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Abstract—Phase sensitive amplification is indispensable in pro-
moting applications such as all-optical regenerators, quantum
communications, all-optical analog-to-digital conversion, and long-
distance communications. In this article, we proposed a vector dual-
pump nondegenerate phase-sensitive amplification scheme based
on ultra-silicon-rich nitride (SizN3) waveguide, and theoretically
verified its capability for all-optical regeneration of phase-encoded
polarization-division multiplexing (PDM) signal without the need
for complex polarization diversity structures. We achieved a gain
extinction ratio (GER) of ~37.5 dB by using a 3-mm-long Si>Nj3
waveguide with a high nonlinear coefficient (~279 /W/m). Signal
quality before and after regeneration is characterized by constella-
tion diagram and error vector magnitude (EVM). The results show
that the EVM of the degraded PDM differential phase-shift keying
(DPSK) signals with two polarization states of 54 % and 53.8 %, can
be improved to 13.6% and 13.6 %, respectively, after regeneration,
directly illustrating the remarkable phase noise suppression effect.
The applicability of the scheme in PDM quadrature phase shift
keying (QPSK) signals was further investigated. Similarly, the
EVMs of the two polarization states of the deteriorated QPSK
signals are optimized from 28.9% and 29.3% to 13.7% and 13.9%,
respectively. The proposed scheme has promising applications in
integrated all-optical processing systems and long-distance trans-
mission of optical communications.

Index Terms—Phase sensitive amplification, polarization-
division multiplexing signals, all optical phase regeneration,
nonlinear optical waveguide.
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1. INTRODUCTION

N RECENT years, increasing attention has been paid to

large-capacity transmission techniques as data traffic con-
tinuously expands. As an additional degree of freedom, the
polarization state of the light can be used as a channel for
signal multiplexing, thereby improving the capacity and spectral
efficiency of the system [1]. Polarization Division Multiplexing
(PDM) technology, which evolves by manipulating the polar-
ization state of light, incorporates two linear and orthogonal
polarization states within a single wavelength. In addition,
PDM can be compatible with other multiplexing technologies,
such as wavelength division multiplexing (WDM) [2], [3],
[4], optical time division multiplexing [5], [6], mode division
multiplexing [7] and space division multiplexing [8] systems
to construct large-capacity, spectrally efficient communication
systems. Nevertheless, it is inevitable that the phase encoded
modulated signal based on the PDM technique is susceptible
to disturbances from nonlinear phase noise that cannot be ad-
dressed by the normally digital signal processing methods during
long distance transmission, which poses a critical challenge
to the reliability of the received information [9], [10]. There-
fore, it is urgent to enable nonlinear phase noise suppression
using all-optical ways to improve the distance and fidelity of
transmitted information. Fortunately, phase-sensitive amplifiers
(PSAs) enable the compression of nonlinear phase noise owing
to the in-phase and quadrature signal components experience
unidentical gain [11], [12]. PSAs have attracted a wide range
of researchers in recent years and has been implemented to
squeeze the phase noise of diverse modulation formats, such
as differential-phase-shift-keyed (DPSK) [11], [13], quadrature
phase-shift-keyed (QPSK) [14], [15], and quadrature amplitude
modulation [16], [17] signals.

Depending on the polarization state of the participating
light waves, PSAs can be distinguished into scalar and vec-
tor types, and then further sub-divided into degenerated and
non-degenerated PSAs according to the frequency relationship
between the signal and the idler in the input waves [18], [19]. For
the regeneration of PDM phase-encoded signals, without the em-
ployment of polarization diversity, only vector non-degenerated
PSAs exhibit the ability to regenerate two polarization-states
phase signals simultaneously. The majority of previous inves-
tigations focused on highly nonlinear optical fibers (HNLFs)
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with a nonlinear refractive index of ny = 2.6 x 10729 m?2 /W,
implying low nonlinearity, resulting in long interaction lengths
(on the order of a few hundred meters), and pump power limited
by stimulated Brillouin scattering (SBS) [20], [21], [22]. PSAs
can also be implemented with other non-linear platforms such
as periodically poled lithium niobate (PPLN) and Si-waveguide
[23], [24], [25], [26]. The second-order nonlinear parametric
process based on PPLN requires complex quasi-phase match-
ing as well as being strongly sensitive to ambient temperature
demanding precise temperature control, while PSAs based on
Si-waveguide face large two-photon absorption (TPA), free-
carrier absorption (FCA) and free-carrier dispersion (FCD)
effects in the communication band restricting its regenerative
performance. Although the nonlinear platform based on silicon
nitride can accomplish no TPA, FCA, and FCD effects in the
communication band [27], however, it has a moderate nonlinear
coefficient, which means that longer waveguides are necessary
to achieve high parametric amplification gains. Silicon nitride
waveguides of 1.42 m have been reported [28]. but there are
difficulties with the stitching technique of multiple spiral waveg-
uides, resulting in poor waveguide yields. Meanwhile, silicon
nitride with a standard stoichiometric ratio, which has higher
strain, is prone to the problem of cracking [29]. Therefore, it
is highly imminent to explore a phase regenerator based on
a high-performance nonlinear integrated material to fulfill the
phase regeneration of phase-encoded signals in PDM systems.
The ultra-silicon-rich nitride (Si;yN3) waveguide, as an CMOS-
compatible nonlinear material platform, which provides the
merits of high nonlinear refractive index (no = 2.8 x 107"
m? /W), high bandgap energy, no TPA in the communication
wavelength band, and meanwhile wide-band phase matching
is available through dispersion-engineered waveguide design
[30], [31]. Optical parametric amplification based on Si7Ng3
waveguides has been demonstrated by K.J.A. Ooi et al. [30].
Accordingly, we present for the first time a system scheme and
theoretical simulation for realizing all-optical regeneration of
PDM phase-coded signals based on Si7N3 waveguides.

This article is organized as follows: in Section II, the pro-
posed black-box scheme for phase regeneration of PDM phase-
encoded signals is established, and a four-wave mixing (FWM)
coupled-wave model for phase regeneration of PDM signal in
waveguide is developed. Then, the design of Si7Ns waveguide,
the impact of key parameters affecting the regeneration effec-
tiveness, including the signal-to-idler power ratio, the total pump
power, and the signal power, and the results of PDM signal
regeneration such as EVM, phase noise standard deviation,
amplitude noise standard deviation, are included in Section III.
A summary of the paper is presented in Section IV.

II. PHASE REGENERATION MODEL AND ANALYSIS BASED ON
VECTOR PSA IN S17N3 WAVEGUIDE

The proposed black-box system model for performing phase
regeneration of the PDM phase-encoded signals is shown in
Fig. 1(a), where the Si7N3 waveguide is served as a nonlinear
medium to generate the phase-sensitive amplification process.
The phase regeneration of PDM phase-encoded signals on the
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basis of dual-pump nondegenerate vector PSA involves two
fundamental conditions: 1). relative phase locking of the pump,
signal and idler carriers [11], [19]; 2). The signal and idler in
the input nonlinear medium are supposed to carry the identical
phase information [32], [33]. Aiming to attain relative phase
locking amongst interacting optical waves, a carrier recovery
in combination with optical frequency comb generation can be
adopted [11], [34], as shown in Fig. 1(a).

Due to the inherent frequency tooth coherence and large free
spectrum range (FSR) of soliton microcavity combs (SMCs), it
enables signal processing at high data rates that are not feasible
with electro-optically modulated optical combs [35], [36], [37],
[38], [39]. The idler, generated by the phase-insensitive FWM
process, does not contain the data pattern, then the idler carrier is
injected into the slave laser realizing the low-noise amplification
of the idler carrier and finally injected into the high refractive
index doped silica glass platform-based microring resonator to
yield the SMC [35]. In order to satisfy that the signal and the idler
carriers have the same phase information in the phase-sensitive
amplification process, firstly, two specific frequency comb teeth
are picked out as two pumps through the wavelength selection
switch (WSS), and the coupler splits them into two paths and
tunes them to orthogonal polarization states through the po-
larization controller (PC) and corresponds to each polarization
component of the PDM signal, which subsequently undergoes
a phase-insensitive Bragg scattering FWM process with the
signal respectively [22], [40]. As a result, the idler is generated
that carries the same phase information as the PDM signal
light. Notably, we utilize HNLFs in carrier recovery and idler
generation process in the schematic diagram of Fig. 1(a), which
can be completely replaced in by SizNg waveguide if fabrication
technology issues such as coupling loss, material loss, etc. are
properly addressed. It is important to note that for the next step
of the vector PSA process, the idler generated above need to be
rotated separately to make its polarization states perpendicular
to the corresponding PDM signal polarization component in the
phase-insensitive process. Finally, the pumps are selected from
the SMC through WSS for the vector PSA process, and the
polarization states of the pumps are orthogonalized by PC in
front of the polarization-maintaining fiber.

After the carrier recovery, injection locking and phase in-
sensitive FWM process, the relative phase of the carriers is
automatically locked among the signal, idler and pumps de-
livered to the SizN3 waveguide. Meanwhile, a phase-locked
loops used to compensate for carrier relative phase drift due
to acoustic and thermal effects, as well as polarization tracking
devices, are essential in practice to ensure optimal regeneration
performance. It is worth emphasizing that our proposed scheme
can operate as a black box because the phase-locked pumps
and the idler are generated locally. Moreover, all components
have the possibility of being replaced with on-chip integration
in an attempt to meet future photonic integration demands for
miniaturization, integration and low power consumption.

The vector dual-pump nondegenerate phase sensitive ampli-
fication process performed in the SizN3 waveguide is shown in
Fig. 1(b), where x, y denotes the two orthogonal polarization
states of the interacting light waves. The red solid lines and
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Fig. 1.

(a) Schematic of miniaturizable regenerator including vector PSA based on Si7N3 waveguide, as well as carrier recovery, soliton microcavity combs

generation, and PIA/carrier phase locking. In principle, carrier recovery is realized based on the injection locking process, the soliton microcavity combs is generated
by feeding the pump arising from the carrier recovery into the microring resonator, the PIA process is used to generate carrier phase-locked pump, signal, and idler,
the phase-sensitive amplification process takes place in the SizN3 waveguide, where the simulation calculation is mainly focused on. PC: Polarization controller,
HNLF: Highly nonlinear fiber, OBPF: Optical bandpass filter, MRR: Microring resonator, WSS: Wavelength selective switch, SMF: Single mode fiber, ODL:
Optical delay line, PBC: Polarization beam combiner, WDM: Wavelength division multiplexer, PD: Photodetector, PZT: Piezoelectric-based fiber stretcher, OMA:
Optical modulation analyzer. (b) Polarization and frequency diagram for vector dual-pump nondegenerate PSA processes for PDM phase regeneration. (c) Electric
field intensity distribution of quasi-TE mode and quasi-TM mode of the Si7zN3 waveguide at 1550 nm.

green dash lines represent the input light waves as well as the
newly generated light waves, respectively. PDM signal S, and
Sy, the orthogonal pumps P, and P,, and idler I, and I,
interact through two vector PSA processes, i.e., Sy-FPp-Py-I,
and Sy-P,-Py-1I,, respectively. And the four newly generated
waves, I,1, I;2, Iy1, Iy2, which are involved in four scalar FWM
processes, i.e., Sy-Pyp-Ipo, Ip1-Py-1p, Sy-Py-1y1, Iyo-Py-1,
respectively. [22], [30]. As previously mentioned, the polariza-
tion states of the above interacting light waves should be prop-
erly aligned. The SizN3 waveguide is dispersion-engineered,
and the effective refractive index n.s; and field distribution
are calculated using the finite element method (FEM), and
the material dispersion of silicon and Si7Njs is fitted by the

Sellmeier equations [30], [31], [41], [42]. The electric field
profiles of the quasi-TE and quasi-TM mode of the SizNgs
waveguide at the telecommunication wavelength 1550 nm are
shown in Fig. 1(c). A design with specific dimensions allows the
effective refractive index of the TE and TM modes to approxi-
mate so that the polarization mode dispersion is negligible (see
Section III).

For the purpose of theoretical study of the phase regen-
eration performance of the vector dual-pump nondegenerate
phase sensitive amplification process based on Si;N3 wave-
guide, the four-wave mixing (FWM) coupled-wave model de-
scribing the vector phase sensitive amplification process in the
waveguide is as follows:
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where A; (i) = \/Pi(z) ¢%(*) is the complex amplitude of
the optical field, P;(z) and ¢;(z) are the power and phase of
the optical wave varying with the length of the waveguide, «,
QFC A, TP A,; Tepresent the linear transmission loss, FCA loss
and TPA loss in the waveguide, respectively. It should be noted
that the SizN3 waveguide has no TPA and FCA effects in the
communication band, so we have neglected them in our later
simulations. -; is the nonlinear coefficient of the waveguide at
different wavelengths. A total of 10 waves shown in Fig. 1(b)
involved in the interaction are under consideration as mentioned
before. wg + wy = w, +wq and 2w, = w, + w, denote the
vector dual-pump FWM and scalar single-pump FWM pro-
cesses, respectively. w is the angular frequency of the light wave,
and the corresponding subscripts a, b, ¢, d and p, g, o correspond
to each wave participating in different vector and scalar FWM
processes, respectively (e.g., for the vector FWM process, S,-
P,-P,-1,, a, b, c, d represent P, P,, I, S, respectively; for
the scalar FWM process, S,.-Py-I.2, p, q, 0 stands for Py, .2,
S, respectively); In terms of orthogonal polarization states, the

vector FWM has a nonlinear coefficient which is 2/3 of that
of the scalar single-pump FWM. Meanwhile, the cross-phase
modulation (XPM) between the cross-polarized waves has a
nonlinear coefficient which is 1/3 of that of the XPM between
the co-polarized waves. A 5, p.c.a = Ba + Bp — Be — Baand §;
are the linear wave vector mismatch and propagation constant
of each light wave, respectively. SBS and stimulated Raman
scattering (SRS) effects are neglected on account of the short
length of the waveguide [43], [44]. Besides, only dominating
FWM processes are considered in the calculation of (1) shown at
the bottom of previous page for the simplification, which would
not have significant influences on the results [22], [45].

In purpose of evaluating the capability of our proposed
scheme for PDM signal regeneration, in the following sections,
we performed a detailed investigation of the Si7N3 waveguide
design, the factors affecting the gain extinction ratio (GER)
(i.e., the total pump power Ppymps, the signal power Pg;gnai,
signal-to-idler power ratio o), and the regeneration performance
of PDM DPSK and PDM QPSK signals.
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Fig. 2. (a) Effective refractions of the TE and TM mode as a function of
the wavelength. Inset: zoom-in profile of effective refraction of the Si7Ng3
waveguide. (b) Polarization mode dispersion profiles of the Siz N3 waveguide.

III. SIMULATION AND DISCUSSION
A. Design of the Si»N 3 Waveguide

Si7N3 as a third-order nonlinear medium, which exhibits the
merits of high Kerr nonlinearity, low loss (4.5 dB/cm), large
band gap (2.1 eV) and compatibility with the CMOS (has the
capability of large-scale manufacturing) [30], [31], [46], [47].
By utilizing FEM, we obtained the effective mode refractive
index n.sy and field distribution of the SizN3 waveguide, and
achieved a second-order dispersion of 0 near 1550 nm with
the optimization of the waveguide dimensions (W = 740 nm,
H = 735 nm, waveguide length = 3 mm) (the second-order
dispersion is calculated by B> = d?3/dw?, B = 2mness/A). It
should be remarked that we utilize only the fundamental modes
(TE(p/TMyq) of the designed waveguide in the following analy-
sis, without considering the higher order modes. The dependence
of ne s with wavelength for the quasi-TE and quasi-TM modes
is shown in Fig. 2(a), and the inset of Fig. 2(a) shows the n.ss
around 1550 nm. Fig. 2(b) illustrates the second-order dispersion
of the waveguide, and it is revealed that the dispersions of the
TE and TM modes are approximately identical, which means
that the PMD is negligible in our scheme.

The effective mode area A,y and the nonlinear coefficient y
of the designed Si7N3 waveguide are calculated as follows:

(e @ Paray) N
TN (2, ) Ydady

2w [ na(w,y)|F (x,y)[ dwdy
B 2
P (J1F ) Pasdy)

where F'(z,y) is the electric field distribution, A is the wave-
length of the light wave, and ns is the nonlinear refractive index
of SizN3. The variation of A.yrand nonlinear coefficients -y
versus wavelength for the quasi-TE and quasi-TM modes are
shown in Fig. 3(a), where it can be observed that the A.¢
increases with wavelength while + is reversed, and the A, sy and
~ at 1550 nm are 4.07 x 10~'3 m? and 279 /W/m, respectively.
Notably, the nonlinearity coefficient of Si;yNj3 is five orders of
magnitude higher than that of HNLFs (~0.02 /W/m). Highly
efficient FWM processes need to fulfill the phase matching
condition, and Fig. 3(b) shows the linear phase mismatch for
wavelengths from 1200 nm to 2000 nm. It can be noticed
that the dispersion curves for quasi-TE and quasi-TM modes
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are nearly zero at 1550 nm, while the linear phase mismatch
(calculated by A By p.5.c = Ba + b — Bi — Bc) is flatand small
in the 1400 nm—1800 nm, which guarantees the efficiency of the
FWM process. The broadband phase matching and considerable
nonlinear coefficients ensure that our scheme provides a high
gain-to-extinction ratio over a wide wavelength range. Further-
more, since the carrier phase-locked pump light in our proposed
scheme originates from an optical frequency comb, its ex-
ploitable wavelength is undoubtedly ultra-broadband. Thereby
a further extension is that our proposed scheme has excellent
wavelength scalability and flexibility. In conclusion, our pro-
posed SizN3 waveguide is quite suitable for vector dual pump
nondegenerate PSA, and subsequently its phase-sensitive gain
properties should be optimized.

B. Gain Extinction Ratio Characterization

GER, defined as the ratio of phase-sensitive amplification
to de-amplification, is an important indicator to assess the
phase regeneration capability of PSA [48]. In our calculations
utilizing (1), the parameters of the SizNs waveguide are as
follows: the waveguide length L = 3 mm, and the disper-
sion slope, fourth-order dispersion coefficient, and nonlinear
coefficient at 1550 nm are 4.3 x 107 ps/nm?*/km, 7.365 x
107% ps*/km, and 279 /W/km, respectively. At the input of the
Si7N3 waveguide, two continuous waves with the equal power
and wavelengths of 1540 nm and 1560 nm, respectively, are
treated as orthogonal pumps, where 7, = 282.3 /W/km, v, =
275.6 IW/km, Acgpp,= 4.04 x 10713 m?, Acypp,= 408 x
10713 m?2. The PDM signal’s wavelength is 1537.5 nm, for sim-
plicity, the power of both polarization components is 10 dBm,
and carry equal phase information in the simulation, v,, =
285.7 /W/km, Aeffpgmyy =4.02 x 107183 m?2, correspondingly,
the idler’s wavelength is 1562.5 nm and is set in the simulation
to have the same phase information as the corresponding signal,
Vi, = 2754 /Wikm, Acyy 1, = 4.07 x 1072 m? a; =45
dB/cm account for the linear losses.

Normally, the power of signal and idler in scalar PSA is
identical. However, as we have shown in Fig. 1(a), the idler
involved in the PSA process is actually generated through the
FWM process in HNLFs, whose power is limited by the effi-
ciency of the FWM process as well as the power of the signal
involved in the interaction. Therefore, it is necessary to analyze
the effect of the GER caused by different signal-to-idler power
ratios when performing the PSA process in SizN3 waveguides,
taking into account the idler power issues arising from the actual
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Fig.5. Calculated signal gain extinction ratio (GER) as a function of the signal
power, Py;gnat, for x-pol component of the PDM DPSK signal, with total pumps
power Ppymps = 36 dBm, signal-to-idler power ratio o = —4 dB.

process. Thus, we first optimize the signal-to-idler power ratio
0. The GER of one PDM DPSK component (x-pol) is shown in
Fig. 4. The result of the other PDM component (y-pol) is quite
the same as the result of x-pol, so we only focus on the result of
x-pol for analysis here. It can be seen that the optimal o exists for
different pump power, and it grows with the increase of Py, ps-
A large o is preferred, as the idler power is restricted by the
signal. Consequently, a o of —4 dB is selected for Ppymps =
36 dBm, with Pg;gnq = 10 dBm/polarization, and P;gre, =
14 dBm/polarization. The corresponding GER is about 37.5 dB.
It should be remarked that the HNLFs shown in Fig. 1(a) for
generating carrier phase-locked idler can be replaced by Si7yNj
owing toits higher nonlinear coefficient as well as the potential to
engineer the dispersion so as to achieve broader bandwidth phase
matching to achieve more efficient FWM conversion efficiency,
which in turn generates higher-power idler to satisty the desired
signal-to-idler power ratio. In this way, the footprint of the whole
system is further minimized.

One of the challenges of PSA for phase regeneration of de-
graded signals is that PSA causes an increase in amplitude noise
(AN) while reducing the phase noise (PN) [11], [49], due to the
intrinsic gain curve of PSA. Fortunately, AN can be somewhat
suppressed by keeping the PSA operating in the gain saturation
region [11], [45], a process that can be implemented by increas-
ing the signal optical power or preventing the use of higher pump
power. Fig. 5 indicates the GER of the signal changes with the
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Fig. 6. (a) Gain and (b) phase of the output signal as a function of input signal
phase for x-pol component of the PDM DPSK signal, with total pumps power
Ppumps = 36 dBm, signal-to-idler power ratio o = —4 dB.

Pgignai- Similarly, for the x-pol and y-pol components of the
PDM signal, their results are highly similar, and we focus on
the x-pol component as well. As can be seen, when the Py;gna1
is larger than 10 dBm/polarization, GER gradually falls with
the growth of Py, due to the gain saturation effect. A well
balanced Pg;gpq is required to ensure step-like phase transfer
function and saturation gain transfer function simultaneously for
better regeneration performance.

Based on the above analysis, we selected three Pj;gnq; in
the GER saturation region, Py;gnq; = 10 dBm/polarization,
Piignar = 22 dBm/polarization and P;gnq = 25 dBm/
polarization, to investigate the transfer function characteristics
of the vector PSA, as shown in Fig. 6. Fig. 6(a) and (b) represent
the gain and phase transfer functions of the x-pol component of
the PDM DPSK signal, respectively. Apparently, as the Py;gnai
rises, the extent of saturation increases. Nevertheless, oversatu-
ration leads to an uneven gain curve and distortion of the step-like
phase transfer curve. Therefore, it is more desirable to select a
suitable Pg;gnqr so that the vector PSA works in the moderate
saturation region to allow a trade-off between output amplitude
and phase. Therefore, the Pi;gy,4; is fixed to 22 dBm/polarization
for the PDM signal phase regeneration.

C. Phase Regeneration of PDM DPSK Signals

We further demonstrate the phase regeneration effectiveness
of the PDM DPSK signals based on our proposed scheme.
Based on the optimization results in the previous sections, the
power of the pump, signal, and idler we used in the simulation
is 36 dBm, 22 dBm/polarization, and 26 dBm/polarization,
respectively. For more generality, we assume that all light waves
used are continuous and consider that the complex amplitudes
of their light fields exhibit the form A = /P €'. Assuming
that the phases of both polarization components of the PDM
signal are independently modulated to a random 0, 7 phase
distribution at 40 Gbit/s in the DPSK format, generating the
80 Gbit/s PDM signal, and are subsequently degraded by PN
and AN which following random distributions with standard
deviations of 1.09 rad and 0.173, respectively. The signal with
noise is A = (Ao + A,)e!¥0t¢n) where py = 0, 7, and
@n is PN, A, is AN, and the signal after regeneration is
A = /G(pn) (Ag + A,)e!¥0). We simulated the proposed
phase signals regeneration scheme based on MATLAB using
1 x 107 bits of data. The simulation results are illustrated in
Fig. 7. As shown in Fig. 7(a) and (b) the PN distribution of
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each polarization component is about 2.02 rad, after regeneration
the PN of output signal does not exceed 0.35 rad, as shown in
Fig. 7(c) and (d), a significant PN squeeze effect can be observed
by comparing the input and output constellations. The AN is
also suppressed owing to the PSA operating in the saturation
region. As an intuitive observation of the performance of phase
regeneration, we measured the EVMs of the PDM DPSK signals
before and after regeneration, which is defined as follows [50]:

. I 1/2
EVM = 5;|E,ﬂ,i—Et,i| /Et,m “)

where F,.; and E;; are actually the received signal vector
and ideal transmitted signal vector, respectively, |E; ,,| is the
power of the longest ideal constellation vector, which serves for
normalization, and [ is the bit length of the signal data. The
EVMs effectively measure the error distance of the received
signal from its ideal position. The EVMs of the two components
of the degraded PDM signal are 54% and 53.78% respectively,
and after vector PSA their EVMs are optimized to 13.64% and
13.64%, respectively.

As shown in Fig. 8(a), to evaluate the tolerance of phase
regeneration of the proposed scheme, we quantitatively compare
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the EVMs of the PDM signal with different levels of deteriora-
tion before and after regeneration. The results reveal that the
EVMs of the regenerated PDM signal are much smaller than
the input degraded PDM signal, which implies that the vector
dual-pump PSA based on SiyN3z waveguide has excellent PN
and AN compression capability. Furthermore, to quantify the
phase regeneration performance more thoroughly, the PSA is
evaluated in terms of phase and amplitude variance, as shown
in Fig. 8(b) and (c). Fig. 8(b) is the calculated output phase
standard deviation oppqse,0ut @S a function of the input phase
standard deviation Oppase,in. The reduction of ophase,out DY
one order of magnitude for all cases indicates that the phase
compression is effective at different PN levels. Fig. 8(c) depicts a
curve of the output amplitude standard deviation o g plitude,out
with the signal amplitude normalized to 1. The results show
that a fairly minor PN-AN conversion exists at different PN
levels. When opnase,in €xceeds to 0.5 rad, Oumplitude,out 1N-
creases by only 1.9%. Although a degree of amplitude jitter
is introduced, the signal EVM is significantly improved after
regeneration.

D. Phase Regeneration of PDM QPSK Signals

The PDM QPSK signals double the spectral efficiency com-
pared to the PDM DPSK signals, which represents a twofold
increase in information capacity and is the recommended com-
munication format for current networks [51], [52]. Therefore,
we further investigated the phase regeneration of the PDM
QPSK signals. Phase regeneration of QPSK signals requires a
four-order staircase-like phase transfer function, which can be
realized by signal interfering with the conjugated third-phase
harmonic [14] or by a dual-conjugate-pump degenerate PSA
[53]. This means that the second pump demands a high-order
FWM process to generate the fourth harmonic of phase to
achieve modulation stripping. The realization of third-order
harmonics may be challenging for a practically experimental
system, and based on a higher-order FWM process is a consid-
erable solution towards this problem [14]. In the simulation, for
simplicity, the phase information on the idler involved in the PSA
process is set to be three times that of the corresponding input
signal. The power optimization process for pump, signal, and
idler is similar to the optimization process for phase regeneration
of PDM DPSK signal. The GER of one PDM QPSK component
(x-pol) for different total pump power is shown in Fig. 9. The
wavelength and power of the PDM QPSK signal used in the
simulation are the same as those of the PDM DPSK signal, which
are 1537.5 nm and 10 dBm/polarization, respectively.

It is worth noting that in the process of PDM-QPSK re-
generation, it does not mean that the larger GERs the better,
the larger GERs will actually lead to the four-order staircase
-like phase transfer function heavy distortions and fail to realize
the phase compression of the QPSK signal [14]. Therefore, in the
simulation the signal-to-idler ratio is set to o = 5 dB to achieve
the desired phase regeneration effect. Fig. 10 indicates the GER
of the signal changes with the Pk;gyq; for x-pol component of
the PDM QPSK signal. The total pumps power is 36 dBm. The
GER achieved in the PSA process is ~7 dB.
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Fig. 11.  (a) Gain and (b) phase of the output signal as a function of input signal
phase for x-pol component of the PDM QPSK signal, with total pumps power
Ppumps = 36 dBm, signal-to-idler power ratio o = 5 dB.

Similarly, in order to minimize the PN-AN transition, we
simulate to investigate the gain and phase transfer function
curves of the PDM-QPSK signal for the gain saturation case.
Fig. 11(a) shows the power transfer function curve of the x-pol
component of the PDM QPSK signal, similar to Fig. 6(a), with
the distinction that the phase-sensitive gain period is reduced to
half. As shown in Fig 11(b), the phase transfer function curve
exhibits a fourth-order step shape different from that of Fig. 6(b).

Consequently, we simulate the pump, signal, and idler
with power of 33 dBm/polarization, 22 dBm/polarization, and
17 dBm/polarization, respectively, which means a o of 5 dB is
selected. Similarly, in the simulation, both polarization compo-
nents of the PDM QPSK signal are independently modulated
with different phase information in QPSK format at 40 Gbit/s
and subsequently distorted by adding the PN and AN, generat-
ing the 80 Gbit/s PDM QPSK signal. We emulated the phase
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regeneration scheme for the PDM QPSK phase-encoded signal
using 1 x 107 bits of data similarly. The simulation results of
the constellations are shown in Fig. 12. Similar to Fig. 7, it is
intuitive to exhibit the compression performance of the PN of
the PDM QPSK signal after phase regeneration. The EVMs of
the distorted PDM QPSK signal are 28.87% and 29.25% for
x-pol and y-pol, respectively, and after regeneration the EVMs
are improved to 13.72% and 13.93%, respectively. The EVM of
the output PDM QPSK signals as a function of the input PDM
QPSK signals EVM is illustrated in Fig. 13(a), also exhibits high
tolerance for phase compression. Likewise, the output signal
standard deviation oppqse,out presents an order of magnitude
improvement, while the difference is that for QPSK signals, the
increase in o gmplitude,out due to PN-AN conversion is less no-
ticeable. We attribute this mainly to the gain saturation operation
and the lower GER characteristic of QPSK regeneration process,
as well as the lower absolute phase noise which can be exercised
with QPSK signal. The effective compression of different levels
of PN provided by the regenerator is fully confirmed.

As asummary of the above analysis, it could be concluded that
a dependence exists between phase regeneration performance
and GER. The analytic solution for the gain of a double-pumped
PSA, without considering the pump light consumption and with
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TABLE I
COMPARISON OF DIFFERENT NONLINEAR MATERIALS USED FOR NONLINEAR PHOTONICS

Material (10"3‘111212/W) E%%T:T: fé‘s’f&gﬁ/‘é% (cnﬁa%AW) FOM chﬁtiﬁ% ref
HNLF 2.6x107 O.(()1~(T())2 ~0 negligible >>] No [11,55,56]
Hydex 0.115 0.233 0.06 negligible >>1 Yes [57]
Si-Ge 9.6~11.2 25 1.4 1.16~1.5 0.53 Yes [58]

c-Si 14.5 588 18 0.6 1.56 Yes [59]

a-Si 21 1200 6.9 0.25 5 Yes [60]
SizNy 0.25 1 0.014 negligible >>] Yes [28]
SRN 1.61 16 1.5 negligible >>1 Yes [47,62]
As;Se;s 23 98 <0.001 negligible >>] No [62]
As:Ss 2.9 100 10 6.2x107" >>] No [63]

AlGaAs 19.8 10~600 1.2~6 negligible >>1 No [61,64]
USRN 28 ~280 4.5 negligible >>1 Yes This work

well phase matching (k =~ 0), can be approximately expressed
as: G4(L) =~ cosh(gL) + exp(—i(¢y;))sinh(gL),where para-

metric gain coefficient g = /72 — (k/2)? andr = 2v/P P,
[52]. The product of the parametric gain coefficient g and nonlin-
ear media length L directly control how much GER is achieved.
To highlight the nonlinear properties of the Si; N3 waveguide we
utilized, Table I lists the typical nonlinear parameters on various
platforms, where the nonlinear figure of merit (FOM) computed
as FOM = ny/(ABrpa) is used to quantify the nonlinear effi-
ciency. As intuitively obtained from the table, the drawback of
the silicon-based waveguide is its relatively low nonlinear FOM
due to the presence of nonlinear losses associated with the TPA
and FCA. HNLFs as a medium for early nonlinear studies is not
conducive to future integrated all-optical signal processing sys-
tems owing to the inferiority of low nonlinear coefficients, large
size, and inevitable SBS phenomena. In comparison, Hydex,
SizgN,4 and SRN have a nonlinear FOM >> 1, nevertheless, due
to their low nonlinear parameter y, longer interaction lengths (in
the orders of meters) tend to be required in order to achieve larger
nonlinear phase shifts. While materials such as AlGaAs exhibit
very good nonlinear properties at telecom wavelengths, they
typically require a high-temperature annealing step to minimize
linear losses, which makes them unsuitable for backend-of-line
(BEOL) fabrication. And unless heterogeneous integration tech-
nologies are deployed, there is practically inability to bridge
the gap between ultra-high nonlinear of AlGaAs and comple-
mentary metal-oxide semiconductor (CMOS) compatible plat-
forms [60]. Finally, SivN3-based nonlinear platform is potential
candidate for all-optical integrated signal processing in terms
of nonlinear coefficient, loss, FOM, TPA, and CMOS-BEOL
compatibility. Above all, Si;N3 waveguide has a very great
potential in realizing phase regeneration of PDM signal based
on phase-sensitive amplification.

IV. CONCLUSION

In conclusion, we propose and demonstrate a scheme for
phase regeneration of PDM signal based on vector dual-
pump nondegenerate PSA in SizN3 waveguide. Specifically, an
integrated, black-box-operated vector PSA scheme is first de-
signed while avoiding polarization diversity structures, followed

by dispersion design of SizNs waveguide in which the phase-
sensitive process occurs, and subsequently the performance
of phase regeneration is characterized in detail based on the
proposed theoretical model of optical wave transmission in the
waveguide. The phase regeneration of the PDM DPSK and PDM
QPSK signal is successfully performed by 1 x 107 bits data
simulation, allowing the EVM of the two modulation formats to
be improved from 54% and 53.78% to 13.64% and 13.64%, and
from 28.87% and 29.25% to 13.72% and 13.93%, respectively.
Meanwhile, the excellent phase regeneration tolerance of the
proposed system is also verified. With the growing maturity of
photonic integration technology, the proposed scheme will pro-
vide a promising perspective in applications such as integrated
all-optical signal processing and extending the transmission
distance of PDM signal in optical network.
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