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Comparative Studies of Reconstruction Algorithms
for Sparse-View Photoacoustic Tomography
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Abstract—Inverse source reconstruction is one of the most chal-
lenging problems in photoacoustic tomography (PAT) due to its
ill-posed nature. Despite the extensive work done by researchers on
this problem, there is currently no universally accepted solution.
Regularization methods assume a significant role in the sparse-view
PAT inverse problem. This study compares six inverse source recon-
struction methods based on Lp (0≤p≤2) regularization and inves-
tigates the effects of signal sampling quantity, measurement noise,
and sparsity on the performance of the reconstruction algorithms
through a series of numerical simulations. The experimental results
indicate that the average peak signal-to-noise ratio of the iterative
hard threshold (IHT) method is twice that of the Tikhonov method
and 3 dB higher than that of the L1magic method. The average
running time of the IHT method is half that of the Tikhonov method
and one-seventh of the L1magic method. To further assess the per-
formance of these six reconstruction methods, we conducted agar
phantom experiments to examine their ability to resolve details.
The aim is to provide valuable guidance for the development and
application of algorithms in relevant fields.

Index Terms—Photoacoustic tomography, medical imaging,
sparse-view acquisition, image reconstruction, hard thresholding
algorithms.

I. INTRODUCTION

A S A promising non-invasive biomedical imaging modality,
photoacoustic tomography (PAT) has gained rapid devel-

opment in the last two decades [1]. PAT utilizes pulsed laser light
to excite tissues, leading to the generation of ultrasonic waves
through the photoacoustic effect [2]. By detecting and analyzing
these waves, PAT can reconstruct high-resolution images of
tissue optical absorption distribution [3]. Unlike pure optical
imaging techniques, PAT overcomes the limitations of imaging
depth by utilizing the excellent tissue penetration capability
of ultrasound waves. Its ability to provide high-resolution im-
ages, functional information, and molecular imaging capabili-
ties makes PAT a valuable tool for detecting diseases [4], [5]
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and studying biological tissues [6], [7]. However, in practical
applications, obtaining complete photoacoustic signals is often
challenging due to limitations such as imaging depth, shielding
effect, beam shape, and scattering [8], [9]. To address these
challenges, sparse sampling technology provides an effective
solution to improve imaging efficiency. Additionally, improving
imaging hardware, optimizing reconstruction algorithms, and
developing new methods also contribute to enhancing the perfor-
mance of PAT [10], [11]. Various sparse-view PAT techniques,
such as compressed sensing (CS) and deep learning (DL) based
reconstruction methods have been developed to tackle these
challenges.

In many imaging modalities, image reconstruction from in-
complete data can be mathematically formulated as an underde-
termined linear system. In order to obtain the accurate solution
of the problem, additional assumptions or constraints must be
incorporated into the reconstruction algorithm. CS theory has
been widely used in PAT to mitigate the underdetermined and ill-
posed problem caused by incomplete and sparse measurements.
In PAT imaging, the image can be constrained to have a sparse
representation in a specific transform domain, such as wavelet
or total variation [12]. For example, L1-norm regularization
promotes the sparsity of the images and suppresses irrelevant
or low-intensity features in the images, making the solution
more efficient and accurate [13], [14], [15]. Total variation (TV)
regularization maintains the sharpness of edges in the images
by emphasizing the gradient information [16], [17]. Researchers
have also sought to combine different types of regularization to
take advantage of their strengths [18], [19], [20]. Regularization
methods that incorporate a priori information are able to improve
image quality and reduce artifacts in sparse-view PAT. However,
they suffer from computational burdens due to the large size of
the imaging model matrix.

In recent years, various deep learning (DL) approaches have
shown significant potential in medical image reconstruction,
including convolutional neural networks [21], [22], recurrent
neural networks [23] and generative adversarial networks [24].
There are several DL architectures designed to learn end-to-end
mapping, directly reconstructing the PAT image from raw sig-
nals [25], [26], [27]. While DL methods offer promising results
for PAT image reconstruction and processing, there are still chal-
lenges that need to be addressed. These challenges include the
limited availability of labeled data for training, the incorporation
of prior knowledge into DL models, and the robustness of trained
networks when dealing with different test data [28]. Previous
studies indicated that DL is faster than CS-based methods for
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image reconstruction, as it can leverage pre-trained models and
reduce the optimization process. However, CS has performs
better in preserving weak signals with a lower sampling rate
since it exploits the sparsity of the data. Therefore, choosing
between CS and DL for image reconstruction depends on the
specific application and the characteristics of the data being
processed [29].

So far, L1-norm and TV regularization have been widely em-
ployed as regularization techniques in sparse-view PAT image
reconstruction [12], [17]. Furthermore, alternative regulariza-
tion approaches, including wavelet-based and L0-norm regular-
ization, can also be employed in the context of sparse-view PAT.
By decomposing the image into different frequency bands, the
wavelet transform can help to identify the most relevant features
of the image and reduce the impact of noise and artefacts [30].
L0-norm regularization enforces hard sparsity by setting all but
the k largest coefficients to zero and promotes exact sparsity
in a signal or image [31], [32]. Recently, the iterative hard
thresholding (IHT) algorithm has developed to solve the prob-
lems related to L0-norm regularization optimization [33] and has
been successfully applied in many areas of biomedical imaging.
For example, Wang et al. have used an adaptive Newton IHT
to improve the performance of bioluminescence tomography
[34]. Yuan et al. have applied the IHT algorithm to solve the
inverse problem of Fluorescence molecular tomography [35].
By combining the K-wave toolbox with the hard thresholding
pursuit method, it is possible to obtain a fast and high-quality
sparse reconstruction of photoacoustic images [36]. The above
articles have demonstrated that the hard thresholding algorithm
and its variants can generate sparse models with high prediction
accuracy for various applications.

In this work, the IHT algorithm and its three variants are used
to optimize the sparse-view PAT image reconstruction on both
simulation and agar phantom data [37], [38], [39]. They are
also compared with the conventional Tikhonov regularization
and L1magic. The structure of the paper is arranged as fol-
lows. The second section introduces the photoacoustic theory
and the CS-based reconstruction methods. The third part de-
scribes the process and results of both numerical simulation and
agar phantom. Conclusions are made in Section IV.

II. METHOD

A. Photoacoustic Theory

The photoacoustic wave equation is a key equation in pho-
toacoustic theory that links the photoacoustic signal p(r, t) at
position r and time t to the absorbed energy density A(r) within
a material [3]. It can be mathematically described as follows:(

∇2 − 1

c2
∂2

∂t2

)
p(r, t) = − β

Cp
A(r)

dI(t)

dt
, (1)

where ∇2 is the 3D Laplacian operator, I(t) is the temporal
profile of illuminating pulse that can be represented by the
Dirac delta function. The quantities c, Cp, β denote the speed
of sound in the medium, heat capacity, and isobaric volume
expansion coefficient respectively. When the object possesses
homogeneous acoustic properties, the received ultrasonic wave

p(r0, t) at the ultrasound detector position can be expressed as

p(r0, t) =
β

4πCp

∫∫∫
A(r)

|r0 − r|
dI(t− |r0 − r|/c)

dt
d3r. (2)

By taking the Fourier transform on the variable t = ct, (2)
can be rewritten in the Fourier domain as follow

p(r0, k) =
−iωβ

4πCp

∫∫∫
A(r)

exp(ik|r0 − r|)
|r0 − r| d3r. (3)

Where k = 2πf/c with frequency f . In the inverse problem of
PAT, the goal is to estimate the A(r) from the measured data
p(r0, k). In practical experiments, the frequency-domain data
can be obtained by applying the Fourier transform to the time-
domain signal. More compactly

Y = KX+e, (4)

where Y = (y1, y2, · · · yM )T represents the frequency domain
data and M is the signal number, X = (x1, x2, · · ·xN )T is a
vector that represents the absorbed energy density A(r) and N
denotes the pixel number, e is the measurement noise. K is the
forward operator with the size of M ×N that we discretize

K(m,n)(i,j) = ickn
e−ikn|rm−rij |

|rm − rij | gn,m

= 1, 2, · · · , p, n = 1, 2, · · · , q, (5)

where m and n are the serial number of the detecter location and
frequency, i and j are the Cartesian coordinates.

B. CS-Based Iterative Reconstruction Algorithm

Mathematically, sparse-view and limited-angle PAT image
reconstruction is an ill-posed inverse source problem. This is
a very challenging problem in practical applications. In general,
classical analytical algorithm can obtain good image quality with
complete data. However, in the case of insufficient data, the
quality of the reconstructed image is seriously degraded, and
regularization methods are needed to improve the quality of the
PAT image. The Tikhonov regularization method based on L2

norm provides a powerful and general framework for solving
ill-posed inverse problems. Its simplicity, the effectiveness of
noise reduction and enhanced stability, and the theoretical basis
contribute to its wide application in various fields, including
image reconstruction [40], signal processing, and scientific com-
puting. The Tikhonov regularization method can be expressed
as follows:

min
X

1

2
‖Y −KX‖22 + λ ‖X‖22 , (6)

where λ is a regularization parameter. Equation (6) can be
effectively solved through the LSQR algorithm [41]. However,
the stronger smoothening effect of the Tiknonov regularization
tends to blur the edges and small details in the image, which can
lead to the loss of fine structures.

The CS theory suggests that if the image is sparse under an
appropriate basis, it can be accurately reconstructed from a small
amount of measurement data. Fortunately, most medical images
exhibit a high degree of sparsity under a suitable transform
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basis Ψ : X = Ψθ, where θ ∈ RN is a vector containing the
transform coefficients. It has been proved that the wavelet basis
can provide a better CS matrix [12]. Four-level discrete wavelet
transform was used the transform basis as in this paper. By
denotingA = KΨ, the sparsest solution can be found by solving
the following L0-norm regularized optimization problem

min
θ

1

2
‖Y −Aθ‖22 + λ‖θ‖0. (7)

where λ is a regularization parameter to balance the data fidelity
term and sparsity. However, the nonconvex L0-norm minimiza-
tion problem is combinatorial and difficult to solve. It has been
confirmed in the literature that L1-norm is a good approximation
of L0-norm, so L1-norm regularization is often adopted instead
in CS image reconstruction, which can be denoted as

min
θ

1

2
‖Y −Aθ‖22 + λ‖θ‖1. (8)

Currently, three commonly used menthods implemented in
Matlab (L1magic [12], SPGL1 [13], YALL1 [9]) have been used
to reconstruct PAT image and achieved good results. However,
L1-norm regularization usually has some serious flaws, such as
over-sparseness.

The iterative hard thresholding (IHT) algorithm is one of
the important methods for solving the non-convex optimization
problems based on the L0-norm, and it is widely used in the fields
of sparse estimation and CS image reconstruction [34], [35],
[36]. The standard IHT algorithm initially proposed by Thomas
Blumensath is used to solve the following sparsity-constrained
optimization

min
θ

1

2
‖Y −Aθ‖22 s.t.‖θ‖0 < s, (9)

where s is the sparse level and assumes that it is known. By
starting withX0 = 0 and using a very simple iterative procedure

Xn+1 = Hs

(
Xn +AT (y −AXn)

)
, (10)

where Hs is a nonlinear operator, which preserves only the
s largest magnitude. The IHT method converges to a local
minimum of the sparsity-constrained optimization problem in
(9). There exist some improved algorithms based on the IHT to
solve (9), such as improved iterative hard thresholding (IITH)
algorithm [37], Newton hard-thresholding pursuit (NHTP) [38],
conjugate gradient iterative hard Thresholding (CGIHT) [39],
for solving the nonnegative sparsity optimization, and so on.

C. The Evaluation Factors

In order to evaluate the efficiency and accuracy of the PAT
image reconstruction algorithm, several quantization parameters
were utilized as quantitative factors. These parameters include
the running time, peak signal-to-noise ratio (PSNR), relative
error (RE), and structural similarity (SSIM). The running time
assesses the efficiency of the reconstruction algorithm, while the
PSNR estimates the quality of reconstruction. The RE measures
the disparity between the reconstructed image and the ground
truth image. Furthermore, this work utilizes SSIM as an image
quality assessment metric to measure the similarity between the

reconstructed image and the ground truth image. The SSIM is
widely recognized and employed for evaluating image perfor-
mance. The PSNR is defined as

PSNR
(
X̂
)
= 10 ∗ log10

N ∗max(X)∥∥∥X̂ −X
∥∥∥2
2

, (11)

where X̂ is the reconstructed image and max(X) means the
maximum pixel value, which is 1 in the numerical experiments.
The RE can be defined by

RE
(
X̂
)
=

∥∥∥X̂ −X
∥∥∥
2

‖X‖2
× 100%, (12)

The SSIM measures the luminance, contrast, and structure of an
image, and can be mathematically represented as:

SSIM =

(
2μXμ

̂X + C1
) (

2σX
X̂

+ C2
)

(
μ2
X + μ2

̂X
+ C1

)(
σ2
X + σ2

̂X
+ C2

) , (13)

where μX , μ
̂X , σX , σ

̂X and σX
X̂

represent the mean valve,

standard deviations, and cross-covariance for images X and
X̂ , respectively. In practical applications, it is common to set
the values of C1 and C2 as follows: C1 = (0.01L)2 and C2 =
(0.03L)2, where L represents the number of gray scale levels in
the image.

By analyzing these factors, we can gain a deeper under-
standing of the strengths and weaknesses exhibited by different
algorithms. This analysis helps us identify and select the most
suitable algorithms for various PAT applications. By considering
factors like running time, PSNR, RE, and SSIM, we can make
informed decisions regarding algorithm selection, ultimately
improving the performance and effectiveness of PAT imaging
techniques in specific applications.

III. EXPERIMENT AND RESULT

In this section, we evaluate six Lp-norm regularization meth-
ods, Tikhonov, L1magic, IIHT, NHTP, IHT and CGIHT, on
simulated data and agar phantom data. These evaluations will
provide insights into the performance of each method in terms
of reconstruction accuracy, running time, and handling sparse
and incomplete measurements. In the simulation experiment,
the Blood vessel phantom was employed to produce signals.
And in the agar phantom experiment, a homemade rotating
acquisition system was used to collect photoacoustic data. The
scanning radius of the rotary acquisition system was 4.5 mm, and
the step size was 1.5°. The transducer collected signals at 240
positions, and only some components were selected for sparse
view image reconstruction. The sampling location number was
set to 40 and 80 to obtain different sparsity. The data processing
and reconstruction experiments were conducted using Matlab
software on a PC with 32 GB memory and an Intel core i7-4790
processor.
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Fig. 1. Blood vessel phantom employed in simulations.

Fig. 2. Results of the reconstruction of the blood vessel phantom. The images
reconstructed by Tikhonov, L1magic, IIHT, NHTP, IHT, CGIHT methods are
shown in the first to sixth columns. The results of the reconstruction of data from
10, 30, and 60 locations are shown in the first to third rows.

A. Results of Simulated Sparse-View Data

Fig. 2 presents the reconstruction results of the Blood vessel
phantom using the six methods. From the analysis of these re-
sults, it is evident that the image quality in reconstructions using
10 position signals is poor and the CGIHT method introduces the
highest level of noise. Furthermore, when utilizing 30 position
signals for reconstruction, the L1magic method produces the
clearest and most faithful image with minimal noise. Finally,
when using 60 position signals for reconstruction, apart from
the Tikhonov method yielding a darker image compared to the
ground truth image, all the other five methods achieve satisfac-
tory reconstruction results. For a more objective assessment of
Fig. 2, please consult Fig. 3, which offers a more encompassing
comparison of the six methods.

The histogram quantitative performance assessment of differ-
ent algorithms based on the simulation data are shown in Fig. 3.
The PSNRs, REs, and SSIMs all indicate that the three methods
of IHT, IIHT, and NHTP are clearly superior to the traditional
Tikhonov method. Furthermore, these three methods have simi-
lar PSNRs, REs and SSIMs, indicating comparable performance

Fig. 3. Histogram quantitative performance assessment of different algorithms
based on the simulation data. (a) Histogram of PSNR. (b) Histogram of relative
error. (c) Histogram of SSIM.

TABLE I
RUNNING TIME OF THE SIX TEST ALGORITHMS (S)

among them. According to the PSNR histogram presented in
Fig. 3(a), the PSNR values for the three methods IHT, IIHT,
and NHTP are consistently higher than those of the other three
tested methods with more than 40-view measurements. This
indicates that the IHT, IIHT, and NHTP methods achieve better
reconstructed image quality. From the RE histogram in Fig. 3(b),
it can be seen that the RE values for the three methods (IHT,
IIHT, and NHTP) are consistently lower than those of the other
three methods when the number of measurements exceeds 40.
This suggests that the three methods exhibit better accuracy in
terms of reconstruction when a larger number of measurements
are used. It can be seen from Fig. 3(c) that the L1magic method
produced the highest SSIM when the number of samples was
less than 30. However, when the number of samples increased to
40, the IHT, IIHT, and NHTP methods achieved the best SSIM.
Remarkably, when the number of samples was 60, the SSIM val-
ues for the IHT, IIHT, and NHTP methods were approximately
1, indicating excellent similarity between the reconstructed and
original images.

We have compared the running time with different number
of measurements. Table I shows the running times of the six
methods. As can be seen in Table I, the running times of
Tikhonov, L1magic and CGIHT increase with the number of
measurements. This indicates that these algorithms require more
computational resources and time to process a larger number
of measurements. While the running time of IIHT and NHTP
increases sharply and then decreases gradually. The IHT al-
gorithm has the shortest running time among the compared
algorithms, while the IIHT algorithm has the longest average
running time. Additionally, when considering the PSNR, RE and
running time of different algorithms in the Blood vessel phantom
experiment, it suggests that the IHT algorithm is effective in
reconstructing images from sparse-view data.

When an adequate number of signals are present, specifically
at 50 and 60 positions, the running times of the NHTP and
IHT algorithms are reduced. This improvement in running time
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Fig. 4. Trend charts of PSNR, RE and SSIM values with increased sampling
number. Columns 1–3 are the trend maps of PSNR, RE and SSIM values of
reconstructed images under signals with noise of 40 dB, 30 dB and 20 dB,
respectively.

can be attributed to the fact that when there are sufficient mea-
surements, the algorithms receive more information about the
underlying solution. This additional information aids in quicker
convergence and reduces the number of iterations required for
reconstruction. As a result, the overall computational time is
shortened, making these algorithms more efficient in such sce-
narios.

A. Anti-Noise Ability Experiment

During the acquisition of photoacoustic signals, various types
of noise are introduced, such as electronic noise, thermal noise,
and shot noise. These noise sources have a detrimental impact
on the quality of the acquired data, resulting in artifacts and a
loss of resolution in the reconstructed image. By adding different
degrees of noise to the simulated data, the influence of noise on
the quality of the reconstructed image can be studied. The image
reconstructed by the robust algorithm should have higher PSNR
value, smaller RE value and higher SSIM value, particularly in
the presence of noise.

The trend charts of PSNR, RE and SSIM values of the sim-
ulation experiment are shown in Fig. 4. Specifically, the trend
of changes in PSNR and SSIM values is consistent. When the
noise in the signal is 40 dB, the reconstructed images generated
by the L1magic, IHT, NHTP, and IHT algorithms using more
than 40 position signals exhibit PSNR values greater than 40 dB,
SSIM values greater than 0.85, and RE values less than 0.1.
As the noise is increased to 30 dB and 20 dB, the PSNR and
SSIM values of the PAT image decrease, while the RE value
increases. Overall, the L1magic method achieves the highest
PSNR value and minimum RE value when the sampling location
is small. When the measurement position exceeds 40, the IHT,
IIHT, and NHTP algorithms yield the best experimental results.
Conversely, the Tikhonov and CGIHT algorithms display the
poorest reconstruction effects.

Fig. 5. Line chart of RE values of images that were reconstructed with different
sparsity and 50-view simulation data. (a)–(c) are the trend maps of RE values of
reconstructed images under noiseless data and signals with noise of 40 dB and
20 dB, respectively.

Fig. 6. (a) Structural diagram of the PAT system. (b) The photograph of the
agar phantom containing two carbon rod absorbers.

B. Parameter Tuning

In this section, we further investigated the effects of sparsity
of IHT, IIHT and NHTP methods on reconstructed images based
on 50-view simulation data. The sparsity values range from 1000
to 10000. Fig. 5 shows the line chart of RE values of images that
were reconstructed with different sparsity. It can be seen that
when the sparsity value is less than 5000, the RE values obtained
by those three methods are similar. However, when the sparsity
value ranges from 6000 to 10000, a difference in the RE values
becomes apparent among the three methods. The IHT method
has the highest RE value and the NHTP method has the lowest
RE value, suggesting it performs better at higher sparsity levels.
When there is no noise in the signal or the noise level is 40 dB,
all three methods are capable of achieving good quantization
results under the appropriate sparsity level. However, when the
noise level reaches 20 dB, the RE values of all three methods are
poor. This indicates that the noise has a significant influence on
the IHT, IIHT and NHTP algorithms. High levels of noise can
introduce artifacts, distortions, and compromise the fidelity and
quality of the reconstructed images.

C. Agar Phantom Experiment

Fig. 6(a) is the PAT experiment system structure, which is
similar to that of [9]. A Q-switched Nd: YAG (LS-2137U/2,
Lotis TII Ltd, Belarus) laser was used as a light source to provide
a laser pulse with a wavelength of 532 nm and a repetition fre-
quency of 10 Hz. A 1 mm needle PVDF hydrophone (Precision
Acoustics, U.K.) was employed to receive photoacoustic signals.
The photoacoustic signals were first collected by an oscilloscope
Tektronix MSO4000B and then transferred to the computer for
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Fig. 7. Reconstructed images of the agar phantom from 40-view data using
Tikhonov, L1magic, CGIHT, IIHT, NHTP and IHT, respectively.

signal processing and PAT image reconstruction. Fig. 6(b) is
the cross-sectional view of the agar phantom, in which there
are two point-like carbon absorbents. In the tissue-mimicking
experiment, data from 40 views and 80 views evenly distributed
around the circumference were collected to reconstruct PAT
images. And 64 frequency samples within the [0.15, 4.0] MHz
window were randomly selected in each view.

The reconstructed images from 40-view data are shown in
Fig. 7. It can be observed that serious speckle noise in all
images. Only the carbon absorption samples reconstructed by
the L1magic algorithm and the NHTP algorithm can see the
rough outline, indicating a relatively accurate representation of
the carbon absorption features. On the other hand, the carbon
absorption samples reconstructed using the other four algorithms
appear to be mixed with the speckle noise, resulting in a less
defined representation of the carbon absorption features. This
suggests that the L1magic algorithm and the NHTP algorithm
may be more effective in mitigating the impact of speckle noise
and preserving the structural details of the carbon absorption
samples in the reconstructed images.

Fig. 8 displays the reconstructed images from 80-view data.
From Fig. 8, we can see that all algorithms are capable of effec-
tively reconstructing the carbon absorption samples in the agar
phantom. However, differences can be observed in the clarity
and noise level of the PAT images among the six algorithms. The
image reconstructed by the IHT algorithm possesses the highest
clarity. On the other hand, the image reconstructed using the
CGIHT algorithm seems to be significantly affected by noise.
The remaining four algorithms yield PAT images with a small
amount of noise. The above experiments show that the presence
of noise in the signal can have a negative impact on the quality of
PAT image. Noise can introduce artifacts, distortions, and reduce
the clarity of the reconstructed images. Increasing the amount
of data helps to improve the signal-to-noise ratio and can result
in higher-quality reconstructions.

We utilize the IHT algorithm to reconstruct the PAT image
from agar phantom data with 120-view data. As the sampling

Fig. 8. Reconstructed images of the agar phantom from 80-view data utilizing
Tikhonov, L1magic, CGIHT, IIHT, NHTP and IHT, respectively.

Fig. 9. Histogram quantitative performance evaluation of different algorithms
based on agar phantom data. Columns 1-2 are the histograms of PSNR and
SSIM values of the reconstructed image under 40-view and 80-view signals,
respectively.

angles are sufficient, the reconstructed image becomes the “stan-
dard” image for further analysis and comparison. From Fig. 9,
it can be observed that the SSIM values of the reconstructed
images using 40-view signals are all less than 0.05. With 80-
view signals, the SSIM values of the reconstructed images are
approximately 0.53 for the IHT, NHTP, and IHT algorithms, 0.36
for the L1magic method, and all less than 0.1 for the Tikhonov
and CGIHT methods. The PSNR of PAT image reconstruction
using IHT, NHTP, and IHT algorithms is about 28.6 dB, which
is 3 dB higher than the L1magic method. It is twice as high as
the Tikhonov method and CGIHT method.

IV. CONCLUSION

In this paper, six reconstruction algorithms for sparse-view
PAT, Tikhonov, L1magic, IIHT, NHTP, IHT, and CGIHT, were
tested and evaluated. The experimental results show that the
L1magic achieves better PSNR in the case of limited data avail-
ability. By leveraging sparsity and applying L1 regularization,
the L1magic algorithm promotes a sparse representation of the
reconstructed image. This sparse representation encourages the
retention of important features while suppressing noise and
reducing artifacts. When the signal is sparse, the reconstruction
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quality of IIHT, NHTP and IHT algorithms is better than that
of the traditional Tikhonov algorithm and L1magic algorithm.
By iteratively thresholding and updating the coefficients of the
reconstructed image, the IHT, IIHT and NHTP algorithms focus
the reconstruction on the non-zero components of the sparse
signal, effectively capturing and reconstructing the important
features. This results in improved image quality. Additionally,
the running time of the IHT method is the shortest among the
six methods, while the average running time of the IIHT method
is the longest.

In summary, the IHT method has better image quality, stronger
anti-noise ability and minimum running time. On the other hand,
the NHTP method is well-suited for scenarios with sparsity and
noise due to its robustness. In our study, the sparsity parameters
of the IHT, IIHT and NHTP algorithms are selected empirically.
The development of adaptive techniques is an active area of
research to enhance the flexibility and performance of sparse
reconstruction algorithms.
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