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Broadband Silver Ribbon-Embedded Graphene and
h-BN Optical Modulator With High Modulation

Depth and Extinction Ratio and Low
Switching Voltage

Hossein Karimkhani and Hamid Vahed

Abstract—Herein, we theoretically demonstrate a broadband
hybrid plasmonic electro-absorption optical modulator with inte-
grated silver nanoribbons. We have examined two structures. The
first one includes two layers of graphene and two layers of hexag-
onal boron nitride (h-BN). Silver nanoribbons are placed on the
Molybdenum Disulfide (MoS2) layer. In the second structure, we
covered the nanoribbon arrays with extra graphene, MoS2, and
h-BN layers. The effect of the gap between the silver nanoribbons
is analyzed for the effective refractive index, modulation depth
(MD), Extinction Ratio (ER), Figure of Merit (FoM), and loss.
The best results illustrate that the highest amount of the effective
refractive index is 5.65, and the highest amount of the loss is
2.2 dB/µm in the chemical potential of 0.65 eV at the wavelength of
1.3 µm. The maximum MD and FoM are 28.37 dB/µm and 62.93
at 1.3 µm, respectively. The calculations show that this electro-
absorption modulator has a modulation bandwidth of 411.25 GHz
and 27.18 fJ/bit energy consumption. This modulator achieves a
high MD, ER, and FoM with a small footprint and low switching
voltage. The study demonstrates that the modulator can achieve a
high level of modulation depth with low energy consumption and
loss.

Index Terms—Optical modulators, graphene, Molybdenum
Disulfide, 2D materials, electro absorption.

I. INTRODUCTION

GRAPHENE is a distinctive 2D material with a carbon
atomic layer in a hexagonal lattice. Graphene was intro-

duced in 2004 [1], [2]. Graphene possesses remarkable mechan-
ical strength, chemical stability, electro-optical adjustability,
variable gate voltage, high light interaction, and high carrier
mobility due to its distinctive band structure [3], [4]. Moreover,
graphene is a key material in telecommunication optical devices
and components, so it is a great candidate for electro-optical
modulators. The graphene layer can be easily integrated with
optical fibers and circuits. Graphene has increased the MD and
the modulation bandwidth due to its high absorption in optical
modulators [5], [6]. Graphene is also used in isotropic and
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anisotropic models in optical structures [4], [5], [7]. Anisotropic
graphene can support TE and TM modes [8]. The main method
for controlling the conductivity of graphene is changing the
carriers’ density by the input voltage. Indeed, by changing the
chemical potential, the conductivity of graphene can be con-
trolled. The voltage changes can control the amount of loss and
MD [9]. Graphene can conduct plasmonic waves in the terahertz
range. As a result, graphene is an excellent choice for terahertz
optical devices in the field of surface plasmon polariton [5], [6],
[7]. Graphene’s layer absorption is one of the most challenging
issues in optical modulators. The monolayer of the graphene can
absorb 2.3% of the input light, which is reasonable for a single
layer of graphene [10], [11].

Furthermore, the monolayer of graphene cannot absorb suf-
ficient light. To address this issue, we increased the number of
graphene layers. Anisotropic graphene was utilized and inte-
grated with the h-BN layer for this investigation.

Hexagonal Boron Nitride (h-BN) has attracted much attention
due to its unrivaled properties, such as high chemical durability,
thermal conductivity, melting temperature, electrical resistance,
and 6.5 eV energy gap [12]. The h-BN layers are barrier dielec-
tric layers for optical structures. On the other hand, h-BN layers
can modify the graphene band structure [13]. The thickness of
the h-BN layer plays a vital role in the modulator’s operation.
By reducing the h-BN layer’s thickness to below 10 nm, it is
possible to increase the light confinement [14]. Also, Molybde-
num Disulfide (MoS2), due to its tunable optical emission, the
direct energy gap, and the strong plasmon exciton force, which is
created between the MoS2 layers, is one of the critical materials
in the recently developed devices [15].

Plasmonic structures are an effective design tool to achieve
a customized optoelectronic response [16], [17]. Surface plas-
mons with light-trapping characteristics at the nanometer range
have received much attention in various applications, such as
chemical sensing devices, integrated waveguides, and modula-
tors. Surface Plasmons can increase the intensity of the magnetic
field [18], [19]. Surface Plasmon Polaritons (SPPs) support both
TM and TE modes. SPP occurs at the boundary between metal
and dielectric. SPP is a TM wave, and the magnetic field is par-
allel to the interface [20]. However, both TE and TM can be gen-
erated on the surface. Plasmonic structures in the integration of
the MoS2 layer represent extraordinary results [21], [22], [23].
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Fast electro-optic modulators are regarded as one of the
most important and widely used components in the telecom-
munications industry and have received considerable attention
in recent decades [24], [25]. The most vital characteristics of
optical modulators are large bandwidth, high speed, and small
footprint [25], [26], [27]. Optical modulators are divided into
two major Electro Absorption (EA) modulators and Electro
Refractive (ER) modulators categories [28]. ER modulators
involve changes in the real part of the effective index through
the Pockels effect, while EA modulators are associated with
changes in the imaginary part of the effective index through the
Franz-Keldysh effect under applied voltage [29], [30]. Electro-
absorption modulators can change the Fermi level by applying
voltage [31], [32]. The first generation of the modulators was
based on the graphene layers with a bandwidth of 1.35 μm to
1.6 μm and 0.1 dB/μm modulation depth [33]. K. Xu et al.
proposed a microfiber graphene based modulator with anAl2O3

dielectric layer [34]. The modulation bandwidth of this modu-
lator is 82 GHz with 1372 μm active length. B. Wang et al.
designed a modulator based on graphene and h-BN layers with
4 dB/μm modulation depth, 2.6 dB/μm loss, and 3.5 FoM [35].
X. Hu et al. demonstrated a graphene based modulator with
ultra-thin waveguide [5]. The maximum modulation depth of the
investigated modulator was 0.306 dB/μm with 0.0137 dB/μm
loss. In recent work, we elaborated a modulator with silver
ribbons and h-BN dielectric [36]. The modulation depth was
17.55 dB/μm, and the loss value was 1.47 dB/ μm.

In this study, we proposed a modulator based on graphene
and silver ribbons. The results that were investigated are based
on simulations and numerical analysis. Here, the loss is one of
the challenging points. We aimed to reduce loss while simulta-
neously increasing the amount of modulation depth. As a result,
notable modulation depth was attained in the final structure
with four graphene layers. The current structure illustrates how
a small-footprint high-speed optical modulator based on the
graphene and MoS2 layers can achieve high modulation depth.
This modulator contains silver arrays. These metal arrays can
improve the interaction of the input light and graphene. As a
result, these structures have excellent light interaction. First, we
study the changes in the real and imaginary parts of the ef-
fective refractive index regarding chemical potential. Secondly,
we calculate modulation depth, FoM, energy consumption, and
modulation bandwidth.

II. MODULATOR STRUCTURE AND CONDUCTIVITY

OF GRAPHENE

A. Structure Properties and Layers Fabrication

The investigated modulators are represented in two different
structures. Various structures with various dimensions were
studied, and the most efficient structures with high modulation
depth rates are illustrated in Fig. 1. Both of the structures consist
of SiO2 substrate, graphene, and h-BN layers. The width of the
SiO2 layer is 1450 nm with a thickness (h) of 300 nm. In the
first structure, the h-BN layers with a thickness of 1 nm are
placed on the SiO2 substrate (Fig. 1(a)). The graphene layer
is located on the h-BN layer, and at the final step, the MoS2

Fig. 1. Cross section view of the (a) first and (b) second proposed optical
modulator.

Fig. 2. 3-D view of the (a) first and (b) second proposed modulator.

layer is posited on the graphene layer, precisely beneath the
silver arrays. Silver nanoribbons’ thickness (w) and width (b)
are 25 nm and 50 nm, respectively. The length of the device is
1450 nm, 1100 nm, 890 nm, and 820 nm, while the g is 50 nm,
25 nm, 10 nm, and 5 nm, respectively. In the second structure,
the extra MoS2, graphene, and h-BN layers are placed on the
silver waveguides (Fig. 1(b)). The input beam is shown in Fig. 2;
applying a voltage to the Au electrodes changes the graphene’s
conductivity. Au electrodes serve as the voltage contacts. One
of the most crucial issues is the fabrication of various layers.
The fabrication parts can be examined with multiple scanning
techniques. In the fabrication process of the proposed modulator,
h-BN, and graphene layers can be added by the chemical vapor
deposition on the SiO2 wafer substrate. A photoresist mask
is placed on the graphene layer to create the Au voltage gate
and then removed by a spin-coated process. After the metal
evaporation of Au on the structure, the mask is removed by
the lift-up process. In the following, the MoS2 layer is attached
to the graphene layer by chemical vapor deposition. Finally, the
metal evaporation process is repeated for the second Au voltage
gate and Ag grating layers. Fig. 2. represents the 3-D view of the
developed structures. The position of the electrodes is shown in
Fig. 2, which are placed on top of the graphene layers.

The thicknesses of the graphene, h-BN, and MoS2 layers are
assumed to be 1 nm, 1 nm, and 0.7 nm, respectively. Then, silver
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nanoribbons are fabricated on the structure. The gap between
silver nanoribbons is represented with g. The amounts of g are
considered in 5 nm, 10 nm, 25 nm, and 50 nm. Finally, the
second structure is shown in Fig. 2(b). This study performs in a
wavelength range of 1.3 μm to 1.8 μm. The refractive index of
h-BN andMoS2 layers are 1.98 and 4.37, respectively [37], [38].

B. Formulation

Since the graphene electrons have a low density, the Fermi
level or chemical potential of the graphene can be tuned by the
carrier density [8]. By applying a voltage to the graphene layers,
the carriers come together, and the chemical potential can be
controlled by voltage [7], [8]. The applied voltage changes the
chemical potential of graphene, and these changes in chemical
potential can regulate the optical conductivity of graphene. By
using the Kubo equation, the relation of the optical conductivity
of single-layer graphene can be obtained in both intra-band and
inter-band ranges [36], [39], [40]:
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Whereω is optical frequency,μc is chemical potential, e is the
electron charge, � is the reduced Planck constant, T is temper-
ature, KB is the Boltzmann constant, τ is relaxation time, and

fd = (1 + e
ε−μc
KBT )

−1
is the Fermi Dirac distribution [13]. This

study calculated by the finite difference time domain (FDTD)
method to investigate the performance of the discussed mod-
ulator. The boundary condition is fixed to a perfectly matched
layer (PML) with 64 layers to decrease the amount of reflected
light. The graphene-based modulators in the THz range are
also widespread and have received a lot of attention [9], [36],
[41]. The chemical potential of the graphene varies with applied
voltage. The applied voltage changes the carrier density of the
graphene, and the amount of the μc can be calculated from
[5], [42]:

μc = �νf
√

πa0V (4)

Where νf = 3× 106 m/s is the Fermi velocity of the electrons
in the graphene, � is the reduced Planck constant, a0 = ε0εr

de is
the capacitor constant, d is the graphene layers thickness, ε0, and
εr are the permittivity of vacuum and the relative permittivity
of the dielectric [5], [43], and V is the applied voltage. When

Fig. 3. Real and imaginary part of the graphene’s (a) conductivity, (b) permit-
tivity at 1.55 µm wavelength.

voltage is applied to the graphene layer, the applied voltage
changes the Fermi energy, and finally, the amount of absorption
changes.

The real and imaginary parts of the graphene conductivity
at the wavelength of 1.55 μm are depicted in Fig. 3(a). The
permittivity of the graphene is calculated as the function of the
chemical potential at 1.55μm in Fig. 3(b). As shown in Fig. 3(b),
when the chemical potential increases from 0 eV to 0.65 eV, the
permittivity of graphene varies from 0.674+0.565i at 0 eV to
−4.195+0.131i at 0.65 eV. When the chemical potential changes
from 0.3 eV to 0.5 eV, the imaginary part of the permittivity
alters swiftly [44]. The permittivity of graphene at the chemical
potential of 0.52 eV is 0. When μc < 0.52 eV, graphene behaves
like a dielectric, and when μc > 0.52 eV, graphene acts like a
metal [36], [43], [44]. As a result, the amount of absorption can
be regulated by applying a voltage to the graphene layers.

Generally, when μc < �ω/2, the inter-band transfer and
absorption occur, and when μc > �ω/2, the inter-band transfer
is blocked, and intra-absorption occurs at very low frequencies
[28].

The following important parameter is the modulation depth.
The following equation can be used to calculate the modulation
depth [43]:

MD (dB/μm) = Loss (OFF )− Loss (ON) . (5)

Where Loss(OFF) is the amount of loss at 0 eV and
Loss(ON) is the amount of loss at 0.65 eV. The loss value
is another momentous parameter of the optical modulators
that can be calculated from the following equation [28], [45],
[46]:

Loss =
10 Im (Neff ) 4π

λ0 ln 10
(6)

Where Im(Neff ) is the imaginary part of the refractive index,
λ0 is the free-space wavelength. The amount of the Figure of
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Fig. 4. Electrical field distribution at 1.5 µm for (a) TM and (b) TE mode for
the first structure with g = 5 nm at 0.65 eV.

Fig. 5. Electrical field profile at 1.5 µm for (a) TM mode at on-state, (b) TE
mode at on-state, (c) TM mode at off-state, and (d) TE mode at off-state for the
first structure with g = 5 nm.

Merit (FoM) can be calculated by MD and loss [47], [48]:

FoM = MD (dB/μm) /PL (dB/μm) . (7)

Where PL is the propagation loss at 0.65 eV chemical potential
[47].

III. RESULTS AND DISCUSSION

In Fig. 4, TM and TE electric field distributions are demon-
strated for the first structure at the wavelength of 1.55 μm with
g = 5 nm. According to Fig. 4(a), the field distribution of TM
mode is distributed in the middle part of the structure. On the
other hand, the TE mode’s field distribution is concentrated in
two segments of the nanoribbon array (Fig. 4(b)). The mode’s
field distribution for the second structure is qualitatively similar
to the first structure. According to Fig. 4, the maximum field
is concentrated between the silver nanoribbon arrays. Also,
Fig. 5, depicts the first structure’s electrical field profile while
the amount of the g is 5 nm. According to Fig. 5(a), while the
chemical potential is 0.65 eV, and the modulator operates at
the On-State TM mode, an intense electrical field is created
between the Ag layers. Also, the electrical field profile for TE
mode investigated in Fig. 5. Fig. 5(b) clearly demonstrates that
in TE mode, the electrical field is separated into two different
parts, and the input light is transmitted in two various paths.
Fig. 5(c), (d) depict the electrical field profile for the Off-State.
Fig. 5(c), (d) demonstrate that the intensity of the electrical field
reduced at 0 eV chemical potential.

The mode overlap in optical devices involving 2D materials
ensures that the optical mode supported by the waveguide aligns
well with the properties of the 2D material. This alignment is
crucial for enhancing light-matter interactions and optimizing
the device’s performance. Mode overlap refers to the spatial
alignment or correspondence between the optical mode sup-
ported by the waveguide and the optical properties of the 2D
material. This concept is particularly relevant in devices such as
modulators, detectors, and light emitters that leverage the unique
properties of 2D materials to control or manipulate light at the
nanoscale. Designing optical devices with optimal mode overlap
often involves careful engineering of the device’s geometry,
dimensions, and the properties of the integrated 2D material.

Maximizing mode overlap can enhance the efficiency and
functionality of the device. Achieving a strong mode overlap
is crucial for optimizing the device’s interaction between light
and 2D materials. It can enhance light-matter interactions, such
as absorption or emission processes, and influence the device’s
overall performance. In this section, the loss and the real part of
the effective index changes (Re(Neff )) in terms of the chemical
potential for different values of g are investigated at the wave-
length of 1.55 μm. Fig. 6(a)–(c), shows the loss as a function of
the chemical potential from 0 eV to 0.65 eV for both structures
with different values of the g parameter.

It can be seen that, in both structures, the loss has increased
when the amount of the g decreases from 50 nm to 5 nm.
Accordingly, when the chemical potential increases from 0 eV
(Off-State) to 0.65 eV (On-State), the loss decreases, and this
reduction occurred at 0.4 eV, 0.35 eV, and 0.3 eV chemical
potentials at the wavelengths of 1.3 μm, 1.55 μm, and 1.8 μm.
This sudden reduction in the loss amount is expected because of
the permittivity changes.

Fig. 6(a)–(c) illustrates that the structures with the lower
amount of the g have an exorbitant slope. The amount of the loss
decreases to lower rates when the chemical potential is 0.4 eV,
0.35 eV, and 0.3 eV for the wavelengths of 1.3 μm, 1.55 μm,
and 1.8 μm. While the chemical potential is lower than 0.4 eV,
0.35 eV, and 0.3 eV for the wavelengths of 1.3 μm, 1.55 μm, and
1.8 μm the modulator operates at the high loss region, however,
when the chemical potential is higher than 0.4 eV, 0.35 eV, and
0.3 eV for the wavelengths of 1.3 μm, 1.55 μm, and 1.8 μm, the
proposed modulator operates at the low loss region.

Fig. 7(a)–(c) shows the Re(Neff ) as a function of the chemical
potential from 0 eV to 0.65 eV. According to Fig. 7(a)–(c),
when the amount of g decreases from 50 nm to 5 nm, the
amount of Re(Neff ) enhances. Accordingly, when the chemical
potential increases from 0 eV to 0.65 eV, refractive indices have
decreased. This reduction has occurred at the chemical potential
of 0.4 eV when the wavelength is 1.3 μm. While, the chemical
potential is 0.3 eV for the wavelengths of 1.5 μm, and 1.8 μm,
this reduction has occurred. Fig. 7(a)–(c) demonstrates that, the
highest amount of the refractive index relates to the second
structure with g = 5 nm. Also, according to Fig. 7(a)–(c), for
different wavelengths, the amount of the changes in the refractive
index between 0 eV and 0.65 eV are extremely small.

In the following, the amount of loss and Re(Neff ) changes
in the verses of wavelength are depicted in Figs. 8 and 9. The
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Fig. 6. Loss as a function of µc for both of the structures at (a) wavelength of
1.3 µm, (b) wavelength of 1.55 µm, and (c) wavelength of 1.8 µm.

amount of the changes is shown for On-State and Off-State in
two structures with g = 5 nm (Figs. 8 and 9).

According to Fig. 8, by increasing the wavelength, the amount
of loss decreases in both 0 eV and 0.65 eV chemical poten-
tials. At the chemical potential of 0 eV, the amount of loss is
20.12 dB/μm at 1.3 μm in the first structure, and finally, at the
wavelength of 1.5 μm, the amount of the loss is 17 dB/μm. In
the second structure, at the chemical potential of 0 eV, the loss
is 30.6 dB/μm, and finally, at the wavelength of 1.5 μm, the loss
is 25 dB/μm.

According to Fig. 9, it is clear, in both of the chemical po-
tentials, with increasing the wavelength from 1.3 μm to 1.8 μm,

Fig. 7. Re(Neff ) as a function of chemical potential for both of the structures
at wavelength of (a) 1.3 µm, (b) 1.55 µm, and (c) 1.8 µm.

the Re(Neff ) decreases. Moreover, by increasing the chemical
potential from 0 eV to 0.65 eV, the value of the Re(Neff ) has
been reduced. In both of the chemical potentials, the Re(Neff )
has an identical pattern. Furthermore, the amount of change at
0.65 eV is greater than 0 eV, and the changes have a steep slope.

The modulation depth (MD) in terms of the wavelength was
calculated for both structures in Fig. 10(a), in both structures,
the modulation depth decreased when the g value was raised.
In the first structure, at g = 5 nm, the MD of 15.2 dB/μm is
obtained at the wavelength of 1.55 μm. For the second structure
with g = 5 nm, the MD is 23.37 dB/μm at the wavelength of
1.55 μm. The highest amount of the MD is 18.03 dB/μm for the
first structure and 28.37 dB/μm for the second structure, which is
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Fig. 8. Loss as a function of wavelength for two values of chemical potential
0.0 eV and 0.65 eV with g = 5 nm for the first and the second structure.

Fig. 9. Re(Neff ) as a function of wavelength for chemical potential of 0.0 eV
and 0.65 eV with g = 5 nm for the first and the second structure.

related to 1.3 μm wavelength. The amount of the MD in the first
simulation is 4.37 dB/μm, and in the last simulation, it increased
six fold.

Secondly, FoM is plotted in Fig. 10(b) for both of the struc-
tures. In the proposed structures, with increasing the amount of
the g, the FoM decreased. In the first structure, at g = 5 nm,
the FoM of 16.05 is achieved at the wavelength of 1.55 μm. For
the second structure with g = 5 nm, the amount of the FoM
is 37.11 at the wavelength of 1.55 μm. The highest amount of
the FoM is 62.93, which is related to the second structure with
g = 5 nm. Additionally, the amount of the modulation depth can
be changed with the amount of the g gap.

In the following, the amount of the MD as a function of g (gap)
is illustrated in Fig. 11(a). Finally, the amount of the and the gate
voltage as a function of the chemical potential is represented in
Fig. 11(b). In this study, the On-State and the Off-State voltage
are 2.37 V and 0 V, respectively.

Extinction ratio (ER) is one of the most essential and critical
parameters in electro-optical modulators. Extinction ratio can be
calculated by (8), which shows that the ER is entirely dependent

Fig. 10. (a) MD as function of wavelength with different values of g for the
first and the second structures, (b) FoM as function of wavelength for different
values of g for the first and the second structures.

Fig. 11. (a) Dependence of modulation depth to the g at 1.3 µm, (b) Gate
voltage changes in terms of the chemical potential.
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Fig. 12. ER as function of wavelength with different values of g for the first
and the second structures.

on the modulator’s output power in both the On-State and Off-
State. Fig. 12. depicts the ER variations in the wavelength range
of 1.3 μm to 1.8 μm [49], [50].

ER (dB) = 10 [(log10POn State)− (log10POff State)] (8)

Fig. 12. shows that when the wavelength increases from
1.3 μm to 1.8 μm, the ER drops. ER, on the other hand, rises
when the gap between Ag layers’ narrows. The maximum ER is
65.34 dB at 1.3 μm and is related to the second structure with a
5 nm gap. Finally, for further investigation, we discuss other
substantial parameters in modulators. In optical modulators,
the footprint, the energy per bit (Ebit), and the modulation
bandwidth (f3dB) play an essential role. These parameters are
crucial and valuable factors in the selection of modulators. The
amount of the (f3dB) can be calculated by [43], [49], [51]:

f3dB = 1/2πRC (9)

Where the capacitance isC = ε0 εrS/d, ε0 is the permittivity
of the vacuum, and εr is the permittivity of h-BN, S is the area,
and d is the thickness of h-BN layer, respectively [52]. The
amount of C is 11.20 fF. and R is the series resistance of the
device, which is assumed 33 Ω [53], and the equivalent circuit
of the proposed modulator is depicted in Fig. 13. Then Ebit is
calculated by (10) [36], [43], [54].

Ebit = CΔV 2/4 (10)

Where C is the capacitance and ΔV is the voltage between
On-State and Off-State [36], [43]. According to (4), the amount
of the ΔV can be calculated by (11) [55]:

ΔV = Vgate−On state − Vgate−Off state = μ2
c dq/h̄

2ν2F ε0εr
(11)

Fig. 11(b) represents theΔV changes in terms of the chemical
potential.

As can be seen in Fig. 13, Rcontact and Rg are related to the
gate resistance and the graphene layers resistance, respectively.
RnAg and n are the silver array’s resistance and the number of
the array.CSemiconductor is the capacitance of theMoS2 layers.
CAir is the capacitance of the air between the silver layers, and
Cd is the dielectric layer’s capacitance.

Fig. 13. Equivalent circuit of the proposed modulator.

V. CONCLUSION

In this work, we investigated an EA optical modulator based
on graphene and h-BN layers placed around silver nanoribbon
arrays. We analyzed the MD and the FoM in this modulator
and not only achieved high modulation depth but also attempted
to attain a low loss. In detail, both of the structures have a high
modulation depth. The proposed structure reached MD and FoM
as high as 28.37 dB/μm and 62.93, respectively. Furthermore,
modulation bandwidths as high as 411.25 GHz and low Ebit in
these structures have been investigated. The numerical simula-
tion denotes that this modulator can achieve high MD with a
small footprint and low energy consumption. The investigated
ER is 65.34 dB, while the amount of the switching voltage is
2.37 V. Also, the amount of the loss and real part of the refractive
index for the proposed structure is 2.2 dB/μm and 5.65 dB/μm,
respectively.
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