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Singular Value Decomposition-Based Adaptive
Sampling Approximate Message Passing Net

for Sparse-View CT Reconstruction
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Abstract—Sparse-viewcomputed tomography (CT) imaging is a
promising technique for reducing radiation dose and accelerat-
ing data acquisition in medical imaging. However, the challenges
of handling a reduced number of projection views persist for
both iterative estimation and deep neural reconstruction meth-
ods. In this paper, to address these challenges, we present a sin-
gular value decomposition-based adaptive sampling approximate
message passing network (ASAMP-Net) sparse-view CT imag-
ing method. To achieve multiple sparse views projection within
a single scene imaging and alleviate the computational burden,
our proposed ASAMP-Net method incorporates an adaptive sam-
pling module into the AMP deep unrolling network. This module
dynamically adjusts the data samples used during the learning
process, making our method highly adaptable to various projection
matrices. Moreover, by decomposing the projection matrix into
its principal components, our approach identifies the respective
contributions of independent structures. We then select the most
significant principal components to construct a projection ma-
trix model with increased orthogonality, thereby enhancing recon-
struction performance. Extensive experiments on public datasets
demonstrate the superiority of our method. Notably, ASAMP-Net
handles various sparse projection views with just a single training
process, achieving prominent imaging results compared to other
methods in the literature.

Index Terms—Adaptive sampling, ASAMP-Net, deep unfolding,
image reconstruction, sparse-view CT.

I. INTRODUCTION

COMPUTED tomography (CT) is a non-destructive testing
method extensively employed in medical, industrial, and

materials applications [1], [2], [3], [4], [5]. Despite its versatility
in clinical medicine, the use of X-ray has raised concerns about
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radiation exposure. Consequently, sparse-view CT has emerged
as a promising strategy to mitigate radiation exposure, while
there is still the streak artifacts problem in the image formation
process due to insufficient projection data.

To date, a brunch of methods have been developed for
sparse-view CT reconstruction ranging from iterative estimation
techniques to supervised deep neural reconstruction networks.
Iterative estimation techniques including FBP [6], ART [7],
SART [8], SIRT [9], EM [10] leverage analytical mathemat-
ical models and iterative techniques to iteratively refine the
image, and image reconstruction performance heavily relies
on a large quantities of projection views. Needless to say, the
streak artifacts can still be troublesome when comes to the
limitted projections. By imposing regularization penalty term,
Total Variation (TV) [11], [12] exploits the total variation of the
image and able to promote smoothness while preserving edges
from highly undersampling data. Besides, sparsity penalty term
and optimization techniques are leveraged in compressed sens-
ing (CS) [13], [14] algorithms to achieve considerable perfor-
mance in sparse-view CT imaging. Note that the reconstruction
performance of these regularization based methods are highly
dependent on the regularization term and the orthogonality
of projection matrix, the memory and storage costs of matrix
operation of large dimensionality can still be troublesome in the
iterative optimization process.

In more recent years, with the ability to achieve underlying
hierarchical feature learning and complex nonlinear mapping
capability from quantities of training data, deep neural re-
construction networks have received considerable attention in
sparse-view literature [15], [16], [17], [18]. Boublil et al. [19]
proposed a supervised machine learning method to enhance im-
age restoration, using convolutional neural networks (CNNs) to
integrate the reconstruction results with different bias or variance
in the image restoration process to improve the reconstruction
quality. Chen et al. [20] mapped the low-dose CT image to the
corresponding normal dose image block by block by using the
depth Convolutional neural network, thereby reducing artifacts
and preserving the image structure. Chen et al. [21] combined
autoencoders, deconvolutional networks, and shortcut connec-
tions into the residual encoder-decoder convolutional neural
network (RED-CNN) to achieve low-dose CT reconstruction.
In order to reconstruct good images from highly sparse views,
Wu [22] proposed a deep embedding-attention-refinement
(DEAR) network to achieve finer image features and structure.In
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general, data-driven deep neural sparse-view reconstruction net-
works leverage large quantities of collected training projection
data and sample images to learn optimal non-linear mapping
relations specific to the projection matrix, which has poor gen-
eralization ability and requires retraining when the projection
view changes.

Typically, aiming at avoiding iterations optimization and
sophisticated regularization parameters turning, model-driven
methods [23], [24], [25] are built based on deep unfolding
techniques that stem from the standard linear optimization al-
gorithms, including IHT/IST [23], ADMM networks [24] and
AMP networks [25]. Sun et al. [26] expanded the ADMM
algorithm for MRI image reconstruction. J. Adler and O. Öktem
[27] proposed a primal-dual algorithm for CT reconstruction. J.
Zhang and B. Ghanem [28] expanded the ISTA algorithm for
visual image reconstruction. W. Dong et al. [29] developed the
Half Quadratic Splitting (HQS) algorithm to solve the image
inverse problem.

Inspired by the recent advancements in beyond deep unfold-
ing reconstruction techniques, in this paper, we propose the
adaptive sampling approximate message passing deep unfolding
network (ASAMP-Net). The network consists of three modules,
including a sampling module, an initialization module and a
reconstruction module. By embedding a controllable sampling
module into the AMP backbone unrolling network, multiple
sensing matrices with different projection views are trained
in parallel. Besides, for mode orthogonality and redundancy
minimization, we propose to truncate insignificant principal
components of the projection matrix via singular value decom-
position (SVD). Measurements are acquired dynamically via the
adaptive sampling module. Then, the initialization module se-
lects the most important principal components of the projection
matrix and adjusts the initial input of the network. Finally, the
structure of the image is reconstructed using the deep network
layer of the reconstruction module. Unlike recent work using
matrix-inversion-based and data-driven deep reconstruction net-
works, our generic approach is directly adapted to multi-sparse
views sampling ratios and multi-scene image reconstruction,
and requires no need for heavy matrix operations and massive
amount of training scene targets and measurements datasets.

The following subsection of this paper is organized as fol-
lows. Section II details the proposed reconstruction network.
Section III presents the experiments and results. Section IV
summarizes the paper.

II. METHOD

A. Imaging Principle

In an ideal CT imaging system under noise-free conditions,
the CT measurement can be converted into the form of the line
integral of the absorption function of the object at a certain
position on the cross section:

g
(
�r (λ) ,θ̂

)
=

∫ ∞

0

dtf
(
�r (λ) + tθ̂

)
(1)

where f(�r) represents the absorption function; g(�r, θ̂) is the
sinogram, where �r and θ̂ denote the radial coordinate and

the angle of the projection point. If the trajectory of the X-ray
source is a circle, then

�r(λ) = R(cos λ, sin λ, 0) (2)

where λ ∈ [0, 2π). R is the radius of the source trajectory.
The imaging model (1), can be approximated by the following

discrete linear system:

g = Mf + e (3)

where f ∈ RN represents the original image, N represents the
number of pixels in the original image. g ∈ RM is projection
data through the M × N measurement matrix M ∈ RM×N ,
(M <N), and e ∈ RM is the noise. The traditional CS-CT
method reconstructs the original image f by solving the fol-
lowing optimization problems:

min
f

1

2
‖g −Mf‖22 + λ ‖Df‖1 (4)

where Df denotes the transform coefficients of f with re-spect to
some transform D and the sparsity of the vector Df is encouraged
by the �1 norm. λ is a regularization parameter for sparsity, and
D is the optimal transform.

B. AMP Algorithm

Approximate Message Passing (AMP) algorithm is an
efficient iterative algorithm, which is mainly used in
high-dimensional signal processing, and can be used to solve
compressed sensing, signal recovery, matrix decomposition,
signal classification, channel estimation and other problems. The
basic idea is to gradually approximate the true value of the signal
through iterative estimation. The AMP algorithm iteratively esti-
mates signals through a series of linear mappings, soft threshold
functions, and other operations, and updates parameters through
a series of exchange information transfers. This iterative process
can be expressed as:

z(N−1) = g −Mf (N−1) (5)

f (N) = FN (MTz(N−1) + f (N−1)) (6)

where MT is the transpose of measurement matrix M, FN (·) is
the non-linear function, and N is the number of the iteration.If
the initial data is f0 and the original data is f , then

MTz0 + f0 = f̄ + (MTM− I)(f̄ − f0) (7)

where I is the identity matrix in the size of N ×N . The N-th
iteration of (7) is

MTz(N−1) + f (N−1) = f̄ + (MTM− I)(f̄ − f (N−1)) (8)

where the entries Mij of the measurement matrix are indepen-
dent and identically distributed as Mij ∼ N (0, 1/a), and
N(μ, σ2) denotes the Gaussian distribution with the mean value
μ and the variance σ2. Under this assumption, (MTM− I)(f̄ −
f (N−1)) is also a Gaussian distributed vector with the variance
a−1‖f̄ − f (N−1)‖22. Then, (9) can be reformulated into the sum
of the original signal and a noise term as follows:

MTz(N−1) + f (N−1) = f̄ + e (9)

where e = (MTM− I)(f̄ − f (N−1)) denotes the noise term.
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Fig. 1. Proposed ASAMP-Net network architecture.

Fig. 2. Schematic diagram of measurement value acquisition.

C. Imaging Network Model

By deeply unfolding (6), we convert or map each iteration of
the traditional AMP algorithm into a single-level module of the
network, and stack multiple modules to form a complete deep
unfolded network. The details are as follows:

f (N) = D(N)T ηD(N)(MT z(N−1) + f (N−1)) (10)

where D(N) satisfies D(N)TD(N) = I, D can be different in
each iteration. η is threshold function for �1 regulation.

The overview structure of ASAMP-Net is illustrated in Fig. 1.
The our network consists of a sampling module, an initialization
module and a reconstruction module.

1) Sampling Module: In traditional block-based compressed
sensing, the patterns of the measurement matrices for training
and testing are fixed, resulting in inefficient training of the
network model and testing phases. For our network, as shown
in Fig. 1, we improve the computational efficiency by introduc-
ing additional measurement matrices under different projection
views. During the training process, we can generate network
models under different projection views by changing the mode
of the measurement matrices. The sampling operation adaptive
to different sparse views is obtained by training the sampling
sub-network. Our network can handle network models under
any projected view with only one training.

2) Initialization Module: The original image f is cropped
into an image patch �fi of size 33 × 33. The corresponding
measurement values can be calculated through the measurement
matrix �gi (i = 1, 2, 3...N). The process of obtaining the image
block �fi and the corresponding measurement value�gi is shown in
Fig. 2. Before network training, singular value decomposition is
performed on the measurement matrix to obtain the optimized
measurement value gSV D and semi-orthogonal measurement

matrix MSV D. The original image blocks and SVD optimized
measurement values are used as inputs to the network.

Assuming that the non-singular matrix is M∈ RM×N , then M
can be decomposed into three sub-matrix multiplication forms
using the SVD technique [30]:

M = UΣV T (11)

In (12), U and V are orthonormal matrices and Σ(Σ ≥ 0) is
arranged in descending order.

Due to the fact that the number of projections M is smaller
than the number of pixels N in the original image, there are
M non zero singular values σn, where K < M. Substitute (12)
into (3):

g = UΣV T f + e (12)

= U [

M×M︷︸︸︷
Σ1

M×(N−M)︷︸︸︷
0︸ ︷︷ ︸

M×N

]

⎡
⎢⎢⎢⎣

M×N︷︸︸︷
V T
1

(N−M)×N︷︸︸︷
V T
2

⎤
⎥⎥⎥⎦ f + e (13)

=

N∑
n=1

σnunv
T
n f + e (14)

Then,

g ≈
K∑

n=1

σnunv
T
n f = UΣ1V

T
1 f (15)

Finally, the optimized discrete linear system is expressed as:

gSV D = MSV Df (16)

where gSVD = Σ−1
1 UTg, MSV D = V T

1 .
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Algorithm 1: ASAMP-Net Training Algorithm.

Input: Sampling matrix: M = {M1,M2, . . . ,Mn}; Image
patch: f = {f1, f2, . . . , fk}; Number of iterations: N; T:
maximum training epochs.

Output: f̃ (N)

Sampling process:
(gi)

n
i=1 = {(Mifi)}ni=1

Initialization process:
(g′i)

n
i=1 = {(Mi)SV Dfi}ni=1

f (0) = MT
SV Dg′

Reconstruction process:
For k < N Do:

k = k + 1
xk = MT

SV Dz(k−1) + f (k−1)

f (k) = D(k)T ηD(k)(MT
SV Dz(k−1) + f (k−1))

Adam optimization algorithm updates loss function:
Ltotal =

1
NaNb

∑Nb

i=1 ‖fi − fki ‖22
z(k−1) = gSV D −MSV Df (k−1)

Return f̃ (k)

From (5) and (10), it can be seen that:

z(N−1) = gSV D −MSV Df (N−1) (17)

f (N) = D(N)T ηD(N)(MT
SV Dz(N−1) + f (N−1)) (18)

3) Reconstruction Module: Influenced by the idea of deep
unfolding network, the iterative denoising process of AMP al-
gorithm is mapped to the deep network to obtain the reconstruc-
tion module. Each module represents one iteration. According
to (8), if f̄ − fN−1 is known, it can be directly solved through
linear reconstruction. In addition, the result of f̄ − fN−1 is not
necessarily the same after each iteration. In order to obtain
more features of the input data and improve the reconstruction
accuracy, it is solved by introducing a deep neural network.
The nonlinear function FN (·) can be replaced by a multi-layer
CNN. FN (·) consists of five convolutional layers. The first four
convolutional layers are all set with bias items, and the numbers
of output channels are 32, 32, 32, and 32. Except for the first
and last layers, each layer is followed by a rectified linear unit
(ReLU) [31]. The last convolutional layer has no bias term and
the number of output channels is 1. The filter size of each
convolutional layer is set to 3 × 3. The padding size of each
convolutional layer is set to 1 to ensure that the output and input
have the same size. Batch normalization (BN) [32] is introduced
to accelerate the training time of the neural network, improve the
robustness and generalization ability of the network and reduce
the probability of overfitting.

If xN = MT
SV Dz(N−1) + f (N−1), then there is

f (N) = D(N)T ηD(N)xN (19)

4) Loss Function: Given the training data pairs{(gi, fi)}Nb
i=1,

AMP-Net first takes the preprocessed CS measurements gSVD

as input and generates the reconstruction results, denoted
as fi

N , as output. We seek to reduce the difference between fi and
fi
N . Therefore, we use mean square error (MSE) to describe the

differences between the original image and the restored image.
As follows:

Ltotal(Θ) =
1

NaNb

Nb∑
i=1

∥∥fi − fNi
∥∥2
2

(20)

where fi is the i-th original image in the training set, Na denotes
the size of fi and Nb denotes the size of the training set.

III. EXPERIMENTS AND RESULTS

A. Experiment Settings

We adopt LIDC-IDRI [33] as our dataset, which includes
1012 cases and about 240 thousand CT images with a size of
512 × 512. We use Microdicom software to convert the picture
size to 256× 256. The slice thickness of CT images ranges from
0.6 mm to 5.0 mm. Case 1–50 is used as the test set, case 50–150
is used as the validation set, and the rest is the training set. The
original CT image is converted into parallel beam CT projection
data of 180 projection views, as the ground truth value of Radon
transform.

We optimized the loss function using the Adam
algorithm [34]. The learning rate is set as 0.0001 and the
epoch is 100. All methods are performed on a workstation
with the model of 11th Gen Intel(R) Core(TM) i7-11700 @
2.50 GHz CPU, NVIDIA GeForce RTX 4070 GPU and 48
GB memory. We use root mean square error (RMSE), peak
signal-to-noise ratio (PSNR) [35] and structural similarity
(SSIM) [36] to quantitatively evaluate the performance of
reconstructed images.

To test the performance of the reconstruction algorithms in
various sparse sampling conditions, we set different numbers of
projections to reconstruct CT images and analyzed qualitatively
as well as quantitatively.

B. Comparison

In this experiment, we choose the LIDC-IDRI dataset as the
training set of the network and randomly cut the images into
500000 small patches with a size of 33 × 33, and use the image
patches and their corresponding CS measurement vectors to
construct training data pairs. The dataset is divided into 70%
training set, 20% validation set and 10% test set. At the same
time, different sparse views are selected to train the network
model. In order to verify the effectiveness of the proposed singu-
lar value optimization on the network reconstruction results, we
preprocess the dataset to generate the SVDLIDC-IDRI dataset to
train the ASAMP network. In addition, four different extremely
low sampling methods are set to simulate the adaptive sparse
sampling process of the proposed algorithm. It is worth noting
that the experiments were all simulated without noise. In order
to conduct numerical experiments and performance evaluation
more reasonably, we selected different test pictures in the above
datasets for comparison of results. The experimental results are
shown in Fig. 3.
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Fig. 3. Comparison of results between AMP-Net and the proposed method under different sparse views.

TABLE I
QUANTITATIVE RESULTS OBTAINED WITH DIFFERENT SPARSE VIEWS

Fig. 3 shows that training the AMP network model using a
dataset without SVD preprocessing can reconstruct clear im-
ages. As the viewing angle increases, the quality of the re-
constructed image becomes better. However, the our network
can achieve more accurate reconstruction of the original image.
As the viewing angle continues to increase, the reconstructed
image becomes clearer. Comparing AMP-Net with our net-
work under different observation perspectives, the results show
that our network has better performance. The first item of the
quantitative indicators shown in Table I represents the result
of AMP-Net reconstruction, and the latter item represents the
result of our network reconstruction. Table I further verifies
that the reconstruction performance of our network is better
than traditional AMP-Net. At the same time, the reconstruction
performance of our network continues to improve with the
increase of observation angles.

C. Comparison of Reconstruction Methods

We compare our network with six reconstruction algorithms,
including FBP [6], ART [7], TVAL3 [37], ReconNet [38],
CSNet+ [39] and DEAR [22]. The FBP algorithm is the most
widely used analytical reconstruction algorithm, and the ART
algorithm is the most commonly used classical iterative algo-
rithm for sparse view reconstruction. The TVAL3 algorithm uses
the ADMM algorithm to solve the TV-constrained minimization

CT model, which has better convergence speed and reconstruc-
tion performance than other methods. When rebuilding, the
parameter μ is set to 28, and the parameter β is set to 25.
ReconNet is a classic deep network method based on CNN.
CSNet+ is a method based on convolutional neural network.
Its sampling network can adaptively learn the sampling matrix
from the training image and retain more image structure in-
formation. DEAR is a deep Embedding- Attention-Refinement
deep learning network, which consists of three modules: deep
embedding, deep attention, and deep refinement. Among these
reconstruction algorithms, its reconstruction quality is the best.
For a fair comparison, the deep learning based methods are
all trained on the same dataset with epoch set to 100. For the
ReconNet method, the initial input of the network is set to 0,
and the learning rate is set to 1e−4. For the CSNet+ method,
the learning rates for the first 50 epochs, 51 to 80 epochs and
the other 20 epochs are 1e−3, 1e−4, and 1e−5, respectively. For
the DEAR method, the loss functions of the deep embedding and
attention networks are 0.9 and 0.999, respectively. The learning
rate decreases with the number of epochs.

To verify the performance of the proposed network, we
evaluate the network on the test dataset. Considering that
the reconstruction performance of the model-driven method is
very poor under the condition of extremely sparse projection
views, we set the lowest projection view to 12. We use dif-
ferent reconstruction methods to reconstruct images from 12
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Fig. 4. Reconstruction results using different methods when Views = 12.

projection views, as shown in Fig. 4. Due to the extremely sparse
projection, it is difficult for traditional reconstruction methods
to obtain detailed information, resulting in poor reconstructed
image quality. As can be seen from Fig. 4, the reconstruction
result of the FBP algorithm has very serious streak artifacts, and
the details of the image cannot be restored. The reconstruction
results of the ART algorithm also have serious streak artifacts,
and the quality of the reconstructed image is so blurred that
it is impossible to see the specific details of the image. The
reconstruction result of the TVAL3 algorithm suppresses the
streak artifact very well and retains the edge information of
the original image, but the reconstruction result is also very
blurred and cannot display specific details. The reconstruction
results based on deep learning methods have achieved better
reconstruction results. The ReconNet algorithm effectively sup-
presses the streak artifacts and preserves the edge information
of most organs, but the quality of the reconstructed image is still
relatively blurred. During the reconstruction process, most of
the details between the reconstructed image blocks are lost due
to block artifacts. The structure of the reconstruction result of
the CSNet+ algorithm is relatively complete and clear, and most
of the image details are preserved. Although the reconstruction
results of this algorithm have good visual effects, some details
are still very blurred. The structure of the reconstruction results
of the DEAR algorithm is complete and clear, and a large number
of image details are preserved. However, the effectiveness of this
algorithm in reconstructing some edge details is still relatively
blurred. The reconstruction effect of our proposed algorithm
is more delicate and clearer than the reconstruction effect of
the DEAR algorithm in restoring the edge of the image. The
reconstruction results present the most details and the smallest
differences compared to the reference image. At the same time,
it can be observed from the red rectangular box in Fig. 4 that
the results of different reconstruction algorithms are locally
magnified, and the local regions of the proposed reconstruction
algorithm retain more detailed information. In order to further
demonstrate the ability of the proposed algorithm to preserve
image details, we also presented the difference images between
the reconstruction results of different algorithms and the original

image, as shown in Fig. 5. From the difference images, it can
be seen that the proposed reconstruction algorithm obtained the
smallest difference from these difference images. This result
once again verifies the superiority of the proposed reconstruction
algorithm.

The quality of the reconstructed images improves signifi-
cantly with increasing number of projected views. Although the
reconstruction results of FBP and ART algorithms have been
further improved, the reconstruction results obtained by these
algorithms still have obvious streak artifacts. The results of
the FBP algorithm have the most serious streak artifacts due to
the severe sparse projection. The results of the ART algorithm
have relatively few streak artifacts. The TVAL3 algorithm effec-
tively suppresses most of the streak artifacts and provides more
accurate image detail information. The ReconNet algorithm
still cannot reconstruct a good image, and the reconstructed
image has obvious image blocks. The reconstruction results of
CSNet+ algorithm have been effectively improved, but some
areas are relatively blurred. The reconstruction results of the
DEAR algorithm and the proposed method both have good
image quality. Most of the details of the reconstructed image
obtained by the two algorithms can be accurately presented,
and the areas with relatively low contrast can also be well
reconstructed. The red rectangular box in Fig. 6 shows the
slight differences in the reconstruction results between the two
algorithms. To further highlight the differences between these
two algorithms, we use difference images for evaluation. The
visualization results in Fig. 7 demonstrate that the proposed
algorithm can more accurately reconstruct the pixel values of
the original image and has a better ability to preserve structure.

When the projected views reach 18, the results of each re-
construction algorithm are significantly improved. Due to the
severe sparsity of the projected view, the reconstruction re-
sults of the FBP algorithm still exhibit significant streak arti-
facts. The reconstruction results of the ART algorithm contain
less streak artifacts. The TVAL3 algorithm effectively sup-
presses a large number of streak artifacts and preserves the
edge information of the image well. However, information in
areas of low contrast cannot be reconstructed. Although the
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Fig. 5. Difference images between the reconstruction results of different algorithms and the original image when Views = 12.

Fig. 6. Reconstruction results using different methods when Views = 15.

Fig. 7. Difference images between the reconstruction results of different algorithms and the original image when Views = 15.

reconstruction results of the ReconNet algorithm have been
greatly improved, the restoration of image details is still not
ideal. Moreover, during the reconstruction process, a small
amount of noise appears in the reconstruction result of the Rcon-
Net algorithm and the edge information of the reconstructed

image is missing. The reconstruction result of the CSNet+ algo-
rithm has a good visual effect and reconstructs a large amount
of detailed information, but it still cannot reliably obtain fine de-
tails. As shown in the red rectangular box of Fig. 8, the difference
between the reconstruction results of the DEAR algorithm and
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Fig. 8. Reconstruction results using different methods when Views = 18.

Fig. 9. Difference images between the reconstruction results of different algorithms and the original image when Views = 18.

TABLE II
COMPARISON OF QUANTITATIVE RESULTS OBTAINED BY DIFFERENT RECONSTRUCTION METHODS

our proposed algorithm cannot be clearly distinguished from the
qualitative results. Both networks have reconstructed the image
well. In order to more clearly demonstrate the difference in
reconstruction performance between the two algorithms, Fig. 9
shows the difference images between the reconstruction results
of the different algorithms and the original image. From the
visualization results, it can be seen that the reconstruction result
of the proposed algorithm has less loss and is closer to the

original image. The result verifies the superiority of the proposed
algorithm.

Table II shows the quantitative results of different recon-
struction algorithms under different projection views. RMSE
can evaluate the degree of change in data, and a smaller value
of RMSE indicates higher reconstruction accuracy. PSNR and
SSIM are two commonly used image quality evaluation indi-
cators. PSNR can better reflect the difference of signal pixels.
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SSIM is an indicator that measures the similarity between two
images. The larger the value of PSNR and SSIM, the better
the quality of the reconstructed image. As can be seen from
Table II, the values of the three metrics used to evaluate our
network are better than those of other algorithms. This results
once again verify the effectiveness of the proposed algorithm.

IV. CONCLUSION

In this paper, a model and data co-driven ASAMP reconstruc-
tion method is proposed for sparse-view CT imaging. To address
the challenges of achieving multiple sparse views projection in
single scene imaging and enhancing computational efficiency,
we introduce an adaptive sampling module within the AMP
deep unfolding network. Furthermore, by incorporating a pre-
processing step and employing singular value decomposition,
we identify the contribution levels of independent structures
within the projection matrix. Subsequently, the most significant
principal components are selected to construct a more orthogo-
nal projection matrix model, effectively enhancing the quality of
reconstructed images. The superior imaging performance of the
proposed method against other state-of-art method in the litera-
ture are both quantitatively and qualitatively verified on public
datasets. In conclusion, our ASAMP method’s adaptability to
diverse projection matrices and prominent imaging performance
make it a promising solution for enhancing medical imaging
capabilities while reducing radiation dose and acquisition time.
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