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Bi-GRU Enhanced Cost-Effective Memory-Aware
End-to-End Learning for Geometric Constellation

Shaping in Optical Coherent Communications
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Abstract—We propose a cost-effective and memory-aware end-
to-end learning scheme utilizing bi-directional gated recurrent
unit (bi-GRU) for geometric constellation shaping (GCS) under
the first-order regular perturbation (FRP) auxiliary channel. The
performance of the proposed system has been numerically verified
at a 32 GBd 5-channel wavelength division multiplexing (WDM) 64
quadrature amplitude modulation (QAM) 800 km optical coherent
communication system. Results show that the proposed bi-GRU
based GCS scheme can achieve a performance gain over square
64QAM in mutual information (MI) with 0.12 bits/symbol and a
Q-factor gain of 0.4 dB at optimal launched optical power. When
transmission distance is extended to 1280 km, a generalized mutual
information (GMI) gain of 0.136 bits/symbol is observed. Addition-
ally, compared with the bi-directional long short-term memory
(bi-LSTM) based GCS, the proposed bi-GRU scheme has lower
computation complexity with similar system performance.

Index Terms—Bi-directional gated recurrent unit, end-to-end
learning, geometric constellation shaping.

I. INTRODUCTION

RAPIDLY growing demand for higher spectral efficiency
(SE) in the standard single mode fiber (SSMF) promotes

the integration of wavelength division multiplexing (WDM)
and high-order modulation. Under a given WDM system set-
ting, modulation format optimization is an effective approach
to further increase the SE, namely probabilistic or geometric
constellation shaping. Probabilistic constellation shaping (PCS),
known for its rate adaptivity [1], may be incompatible with
high-speed hardware implementation due to conventional se-
rial distribution matcher [2]. However, geometric constellation
shaping (GCS) provides an alternative by directly optimizing
the constellation points to circumvent the serial calculation in
distribution matchers.

In order to further facilitate and optimize the design of
constellations in GCS, machine learning based technique was
introduced. As proposed in [3], [4], the conventional transceiver
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block structure in typical optical communication systems could
be entirely replaced by an end-to-end (E2E) learning-based
autoencoder (AE) structure. In [5], the E2E fashion was utilized
to compute achievable information rates under a simplified
fiber channel, showing robustness to nonlinear phase noise and
performance improvement. There has been a growing research
attention for E2E learning facilitated GCS schemes in opti-
cal communication systems [6], [7], [8], [9]. GCS was firstly
integrated with E2E learning using mutual information (MI)
as performance metric in [6] and E2E learning aided GCS
regarding fiber nonlinearity has been carried out in [7]. In order
to accommodate the bit-wise system design, the performance
metric of generalized mutual information (GMI) was introduced
for E2E learned GCS structure in [8], [9]. MI and GMI can
be estimated using the corresponding decoder neural networks
(NN), which further evaluates the system capacity gain [6],
[8]. In E2E learned GCS, the auxiliary channel model also
plays an important role since the training procedure is often
gradient-based backpropagation. In [10] the split-step Fourier
method (SSFM) for fiber channel modeling was embedded in
the E2E learning network structure to achieve SE gains in
long-haul coherent optical communication. Nevertheless, sim-
ulations of long-haul WDM system with nonlinear effects are
cumbersome using SSFM. Consequently, the appropriate and
accurate differentiable modeling of fiber-optic channel is im-
perative for cost-effective and memory-aware emulations of the
WDM system. Modeling of such systems in differentiable chan-
nels can provide more efficient analysis in E2E AE structures.
Various differentiable auxiliary channel modeling methods have
been proposed. The Gaussian noise (GN) model measures the
nonlinear interference in the channel as memoryless additive
white Gaussian noise (AWGN) related to launch power, but
nonlinear effects are not mitigated [11]. The nonlinear inter-
ference noise (NLIN) approach further includes the modulation
dependent effects, mitigating nonlinear effects by optimizing its
high-order moments [7], [12]. However, channel memory, such
as inter-symbol interaction, is neglected in both GN and NLIN
auxiliary models. Thereafter, first-order regular perturbation
(FRP) auxiliary channel model is proposed, using the first-order
polynomial approximation of the nonlinearity to simulate the
channel memory in the fiber-optic channel [13].

In terms of neural network in E2E learning GCS, most previ-
ous studies are based on layers of feed-forward neural network
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(FFNN), which are unable to compensate for fiber chromatic
dispersion (CD) and nonlinearity mixed effects. Therefore, to
emulate the channel memory feature in optical coherent WDM
systems, optimizations in both transceiver design and memory-
aware auxiliary channel modeling are considered. Firstly, for the
transceiver design, the recurrent neural network (RNN) based
E2E learning scheme can provide performance gains in com-
parison to block-based schemes due to its sequential learning
ability. However, vanilla RNN is prone to gradient vanishing
or explosion, causing possible difficulties in the E2E training
process [14]. Moreover, RNNs can have difficulty learning
long-term dependencies, which means that they may not be
able to remember information from earlier in the sequence
when making predictions later on. Therefore, RNNs may not
be able to capture complex patterns. To deal with the inherent
flaws of RNN, the long short-term memory network (LSTM)
[15] and gated recurrent unit (GRU) [16], were proposed with
advanced long-term learning capabilities. In [17], LSTM and
GRU were proved effective as fiber nonlinearity equalizers, but
the performance improvement in LSTM models comes with
high complexity. To exploit the sequential feature from the
neighboring samples, bi-directional RNN was introduced in
optical communication systems. In [18], bi-directional RNNs
have been successfully integrated to a short-range IM/DD fiber-
optic system with sliding window sequence estimation. The
bi-directional RNN outperforms the vanilla RNN by processing
data in both directions, but it is not immune to the gradient
vanishing problem, which makes its training rather intricate.
Thereafter, the bi-directional gated recurrent unit (bi-GRU),
equipped with gating mechanisms, can effectively address this
issue and enhance the performance of bi-directional RNNs.
The bi-GRU scheme has been successfully integrated into the
E2E physical layer communication over AWGN channels [19],
achieving considerable performance gains. However, it mainly
focused on the E2E equalization at the receiver and its chan-
nel model was limited to AWGN and intersymbol interference
channel. Moreover, a bi-GRU AE scheme was also introduced
for prediction in a degradation system [20]. Those applications
demonstrate the potential and effective of bi-GRU structures in
optical communication systems where prediction and classifi-
cation are required. Since E2E learned GCS fiber-optic system
would process serial samples, system nonlinearities and receiver
optimization, the bi-GRU structure can be integrated into the
transceiver design.

In this paper, a bi-GRU enhanced E2E learning GCS struc-
ture is introduced in an optical WDM system to tackle the
channel memory in auxiliary channel modeling and reach a
system performance-complexity trade-off. First, we utilize bi-
directional gated recurrent unit (bi-GRU), due to its decent
performance and moderate complexity. The introduced cost-
effective bi-GRU scheme could compensate for the potential
learning setbacks for small stacks of FFNNs with respect to
the combined influence of intersymbol interference and channel
memory effects. Bi-directional long short-term memory (bi-
LSTM) is utilized for performance and complexity compar-
ison. Furthermore, in order to take channel memory effects
into account, the FRP model is introduced for cost-effective

and memory-aware optical channel modeling with linear and
nonlinear coupled distortions [13], [21]. The combination of
memory-aware cost-effective bi-GRU and FRP auxiliary chan-
nel can bring overall system GMI and MI gains with a trade-off in
performance and complexity. Simulation results of learned GCS
symbols in a 32 GBd 5-channel WDM 64QAM transmission
over 800 km and 1280 km SSMF demonstrate that the proposed
system can achieve better system performance in middle and
long transmission distances than the benchmark FFNN-based
scheme in terms of MI, GMI and Q-factor. Additionally, the
proposed bi-GRU enhanced E2E learning requires lower compu-
tation complexity while providing similar system performance
as the bi-LSTM.

The rest of this paper is organized as follows: Section II
describes the proposed bi-GRU enhanced E2E learning scheme;
Section III elaborates simulation system settings and model
complexity evaluation; Section IV presents the results of the
proposed scheme; and Section V concludes the paper.

II. PRINCIPLES

A. Performance Metrics

In constellation shaping systems, these two criteria, MI and
GMI, are commonly used to optimize the constellation and
evaluate the trained results. MI is applied in symbol-wise sys-
tems while GMI is used in bit-wise systems, respectively. We
assume S to be a complex constellation set with the cardinality
|S| = M = 2m, where m denotes the bit number in one
symbol. An m-dimensional binary vector random variable X
is mapped into a complex symbol X ∈ S with a uniform
probability mass function (PMF) PX (x) = 1/M . In order
to describe the impact induced by the channel, the channel
transition probability is introduced as pY |X (y| x), where X
and Y ∈ C denote the complex value channel input and output,
respectively. MI regarding the communication system represents
the information shared by the channel input X and output Y , or
the uncertainty of one random variable reduced by knowledge
of another random variable. The definition of MI is expressed
as follows [22]:

I(X;Y ) = H(X)−Hp(X|Y ), (1)

where the entropy of random variable X and the conditional
entropy of X given the variable Y are denoted as H(X) and
Hp(X|Y ), respectively. The expectation of the posterior prob-
ability is derived from the conditional entropy, indicating the
correlation between the two random variables and the amount
of shared information. Notably, the analytical calculation of the
condition entropy is often intricate regarding optical communi-
cation systems. Therefore, approximations and simplified calcu-
lation methods are used during simulations, such as mismatched
decoding [23], which refers to the suboptimal metrics used
owing to the uncertainty of transition probability pY |X (y| x).
According to the principle of mismatched decoding, the approx-
imated MI is calculated as

I(X;Y ) ≥ H(X)− Ĥq(X|Y ) = m− Ĥq(X|Y ). (2)
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Fig. 1. Illustrative structure of a GRU memory unit.

Ĥq(X|Y ) is formatted as an expectation E[qX|Y (x| y)],
as the approximation of the analytical conditional entropy
Hp(X|Y ). Therefore, the inequality occurs in (2) since the
upper bound is used for practical calculation. When it comes to
GMI, it is commonly used to evaluate the bit-wise systems such
as bit-interleaved coded modulation (BICM). Thereafter, the
symbol-wise forward error correction (FEC) for MI is replaced
with binary FEC as for GMI. The estimated GMI is defined as
follows:

I(X;Y ) ≥ H(x)−
m∑
i=1

Ĥq(Xi|Y ) = m−
m∑
i=1

Ĥq(Xi|Y ).

(3)
Ĥq(Xi|Y ) is the conditional entropy formatted as E [qXi|Y

(xi| y)] of the bit Xi at i-th position, given the channel output
Y. The bit labeling is closely related to the estimation for the
GMI. Gray labeling, commonly used in constellation shaping
initialization, can reduce the gap between the GMI in (3) and its
lower bound.

B. Bi-GRU Enhanced E2E Learning for M-QAM GCS

The GRU unit reduces its complexity by simplifying three
gate mechanisms in a LSTM unit into a reset gate and an update
gate, while achieving similar performance. The final output of
the GRU unit is calculated by both current input xt and previous
stateht−1 with the collective effect of these gates. The outputs of
the internal gates for the GRU unit are summarized as follows:

rt = σ(Wr · [ht−1, xt] + br),
zt = σ(Wz · [ht−1, xt] + bz),

h̃t = tanh(Wh · [rt � ht−1, xt] + bh),

ht = (1− zt)� ht−1 + zt � h̃t,

(4)

where Wr, Wz and Wh are the weight matrices for reset gate,
update gate and new memory calculation, respectively. br, bz, bh
are corresponding bias vectors. σ is the sigmoid function for
reset and update gate. In new memory calculation, tanh is the
hyperbolic tangent activation function, and � represents the
Hadamard product. Fig. 1 presents the internal structure of a
basic GRU cell [16]. The memory-awareness is expressed by
the transceiver end-to-end scheme design. Bi-GRU is utilized

to replace the FFNN-based end-to-end scheme to learn the
intersymbol interference using its bi-directional sample feature
extraction ability.

A basic E2E learning scheme mainly consists of two NNs, an
encoder NN and a decoder NN, respectively. The input one-hot
vectors of constellation size M are mapped by the encoder NN
to symbols in the complex plane through nonlinear transforma-
tions. Estimates of posterior probabilities of the encoded vectors
are calculated at the decoder NN. The bi-directional structure is
composed of two stacked unidirectional units in forward and
backward directions, respectively [24]. The bi-directional struc-
ture can capture patterns from adjacent data at each timeslot. The
channel embedded between the transceiver NNs during training
is a differentiable channel model.

At the transmitter, the one-hot encoded vector is denoted as
st ∈ {ei|i = 1, 2, . . . , M} for symbol-wise encoder input,
where ei is the one-hot coding with all zero elements but a
one at position i. For bit-wise scenario, the input block of m
bits st, rather than one-hot encoded vector, is selected from a
set of all possible m-bit sequences {0, 1}m. Thereafter, current
symbol at the t-th timeslot st (t = 1, 2, . . . , T ) with its
k neighboring symbols in both directions are concatenated as
x(t) = [st−k, . . . , st, . . . , st+k] to serve as one input sequence
batch for the bi-GRU network. In the bi-GRU network layer,
the length of input sequence 2k + 1 determines recurrent time
steps of the bi-GRU model and further impacts the overall E2E
learning performance. We note that a long sequence input will
be time-consuming for bi-GRU training, while it doesn’t achieve
better performance.

The encoder bi-GRU hidden states ht are calculated through
all the recurrent timesteps and the output of the bi-GRU model
layer are fully connected to the linear layer for complex symbol
transmission in the optical auxiliary channel. In terms of AE
GCS, the encoder is trained to learn the constellation and the
decoder captures the pattern for the decision boundaries with
a learned constellation and the corresponding channel model.
In our proposed scheme, the encoder enhanced by bi-GRU is
capable to learn not only the constellation for one symbol sample
or one block of bits, but also the interference of adjacent samples.

To realize a cost-effective and memory-aware channel mod-
eling, the FRP auxiliary channel, is utilized for the constella-
tion training with variable branch sizes for different fiber span
lengths. Details of the FRP model will be elaborated later.
The performance of the learned constellation is evaluated using
the computation-demanding but precise SSFM. To ensure the
structure of AE, the basic receiver DSP blocks are included in
channel components. Specifically, the root-raised cosine filter,
chromatic dispersion compensation (CDC), and carrier phase
estimation (CPE) blocks are utilized in the DSP chain.

The transmitted complex signal sequence of length 2k + 1
serves as the decoder bi-GRU input, resulting a posterior prob-
ability vector rt. Using a softmax output layer in the symbol-
wise case, the sum of rt for all the M categories equals to 1,
indicating the choice of a categorical cross-entropy (CE) for the
cost function in terms of MI. After the iteration of a training
set, the trainable AE weights are optimized and the categorical
CE loss function is minimized. Considering one iteration, the
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Fig. 2. Structure of the bi-GRU E2E GCS learning scheme, trained over FRP model and validated over SSFM.

whole training set is departed into batches with a size B and the
categorical CE loss function is denoted as [22], where i denotes
the i-th element of the output vector.

LCE(w) =
1

B

B∑
t=1

[
−

M∑
i=1

sit logr
i
t

]
. (5)

When it comes to the bit-wise case, rt refers to bit-level pos-
terior probability, where softmax activation function is replaced
with the sigmoid function. Here i denotes the i-th element of the
m-dimensional output. Since this is a binary classification, the
loss function binary cross-entropy (BCE) is defined as [22]:

LBCE(w)=
1

B

B∑
t=1

[
−1

m

m∑
i=1

sit logr
i
t+(1− sit) log(1− rit)

]
.

(6)
During the training, we optimize the geometric shaped con-

stellations in terms of CE and BCE via a batch gradient descent
procedure, i.e., by a repeated generation of the training symbols’
batches of fixed size and updating the trainable parameters. In
both cases, CE and BCE represent the approximation conditional
entropy in (2) and (3), respectively. Therefore, minimizing the
loss function implies maximizing the MI and GMI metrics.

Given the performance metrics of MI and GMI, GCS aims
at the position optimization of the constellation points by max-
imizing these metrics. As depicted in Fig. 2, the schematic plot
of the proposed AE structure for E2E GCS is presented with
the bi-GRU enhanced transceiver blocks and a memory-aware
auxiliary channel FRP. Similar to conventional FFNN-based AE
GCS, here the encoder and decoder are also modeled as paramet-
ric functions with a set of trainable weightsw = {wenc, wdec}.
Those weights are trained and optimized to lower the cost
function formatted with the input and output of the E2E learning
scheme. Considering the different formats of those performance
metrics, the cost function is determined by either categorical CE
for MI (symbol-wise) or BCE for GMI (bit-wise).

C. The Auxiliary Channel Model FRP

The Manakov equation is commonly applied to model the
propagation of the dual-polarization optical signal in a fiber-
optic channel with lumped amplifiers, such as erbium-doped

fiber amplifier (EDFA) [25]. The Manakov equation is expressed
as:

∂u

∂z
= i

8

9
γf(z)‖u‖2u− i

β2

2

∂2u

∂t2
+ η(z, t)

f(z) = exp(−α(z − Lsp �z/Lsp�)), (7)

where u is the complex envelop of the optical field, z denotes
the transmission distance, and t is the time. Here f(z) mod-
els the optical loss and amplification accumulated at z, with
α as the attenuation, Lsp is the fiber span length, β2 and γ
is the group velocity dispersion and nonlinear coefficient, re-
spectively; η(z, t) denotes the amplified spontaneous emission
(ASE) noise induced by optical amplifiers (OAs). Stepwise
dispersion and nonlinear operators are alternatively calculated
in numerical simulation, namely SSFM [26]. The step size of
the SSFM simulation can be reduced for more precision.

In E2E learning with gradient backpropagation, a cascade of
convolutional NN layer stacks is used to replace the conventional
SSFM. However, the calculation complexity of such layers leads
to numerical error accumulation, causing computational insta-
bility such as gradient vanishing or explosion [27]. Therefore, a
simplified differentiable auxiliary channel model is imperative
under conditions of E2E learning. Auxiliary channel model can
reduce the numerical complexity of E2E learning to a large
extent by sacrificing the precision of channel approximation
with smaller shaping gains, providing a trade-off between per-
formance and complexity.

In our proposed scheme, FRP channel model is utilized to
enhance the memory-awareness. Combined with the intersym-
bol interference feature extraction provided by bi-GRU memory
units, the FRP-based end-to-end learning scheme could further
express and exploit the channel memory information. The FRP
model can be regarded as a simplified SSFM model with a
weakly nonlinear regime approximation [13], [21]. Specifically,
the FRP model is the first order approximation of SSFM re-
garding the nonlinear parameter γ, indicating that it ignores the
effect of all the nonlinear steps on each other and simplifies
the exponent term in the nonlinear step of SSFM to a linear
approximation. The channel output [13], taking account of the
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perturbation from the signal u, is expressed as:

u(z, t) = uL(z, t) + uNL(z, t) +O(γ2),

uL(z, t) = Dz[u(0, t) + η(z, t)],

uNL(z, t) =
∑nst

m=1
Dz−(mδ)[Nδ,m[uL(mδ, t)]], (8)

and

Dz[�] = F
−1[exp(iβ2zω

2/2)F[�]],

Nδ,m[u(t)] = i
8

9
γLefff(mδ)‖u(t)‖2u(t), δ =

z

nst

Leff =
1− e−αδ

α
.

Here nst is the calculation steps in nonlinear section uNL,
and δ is the corresponding step size in distance. F and F

−1 is
the Fourier transform (FT) and inverse FT, respectively, and
‖ · ‖ is the Euclidean norm. Dz is the accumulated chromatic
dispersion operator at link length z, while Nδ,m denotes the
combined effect of nonlinearity and attenuation accumulated
over length δ, centered around the point mδ. Leff is effective
step length. According to (8), the linear and nonlinear terms can
be calculated in a parallel fashion. Therefore, the total calcu-
lation step nst + 1 for the simulated link length z determines
the precision of approximation and complexity in FRP. All the
noises accumulated throughout the total link length are added
in uL(z, t), while the ASE noise with weighted power spectral
density scaled to mδ is injected into each calculation step in all
the nonlinear terms [13].

III. SIMULATION SETUP AND COMPLEXITY ANALYSIS

A. Numerical Simulation Setup

Numerical simulation of the optical coherent WDM system is
implemented with five optical transmitters (Tx1, …, Tx5) spaced
by 50 GHz, each of which transmitting 32 GBd signals. As is
depicted in Fig. 2, the optimal constellations are optimized by the
joint of bi-GRU and FRP scheme with MI or GMI performance
metric. With the oversampling factor 16 samples/symbol, the
transmitted samples are pulse shaped by the root-raised cosine
filter with a 0.02 roll-off factor. The resulting signal in each
channel is normalized to input power for optical transmission.
These signals are added together in the multiplexer to form a
WDM signal. This WDM signal is transmitted over an optical
fiber channel modeled by SSFM, which simulates a link of
Nspan EDFA-amplified spans of 80km SSMF. At the receiver,
the demultiplexed signal is processed by the coherent detection.
The central channel is filtered out by a low pass filter, which
in this case is the root-raised cosine matched filter. CDC is
performed in frequency domain and CPE is utilized to com-
pensate the accumulated phase rotation. The received data are
processed with DSP before the calculation of Q-factor, defined
as Q = 20lg [

√
2erfc−1(2BER)] for performance evaluation

[28]. Some key parameters of system overall layout and optical
fiber channel used in the simulations are listed in Table I.

The structures of bi-GRU and bi-LSTM are built, trained
and evaluated in Tensorflow 1.14.0. The SSFM and FRP model

TABLE I
PARAMETERS OF THE TRANSMISSION LINK

are developed in python version to accommodate the bi-GRU,
bi-LSTM and FFNN structures. In our model, Adam optimizer
is employed for optimization. The whole data set is divided
into training (70%) and validation (30%). The time sliding
window 2k + 1 is set to 21 for the capture of adequate serial
information in bi-GRU-based schemes. The number of maxi-
mum training epochs is set to 300. The learning rate is set to
0.002. The early stopping scheme is also implemented when the
accuracy does not improve for 25 successive epochs to prevent
overfitting. The linear hidden layer nodes are set to 128, and
FFNN consists of 3 hidden layers as the baseline, while there
is only two linear layers in bi-GRU and bi-LSTM scenarios.
The number of units for bi-GRU and bi-LSTM cells are set
to 128. Those neural network hyperparameters are set so as to
achieve a complexity-performance balance. It is noted that with
the increase of the layers and nodes, the computational expense
would increase without considerable performance improvement.
Other parameters for FFNN and bi-GRU-based scheme are the
same for comparison. All the simulations were conducted on a
personal computer with Intel Core i5-9400F CPU @ 2.90 GHz,
16 GB Random Access Memory (RAM), and GeForce 1050Ti
GPU. Due to the limitation of our computation equipment, the
computational time was relatively long, but we conducted the
simulation on this specific computer. Therefore, all the results
are obtained with the same computational baseline.

B. Complexity Analysis

The complexity of the proposed bi-GRU enhanced E2E learn-
ing structure is compared with bi-LSTM-based model. The
number of parameters in both bi-GRU and bi-LSTM layers are
considered analytically. The complexity comparison of bi-GRU,
bi-LSTM with FRP channel model and FFNN-based SSFM
channel model for E2E GCS learning will be presented from
the perspective of running time in Section IV.

In the bi-GRU model, the GRU cell is the main component
with two gates and cell state [16]. The input of current GRU
cell is denoted as xt ∈ R1×d_in, and the output of the previous
cell is ht−1 ∈ R1×d_hid. Due to the symmetry of the GRU
equations, we firstly focus on the weight matrix in reset gate
for concatenated input xt and previous state ht−1,which is



7900110 IEEE PHOTONICS JOURNAL, VOL. 16, NO. 1, FEBRUARY 2024

Wr ∈ R(d_in + d_hid) × d_hid. The bias vector is br ∈ R1×d_hid.
Since there are weight and bias variables for two gates and one
cell state, the number of parameters in one GRU unit can be
summed as:

NGRU_P = 3× [(din + dhid)dhid + dhid]. (9)

The bi-GRU layer is stacked by two GRUs, thereafter, the
number of parameters of bi-GRU layer is 2×NGRU_P . Since
the dimension of the bi-GRU layer output is 1× 2dhid, the
number of parameters contributed by the cascaded Dense layer
is 2dhid×dout for weight and 1× dout for bias, where dout is the
final output dimension. Due to the identical network structure of
the bi-GRU-based encoder and decoder, the parameter number
of the bi-GRU encoder/ decoder can be summarized as:

NbiGRU_P = 2× 3[(din + dhid + 1)dhid] + (2dhid + 1)dout.
(10)

For each LSTM unit [17], parameters of an LSTM unit
contain weight matrices and bias for three gates and one cell
state. Therefore, given the same parameter settings, the LSTM
entails a 25% of parameter extra usage. Deduced by analogy,
the number of parameters of the bi-LSTM encoder/ decoder can
be calculated as follows:

NbiLSTM_P =2× 4[(din+dhid+1)dhid] + (2dhid + 1)dout.
(11)

From those aforementioned equations, it can be seen that
under the identical input feature and hidden unit settings of the
network, bi-GRU has fewer parameters than bi-LSTM. More-
over, the running time of the three scenarios will be demonstrated
in the next section.

IV. RESULTS AND DISCUSSION

A. Performance of the FRP Model

Although the FRP model utilizes a simplified first-order per-
turbation in fiber nonlinearity, it offers a close approximation
of the SSFM model. We consider the performance of FRP and
SSFM when modelling the propagation of square 64QAM signal
after the 960 km 5-channel WDM optical coherent system with
ASE noise. Here we note the proper setting of step size defined
by the total calculation step in the FRP model will impact
the performance. The calculation steps comprise 345 steps in
nonlinear terms and 1 step in linear term in the FRP, resulting a
step size of 3.468 km. The step size dz is set to 0.2 km for the
SSFM.

In Fig. 3(a), the effective signal-to-noise ratio (SNR) curves
of the received signals after CDC and CPE are depicted. The
proximity of SNR under both models is observed in the weakly
nonlinear regime from -6 to -2 dBm in launched optical power
(LOP), and the matching of the two models is still acceptable
near the optimal LOP at −1 dBm. However, the performance
of the FRP model is deviated due to its limited approximation
ability in the high nonlinear regime, when the LOP exceeds
2 dBm. We can further observe matching curves of MI and
GMI performance in Fig. 3(b) and (c), indicating that the FRP
model achieves a similar system performance with a larger step
size compared with the SSFM. Moreover, the calculation of the

Fig. 3. Comparison between channel models based on first-order regular
perturbation (FRP) and split-step Fourier method (SSFM) transmitting square
64QAM in (a) SNR, (b) MI, and (c) GMI.

FRP is feasible and efficient for gradient propagation since the
complicated higher-order fiber nonlinearity is omitted. Owing
to its parallel calculation feature, the FRP model completes the
LOP sweep in 8 min 18 s, reducing ∼80% of the simulation
running time compared with 40 min 15 s for the serial SSFM
with the same computing resources.

Fig. 4 demonstrates the FFNN-based E2E GCS 64QAM
constellations trained and optimized with MI and GMI respec-
tively at optimal LOP from the two models in the above WDM
optical coherent system after 960 km. The optimization of the
four constellations in Fig. 4 has been conducted under such
system settings after a training epoch of 300, when convergence
has been observed in our simulation platform. The optimal
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Fig. 4. Constellations of shaped 64QAM using MI optimized (a) FRP and
(b) SSFM channel model, compared with GMI optimized (c) FRP and (d) SSFM
channel model for 960 km @ optimal LOPs.

constellations are chosen under the repeated simulations of a
fixed training epochs after convergence is reached. We select
the constellation with the minimum loss in both MI and GMI
optimized procedure after convergence. The Euclidean distance
is a common distance metric used to calculate the distance
between two points in multi-dimensional space. The average
Euclidean distance (AED) is defined as taking the average of
the Euclidean distances calculated between multiple vectors.
This type of metric is widely used in clustering analysis and
classification problems [29].

Here we vectorize the constellation points and compare the
two AEDs in the circled area. For MI and GMI optimization, with
relatively low energies for symbols in the red circles, similar
AEDs around 0.637 and 0.638 for both channel models are
observed. Thereafter, the FRP model offers a relatively good ap-
proximation for the precise SSFM model in the weakly nonlinear
regime and around the optimal LOP level, which corresponds
to the results in Fig. 3. Symbols at peripheral areas are prone to
fiber nonlinear impairments. The minimum Euclidean distance
(MED), a commonly-used performance metric between symbols
in the constellation, is utilized [30]. The bit error rate (BER)
and effective SNR performance in the optical communication
system are inversely dependent on the MED. In terms of MI,
given the identical symbol average power, the MED of symbols
with higher energy (those outside the red circle) for the FRP
and SSFM model is 0.3495 and 0.3342, respectively. Regarding
GMI optimization, the MED of peripheral symbols is 0.3186 and
0.3157, respectively. Both optimization metrics show similar
MED trends. Namely, a larger MED value of the FRP learned
constellation would cause the difference in SNR performance in
higher LOP region. Therefore, it is noted that when higher LOP is
required, FRP model deviates from the SSFM to a certain extent
due to the lack of approximation ability in high order nonlin-
earity. In this study, the long-haul WDM transmission scheme

Fig. 5. Training convergence of (a) CE and (b) BCE loss optimized for
different E2E GCS schemes in FRP channel.

requires a relatively low LOP to achieve adequate transmission
performance.

Thereafter, the FRP model can provide acceptable approxi-
mation to the SSFM in performance, while taking less running
time in simulation, serving as a cost-effective yet valid training
model for E2E GCS learning.

The corresponding training convergence of three different
neural network schemes optimized with CE and BCE loss are
shown in Fig. 5. Similar convergence trends are observed in
Fig. 5(a) and (b) with a faster convergence speed for the FFNN
due to its simpler network structure compared with bi-GRU and
bi-LSTM. However, both bi-GRU and bi-LSTM could converge
to a lower loss value than that of the FFNN, producing better
optimized constellations. It is also observed that the convergence
speed of the bi-GRU around 150 epochs is relatively faster
than the bi-LSTM, due to simplified memory cell units in the
bi-GRU architecture. Therefore, as for the bi-GRU scheme, the
convergence speed and the minimization of both loss functions
have reached a trade-off in computational complexity and per-
formance.

B. Performance of Bi-GRU Enhanced E2E GCS Learning

To assess the performance of the proposed scheme, referred
to bi-GRU enhanced GCS, we compare it to the conven-
tional square QAM, to an optimized FFNN-based E2E learning
scheme, and to the bi-LSTM-based scheme. For a fair compari-
son, the architectures of all the schemes and baseline are identical
and the FFNN-based scheme is optimized through adequate
training and learning. Fig. 6 shows the results of the numerical
simulation after 800 km 5-channel
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Fig. 6. Performance comparison of different E2E GCS schemes at 800 km in
(a) MI and (b) Q-factor.

WDM optical coherent transmission under the range of LOP
from −6 to 4 dBm. It is noted that the training process is
carried out at the optimal LOP for better constellation shaping
performance.

It can be seen that there is an overall performance improve-
ment for FFNN-based and bi-GRU enhanced shaping compared
to the unshaped QAM constellations in both MI and Q-factor,
which is calculated from the BER. Compared to square 64QAM,
the MI could reach a gain of 0.12 bits/symbol at the optimal
LOP for the bi-GRU enhanced shaping at 5.87 bits/symbol in
Fig. 6(a). Similarly, Fig. 6(b) indicates that there is a perfor-
mance improvement in terms of the Q-factor compared to square
64QAM at their optimal LOP. The bi-GRU enhanced learning
outperforms square 64QAM by about 0.4 dB in Q-factor. With
the aid of receiver DSP, the Q-factors in all scenarios exceed
the HD-FEC limit of 8.52 dB around the optimal LOP region.
The performance of the bi-GRU and bi-LSTM-based learning
is nearly identical, with some neglectable fluctuations in both
performance metrics.

Fig. 7(a) shows the results of the numerical simulation after
1280 km 5-channel WDM optical coherent transmission at LOP
ranging from−6 to 4 dBm. Based on the bit-wise training proce-
dure with the loss function of BCE, the optimal LOP is selected
to validate the results. It can be seen that there is an overall per-
formance improvement for FFNN-based and bi-GRU enhanced
shaping compared to the square 64 QAM constellations in GMI.

Fig. 7. Performance comparison of E2E GCS schemes in (a) GMI at 1280 km
and (b) Q-factor under different transmission distances @ optimal LOP.

It is noted that the results of the bi-LSTM-based learning scheme
is similar to the trends in Fig. 6, indicating neglectable GCS
performance difference between the two flavors of bi-directional
recurrent networks. Compared to square 64 QAM, the system
GMI at 1280 km could reach a gain of 0.136 bits/symbol at
optimal LOP -1 dBm for the bi-GRU enhanced shaping at 5.5146
bits/symbol in Fig. 7(a).

Furthermore, the bi-GRU enhanced performance gain in GMI
compared to FFNN-based E2E learning is 0.1065 bits/symbol,
indicating the effective GMI gain aided by the bi-GRU scheme.
The performance of bi-LSTM is similar to that of the bi-GRU, as
indicated in Fig. 6. Fig. 7(b) demonstrates the Q-factor at optimal
LOP in different distances. Compared to square 64 QAM at
the optimal LOP, the bi-GRU enhanced learning outperforms
square 64 QAM by about 0.65 dB in Q-factor at 1280 km. There
is also an improvement in Q-factor compared to FFNN-based
GCS 64 QAM of about 0.2 dB. Moreover, given the same Q-
factor at 9.3 dB, the transmission distance for bi-GRU enhanced
FRP model is extended by 160 km compared to FFNN-based
GCS scheme. This indicates better nonlinearity tolerance for
the proposed scheme since there is a larger Q-factor gain at a
longer distance.

Fig. 8 presents a training time comparison of 64 QAM 5-
channel WDM optical coherent system E2E GCS learning with
FFNN-based SSFM channel model (step size set as 0.1 km),
bi-LSTM and bi-GRU-based FRP model. Only the training time
of MI optimized system (800 km) is depicted because the GMI
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Fig. 8. Training time vs. distances for SSFM, bi-LSTM and bi-GRU E2E
learning scheme.

optimized training time shows similar trends. It is noticeable that
the GCS symbols are trained and trainable variables are saved
before the validation in optical fiber channel.

The training time, averaged after multiple simulations, refers
to the complete E2E GCS training expense, while the validations
are carried out on the same SSFM channel, which is excluded
from the training time. The training time under different distance
of the learning process is recorded under the same hardware and
software simulation conditions as listed above. It is noted that
there is a linear increase trend in the training time with the trans-
mission distance for both FRP and SSFM models. Moreover, as
the complexity derived in Section III, fewer parameters lead to
shorter running time and less computational overhead.

Based on previous simulation results, the Q-factor perfor-
mances of bi-GRU and bi-LSTM AE GCS schemes are similar,
while the number of parameters of bi-GRU E2E learning scheme
is 25% less than that of bi-LSTM, resulting the shorter average
training time. From Fig. 8, when the transmission distance is
800 km, the bi-GRU-based FRP training time (1051 s) reduces
about 73% of that for the FFNN-based SSFM (3895 s) and it also
reduces about 24% of training time than the bi-LSTM (1384 s).
Therefore, with similar performance, the bi-GRU scheme has
lower computational cost than that of the bi-LSTM. Given the
effective performance of FRP near optimal LOP, the proposed
scheme cost than that of the bi-LSTM. The training expense
reduction of 24% here in schematic design will greatly impact
the higher-order constellation training process since it requires
a larger neural network to realize convergence. Therefore, a
model like bi-GRU that trains faster than bi-LSTM can be more
cost-effective, especially in large-scale applications or when
computational resources are limited.

V. CONCLUSION

In this paper, a bi-GRU enhanced E2E learning for GCS
in WDM optical coherent communication system is proposed.
The performance of bi-GRU has been verified and compared
to FFNN and bi-LSTM through a 32 GBd 5-channel WDM 64
QAM 800 km and 1280 km optical coherent communication
system in terms of MI and GMI, respectively. The FRP model

is introduced to facilitate the bi-GRU encoder and decoder
scheme for capturing features and learning the interference
in neighboring sequential symbols. Validation of the FRP has
been demonstrated in the comparison with SSFM model, and
acceptable matching of SNR and MI at LOP could be observed.
The complexity of bi-GRU and bi-LSTM are theoretically an-
alyzed. Simulations show that the bi-GRU produces both Q-
factor and MI improvements of 0.4 dB and 0.12 bits/symbol
respectively compared to conventional square 64 QAM schemes.
Bi-GRU provides a similar performance to bi-LSTM with less
computation resources. At 1280 km, compared with square
64 QAM in terms of GMI and Q-factor, an improvement of
0.136 bits/symbol and 0.65 dB has been observed. Owing to its
learning capability for inter-symbol effect, the bi-GRU enhanced
scheme trained with multiple symbols has further obtained gains
over the FFNN-based structure. Although bi-GRU takes more
multiplications than basic FFNN, it offers better performance in
system capacity and signal transmission quality. While the over-
all complexity of the proposed bi-GRU enhanced E2E learning
is relatively high compared to a simple FFNN and AWGN-based
scheme, a more accurate description of the optical channel can
be provided, and considerable improvements can be achieved
by the proposed scheme. Those results indicate that bi-GRU is a
promising alternative for E2E GCS scenario in performance and
complexity trade-off, and it has the potential to further push the
boundary of spectral efficiency in long-haul GCS E2E learning
WDM systems.
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