconnects,” Appl. Opt., vol. 39, no. 5, pp. 704–713, 2000.

[15] M. E. Fouda, F. Kurdahi, A. Eltawil, and E. Neftci, “Spiking neural
networks for inference and learning: A memristor-based design perspec-
tive,” Memristive Devices Brain-Inspired Comput., vol. 31, pp. 499–530,
2020.

[16] R. Hamerly, L. Bernstein, A. Sludds, M. Soljačić, and D. Englund, “Large-
scale optical neural networks based on photoelectric multiplication,” Phys.
Rev. X, vol. 9, no. 2, 2019, Art. no. 021032.

[17] G. Wetzstein et al., “Inference in artificial intelligence with deep optics
and photonics,” Nature, vol. 588, no. 7836, pp. 39–47, 2020.

[18] T. Zhou et al., “Large-scale neuromorphic optoelectronic computing with a
reconfigurable diffractive processing unit,” Nature Photon., vol. 15, no. 5,
pp. 367–373, 2021.

[19] T. Wang, S. - Y. Ma, L. G. Wright, T. Onodera, B. C. Richard, and P.
L. McMahon, “An optical neural network using less than 1 photon per
multiplication,” Nature Commun., vol. 13, no. 1, 2022, Art. no. 123.

[20] Y. Shen et al., “Deep learning with coherent nanophotonic circuits,” Nature
Photon., vol. 11, no. 7, pp. 441–446, 2017.

[21] X. Lin et al., “All-optical machine learning using diffractive deep neural
networks,” Science, vol. 361, no. 6406, pp. 1004–1008, 2018.

[22] A. Vaswani et al., “Attention is all you need,” in Proc. 31st Int. Conf.
Neural Inf. Process. Syst., 2017, pp. 6000–6010.

[23] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional
neural networks: An overview and application in radiology,” Insights
Imag., vol. 9, pp. 611–629, 2018.

[24] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A.
Maida, “Deep learning in spiking neural networks,” Neural Netw., vol. 111,
pp. 47–63, 2019.

[25] X. Xu et al., “11 TOPS photonic convolutional accelerator for optical
neural networks,” Nature, vol. 589, no. 7840, pp. 44–51, 2021.

[26] J. Chang, V. Sitzmann, X. Dun, W. Heidrich, and G. Wetzstein, “Hybrid
optical-electronic convolutional neural networks with optimized diffrac-
tive optics for image classification,” Sci. Rep., vol. 8, no. 1, 2018,
Art. no. 12324.

8800108 IEEE PHOTONICS JOURNAL, VOL. 16, NO. 2, APRIL 2024

[27] M. Y.-S. Fang, S. Manipatruni, C. Wierzynski, A. Khosrowshahi, and
M. R. DeWeese, “Design of optical neural networks with component
imprecisions,” Opt. Exp., vol. 27, no. 10, pp. 14009–14029, 2019.

[28] L. G. Wright et al., “Deep physical neural networks trained
with backpropagation,” Nature, vol. 601, no. 7894, pp. 549–555,
2022. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC8791835/pdf/41586_2021_Article_4223.pdf

[29] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[30] L. Bernstein, A. Sludds, C. Panuski, S. Trajtenberg-Mills, R. Hamerly, and
D. Englund, “Single-shot optical neural network,” Sci. Adv., vol. 9, no. 25,
2023, Art. no. eadg7904.

[31] R. A. Athale and W. C. Collins, “Optical matrix–matrix multiplier based on
outer product decomposition,” Appl. Opt., vol. 21, no. 12, pp. 2089–2090,
1982.

[32] W. Zhu, L. Zhang, Y. Lu, P. Zhou, and L. Yang, “Design and experimental
verification for optical module of optical vector–matrix multiplier,” Appl.
Opt., vol. 52, no. 18, pp. 4412–4418, 2013.

[33] T. Kumar and K. Verma, “A theory based on conversion of RGB image to
gray image,” Int. J. Comput. Appl., vol. 7, no. 2, pp. 7–10, 2010.

[34] S. Bruch, X. Wang, M. Bendersky, and M. Najork, “An analysis of the
softmax cross entropy loss for learning-to-rank with binary relevance,” in
Proc. ACM SIGIR Int. Conf. Theory Inf. Retrieval, 2019, pp. 75–78.

[35] W. Schiffmann, M. Joost, and R. Werner, Optimization of the Backpropa-
gation Algorithm For Training Multilayer Perceptrons. Koblenz, Germany:
Univ. Koblenz: Institute of Physics, 1994.

[36] Y. Zuo et al., “All-optical neural network with nonlinear activation func-
tions,” Optica, vol. 6, no. 9, pp. 1132–1137, 2019.

[37] T. Wang et al., “Image sensing with multilayer nonlinear optical neural
networks,” Nature Photon., vol. 17, no. 5, pp. 408–415, 2023.

[38] M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials
for non-volatile photonic applications,” Nature Photon., vol. 11, no. 8,
pp. 465–476, 2017.

[39] J. Liu et al., “Research progress in optical neural networks: Theory,
applications and developments,” PhotoniX, vol. 2, no. 1, pp. 1–39,
2021.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791835/pdf/41586_2021_Article_4223.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791835/pdf/41586_2021_Article_4223.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

