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Highly Sensitive Triple-Band THz Metamaterial
Biosensor for Cancer Cell Detection
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Abstract—Highly sensitive triple-band metamaterial-based
biosensor for different cancer cells detection is suggested and nu-
merically analyzed. The reported sensor has a polyimide dielectric
layer which is sandwiched between gold bottom plane and top
metallic patches. The analyte sample covers the metallic patch
where multiple resonances occur with high absorption. The res-
onance frequencies depend on the optical properties of the analyte
sample. Therefore, the proposed sensor can distinguish between
different cancer cell types such as skin cancer, blood cancer, and
Breast cancer. Full vectorial finite element method is used to study
the effects of the geometrical parameters with the aim to maximize
the sensor sensitivity. The suggested sensor has high sensitivity
of 2050 GHz/RIU (which is much higher than those suggested in
the literature) with high quality factor of 55.34 in the frequency
range from 4.25 THz to 4.75 THz. Further, the proposed biosensor
is a label-free, and easy for fabrication using the state-of-the-art
fabrication technologies.

Index Terms—Terahertz sensor, triple-band, cancer cell
biosensor, metamaterial biosensor, plasmonics.
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I. INTRODUCTION

M ETAMATERIAL based biosensor in THz spectrum
meets the increasing request on detection and distin-

guishing different cancer cells in the human biological tissues.
Metamaterials are engineered materials consisting of periodi-
cally arranged unit cells that are sub-wavelength dimensions.
This unit cell consists of a layer of dielectric material sand-
wiched between the metallic ground and upper metallic patches.
Metamaterials are designed to obtain unique electromagnetic
properties such as perfect absorbers [1], [2], [3], solar cells
[4], [5], polarization control [6], [7], and sensors [8], [9]. Tiny
changes in the surroundings of the metamaterial sensor cause a
variation in the electromagnetic response like optical absorption
and resonance frequency. This is due to the confinement of the
electric and magnetic fields on the surface of the metamaterial
resonator [10]. Therefore, metamaterial sensor can be used effi-
ciently for sensing applications such as refractive index sensor
[8], cancer cell sensor [9], and chemical sensor [11].

According to the International Agency for research on cancer
(IARC) statistical reports, globally the second most common
cause of mortality is cancer where 36 types of cancer exist in
185 countries [12], [13]. There are numerous methods for iden-
tifying cancer cells in biological tissues and organs. The electro-
chemical method has a shortage of specificity in the cancer cells
and paucity in the detection of intracellular protein markers [14].
Further, histopathological, or immunological methods mostly
include sophisticated operation procedures, expensive, signifi-
cant false positive results, and experienced personnel is highly
needed [14]. In addition, other detection techniques such as
fluorescence imaging, and cytometry need high costs, and long
operation time [15]. However, surface plasmon resonance-based
metamaterial sensors have more advantages such as high preci-
sion, label-free detection, real-time measurement, and minimal
sample is needed. Azab et al. [16] have presented an overview of
optical biosensors for early cancer detection including metama-
terial sensors. In this context, an octagonal metamaterial ring has
been presented for cancer cell detection [9] with a high sensitiv-
ity of 1649.8 GHz/RIU, and a reasonable quality factor of 11.33
at 3.15 THz. Manikandan et al. [11] have suggested dual-band
metamaterial cancer cell sensor with a maximum sensitivity of
196.5 GHz/RIU, quality factor (Q) of 165, and figure of merit
(FOM) of 19.65 RIU−1. Further, Geng et al. [17] have presented a
micro-ring metamaterial resonator integrated with microfluidics
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for liver cancer biomarkers detection with a maximum frequency
shift of 14 GHz at 0.025 μg/ml. Banerjee et al. [18] have pro-
posed two circular ring resonators metamaterial as a biosensor
for cancerous cells with high sensitivity of 1500 GHz/RIU, and
a FOM of 25 RIU−1. Vafapour et al. [19] have reported a water
based biological sensor for colon cancer detection. Additionally,
a graphene-based metamaterial sensor has been implemented
for different types of cancer cells with a sensitivity of 207
GHz/RIU, a quality factor of 13, and FOM of 3.86 RIU−1 [20].
Further, a hyperbolic metamaterial sensor has been suggested for
cancer cell detection with a maximum sensitivity of 500 nm/RIU
(≈6×106 GHz/RIU), and FOM of 85 RIU−1 [21]. Further, a tun-
able metamaterial sensor based on graphene has been presented
for cancer cell detection with a sensitivity of 1100 GHz/RIU, a
quality factor of 25.8, and FOM of 12.5 RIU−1 [22]. Askari et al.
[23] have suggested a THz metamaterial refractive index sensor
with a sensitivity of 7000 nm/RIU (≈4.28×104 GHz/RIU) and
a high-quality factor of 3052.75. Moreover, Askari et al. [24]
have presented a highly sensitive metamaterial sensor with a
sensitivity of 4077.2 nm/RIU (≈7.35×104 GHz/RIU) in the
frequency range of 150-500 THz. Bhati and Malik [25] have
proposed a metamaterial sensor for cancer cell detection with a
sensitivity of 1462 GHz/RIU. Ma et al. [26] have also suggested
a highly sensitive refractive index metamaterial sensor with
a sensitivity of 2372 GHz/RIU. Further, Upender and Kumar
[27] have proposed a graphene metamaterial biosensor with a
sensitivity of 2200 GHz/RIU. Anwar et al. [28] have presented
a refractive index metamaterial sensor with a sensitivity of 1200
GHz/RIU.

The metamaterial sensors can be fabricated with conventional
photolithography [5], basic chemical etching [29], and ultra-
short laser machining technique [15]. Moreover, the spin coating
technique followed by femtosecond laser writing can be utilized
for metamaterial fabrication [30], and surface micromachining
process [31]. Furthermore, the metallic patches can be thermally
deposited on the dielectric layer using chemical vapor deposition
(CVD) technique [29].

In this work, a highly sensitive triple-band metamaterial
biosensor for different cancer cell detection is designed and
analyzed numerically using the finite element method [32] via
COMSOL Multiphysics simulation software package [33]. The
proposed biosensor consists of a polyimide dielectric layer sand-
wiched between the bottom gold layer and the upper gold patch
on the dielectric top surface. The gold patches are in the form
of four small crosses located at the corner of a large metallic
cross. Therefore, triple absorption bands are obtained due to the
multiple resonators with different shapes and size [34]. Further,
our proposed sensor is different from that reported in [9], [11] in
design geometry and performance. The suggested design has a
larger sensitivity than 1649.8 GHz/RIU presented by Azab et al.,
[9] that is based on octagonal two concentric rings.

In this study, sensor sensitivity, (S), quality factor, (Q), and
figure of merit, (FOM) are calculated to show the performance
of the suggested design. The geometrical dimensions are opti-
mized to maximize the sensor’s performance parameters. The
suggested sensor has high sensitivity, S, of 2050 GHz/RIU,
high-quality factor, Q, of 55.34, high FOM of 25.24 RIU−1, and

Fig. 1. (a) 3D view and (b) top view of the unit cell of the suggested sensor.
The inset shows the periodic patch array of the proposed design.

absorption coefficient of 0.94132 in the range from 4.25 THz
to 4.75 THz with simple and free-label design. The proposed
sensor has higher sensitivity, quality factor, and FOM than those
reported in [9], [20], [22], [31], [53], [62], [63], [64], [65], [18],
and [68].

II. DESIGN CONSIDERATIONS AND SENSOR PERFORMANCE

PARAMETERS

The schematic diagram of the suggested metamaterial sensor
is shown in Fig. 1. The unit cell has a dimension of 50 μm ×
50 μm and consists of three layers as shown in Fig. 1(a). The
polyimide dielectric layer with a complex dielectric constant of
2.88-0.09i [9], and thickness, h = 4 μm is sandwiched between
the gold ground plane and top patches.

It is worth noting that the gold conductivity is nearly constant
in the THz range from 0.1 THz to 4.20 THz as reported by
Squires et al. [35], Choi et al. [36], and Takano et al. [37].
Therefore, the gold conductivity is taken as a constant value
of 4.09×107 S/m in the frequency range 3.85 THz–4.1 THz as
reported in [8], [9], [38], [39], [40], [41].The bottom layer has
a thickness of t = 200 nm which is larger than the gold skin
depth in the THz spectrum. Therefore, zero transmission will
be obtained through the ground plane [9]. In addition, the gold
patches on the top surface of the dielectric are in the form of
four small crosses with a length of 7 μm, and a width of 1 μm.
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TABLE I
PERFORMANCE OF THE OPTIMIZED METAMATERIAL SENSOR WITH DIFFERENT

CANCER CELL TYPES [9]

These four crosses are located at the corner of a large central
cross of length d = 25 μm, and width of g = 6 μm as shown in
Fig. 1(b). Moreover, the four rectangular gold metal side-stripes
have a length of L = 35 μm, and width w = 6 μm. The periodic
array of the proposed sensor consists of 4 × 4-unit cells with
a lattice constant of P as shown in Fig. 1(b). The blood sample
will cover the top surface of the metallic patches with thickness
v = 8 μm. Further, the incident electromagnetic beam has TE
polarized mode with normal incidence. However, the excitation
port position is on the top surface of the sensor, i.e., b= 0. Firstly,
the proposed sensor has been studied for skin cells with normal
and basal cancer states while the refractive indices for different
cell types are presented in Table I. The geometrical parameters
are initially chosen for the ease of fabrication inspired from the
fabricated metamaterial sensors presented in [42].

The absorption coefficient and Ez component of the electric
field distribution are studied to better understand the physical
interpretation of the proposed design is made by using the finite
element method via COMSOL Multiphysics software package
[32]. The 3D computational unit cell is discretized with a min-
imum element size of 7.2 nm into 427299 tetrahedral domain
elements, 51706 boundary elements, and 1864 edge elements
using non-uniform mesh. Furthermore, perfect electric and mag-
netic conductor boundary conditions are added at the opposite
boundaries. In addition, impedance boundary, and transition
boundary conditions have been used on the ground plane, and top
metal patches, respectively. Further, the absorption coefficient
proposed design is obtained using [9]:

A = 1− (R+ T ) (1)

Fig. 2. Comparison between the measured and calculated wavelength-
dependent absorptions of the metamaterial absorber reported in [43] and our
calculations. The inset figure shows a schematic diagram of the fabricated design
[43].

where R (= S2
11) is the reflection coefficient, and T (= S2

21 ) is
the absorption coefficient. The transmission coefficient is zero
through the analysis because of the existence of the ground gold
layer.

The sensor performance is calculated in terms of the sensitiv-
ity that is given by [10]:

S =
Δf

Δn
(2)

where Δf is the shift in the resonance frequency, and Δn is the
change in the analyte refractive index. Additionally, the quality
factor of the reported sensor is calculated [10]:

Q =
f

FWHM
(3)

where f is the resonance frequency, and FWHM is the full width
at half maximum bandwidth of the absorption peak. The last
factor is the figure of merit that is taken as [10]:

FOM =
S

FWHM
(4)

In order to prove the accuracy of our results, a comparative
study is made with the simulated and experimentally measured
absorption spectrum of the metamaterial absorber presented in
[43]. It may be seen from this figure that a good matching
between our calculations and those reported in [43] which
ensures the high accuracy of our model. The simulated resonance
frequency in [43] is 7.093 μm which coincides with our calcula-
tion. Therefore, our model’s sensitivity calculation is expected to
exhibit high accuracy. It may be also seen from Fig. 2 that there
is some deviation between the simulated and fabricated results.
This may be due to the assumption of the infinite array in the
simulation results using periodic boundary conditions. Further,
the fabricated L-shaped resonator has imperfect edges as shown
in the inset of Fig. 2.

The fabrication of the proposed sensor can be made using
state-of-the-art technology. First, the background gold layer with
a thickness of up to 200 nm can be deposited onto a GaAs or
silicon wafer through e-beam evaporation [44]. Next, the liquid
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Fig. 3. Absorption spectrum for different absorber designs where the analyte
sample has n = 1.36.

polyimide will be deposited onto the top surface of the gold
layer by spin-coating. Then, it will be heated to 110 °C for 6
minutes on a hot plate as suggested in [25], [45]. It should be
next cured for five hours in an oven at 275 °C in a nitrogen
environment to form the dielectric layer with thickness ranges
from 0.5μm to 8.5μm [25], [45]. Another gold layer is deposited
on the top surface of the polyimide layer via e-beam evaporation.
Further, the photoresist layer is deposited on the top dielectric
layer with spin coating and the patterns will be transferred from
a photomask to the photoresist via UV exposure and developed
within AZ300 MIF. The photolithography may be also used
to obtain the metallic patches. In addition, excess gold will
be removed by ion beam etching, and the photoresist will be
cleaned with acetone. The analyte sample covers the top surface
of the sensor using a micropipette. Finally, the time domain THz
spectrometer in the range from 0.1 THz–6 THz with a reflection
setup can be used to characterize the proposed sensor [38], [46],
[47]. Therefore, it is believed that our reported structure can be
fabricated successfully.

Fig. 3 shows the absorption spectrum for design 1 with rectan-
gular metallic stripes, design 2 with rectangular metallic stripes
with large central cross, and design 3 with additional small
crosses. The absorption spectrum is obtained for normal basal
cells with n= 1.36 on the surface of the sensor [9]. It may be seen
that for design 1, two resonance peaks are obtained at f = 2.30
THz and 4.101 THz with the absorption coefficient of 0.8504
this resonance frequency is due to the electric dipole between the
vertical and horizontal outer rectangular strips with the ground
gold layer, respectively as shown in Fig. 3. In addition, for design
2, a third resonance peak is achieved at f = 3.45 THz owing to
the electric dipole between the cross shape and the background
layer as shown in Fig. 3. Further, the absorption coefficient of the
third band is enhanced from 0.8504 to 0.9987 from design 1 to
design 2. It is also evident that design 2, and design 3 achieve high
absorption coefficient for the third resonance peak. However,
design 3 has a better FOM and Q factor with enhancement factors
of ≈11.43% (from 16.09 for Design 2 to 17.93 for Design 3),
and ≈8.6% (from 32.85 for Design 2 to 35.70 for Design 3) for
the FOM and quality factor, respectively. Further, Design 3 has
a higher absorption coefficient and as a result, a higher quality

Fig. 4. Electric field distributions in the xy plane of the unit cell at (a) first
resonance frequency f = 2.30 THz, (b) the third resonance frequency f =
4.101 THz, and (c), (d) the second resonance frequency of f = 3.45 THz for
normal basal cell with n = 1.36.

factor than Design 2 because Design 3 achieves better impedance
matching with free space than Design 2. The high-quality factor
and FOM are highly needed for accurate sensor’s performance.
Therefore, design 3 is considered for the proposed sensor [9].

Fig. 4 shows the electric field distributions in the x-y plane,
at the three resonance frequencies of 2.30, 3.45, and 4.101
THz, respectively. As shown in Fig. 4(a), the electric field is
concentrated on the outer vertical rectangular strips and their
edges, indicating strong electrical resonance. Therefore, the first
absorption peak at f = 2.30 THz is excited by the outer vertical
rectangular stripe resonator. In addition, Fig. 4(b) shows that at
the third resonance frequency, at f = 4.101 THz, the electric
field is mainly focused on the outer horizontal rectangular strips
and their edges, indicating strong electrical resonances. How-
ever, at the resonance frequency f = 3.45 THz, the electric field
is distributed primarily on the inner cross-shaped resonators and
their edges, as shown in Fig. 4(c) and (d), [48].

III. SENSITIVITY ANALYSIS FOR CANCER EARLY DETECTION

The proposed design has triple-absorption bands as shown in
Fig. 5(a) for normal basal cell (n = 1.36) and basal cancerous
cell (n = 1.38). The first band with resonance frequency at f
= 2.30 THz for normal cells, and 2.29 THz for basal cancer
cells with sensitivity of 500 GHz/RIU and maximum absorption
coefficient of 0.85223. The second resonance occurs at f =
3.45 THz for normal cells and 3.43 THz for basal cancer cell
with sensitivity of 1000 GHz/RIU and absorption coefficient of
0.9839. The third band resonates at f = 4.101 THz and 4.061
THz for both normal and basal cancer cells, respectively with a
sensitivity of 2000 GHz/RIU. Therefore, the third band is more
sensitive to the variation in the refractive index of the analyte
samples and is chosen for the consequent studies.

The reported sensor has a high sensitivity of 2000 GHz/RIU,
a high-quality factor of 35.70, FOM of 17.93 RIU−1 using
the initial geometrical parameters. According to the impedance
matching theory, the impedance of the perfect absorption design
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Fig. 5. (a) Triple THz bands for the proposed sensor at initial geometrical
values for normal and basal cancerous cells, (b) the real part and imaginary part
of the relative impedance for the triple resonance peaks for normal basal cell
with n = 1.36.

should be matched with the free space impedance as much as
possible in order to reduce the reflection from the surface of the
proposed design [39]. The relative impedance of the proposed
sensor is given by [49]:

Z = ±
√

(1 + S11 (ω))
2 − S2

21 (ω)

(1− S11 (ω))
2 − S2

21 (ω)
(5)

Fig. 5(b) shows the real and imaginary parts of the relative
impedance for the triple band of the proposed design using a
normal cell. It may be seen that at the resonance frequencies,
the real part and imaginary part of the relative impedance are
very close to 1, and zero, respectively. The relative impedance
is 0.463–0.296i for the first resonance peak, 0.583–0.121i for
the second resonance peak, and 0.798+0.00618i for the third
resonance peak which confirms the high absorption coefficients
of the resonance frequencies with low reflection.

The shift in the resonance peaks for normal and cancerous
cells shown in Fig. 5(a) may be interpreted using equivalent

circuit theory as given by [10]:

f =
1

2π
√
LeqCeq

(6)

where f is the resonance frequency, Leq, and Ceq are the equiv-
alent inductance and capacitance of the sensor. The refractive
index of the analyte increases from 1.36 to 1.38 for normal
and basal cancer cells. Therefore, the equivalent capacitance
of the analyte increases. Additionally, the resonance frequency
is inversely proportional to the square root of the analyte capac-
itance. Hence, the resonance frequency is red-shifted with the
increase of the analyte refractive index [10]. Also, the first-order
electromagnetic perturbation theory can be used to interpret the
red shift of the resonance frequency as the refractive index of the
analyte increases [50]. The electric field as shown in Fig. 4(d) is
well confined around the edges of the metallic crosses with an
ultrahigh absorption coefficient of 0.9987. The field distribution
points out the aggregation of opposite charges near the edges of
the crosses for the excited surface plasmon polariton resonance
(SPR) mode which is the main source of light absorption [51].
In addition, the negative charges are concentrated at the top hor-
izontal rectangular metal side stripe while the positive charges
are concentrated at the bottom horizontal strip which acts as an
electric dipole that also attributes in the absorption [38], [52].
Therefore, the total absorption is based on the coupling between
electric dipole and surface plasmon resonance [52].

In order to enhance the sensor performance, parametric sweep
studies are made on the different geometrical parameters in-
cluding, rectangular side-stripes, large central cross, lattice con-
stant of the periodic array, thickness of the dielectric layer,
and thickness of the analyte layer. First, the effect of the
width of the four rectangular side stripes on the absorption
performance, sensitivity, and quality factor is shown in Fig. 6.
However, the other geometrical parameters are kept constant
at their initial values. Fig. 6(a) shows that at w = 1.0 μm, the
obtained sensitivity is equal to 2300 GHz/RIU. Further, it is
revealed from Fig. 6(a) that the resonance frequency decreases
as the rectangular side-stripe width increases. This is because
of the increase in the equivalent inductance and capacitance of
the proposed sensor as the stripe width increases. Accordingly,
the resonance frequency decreases [29], [51]. In Fig. 6(b), it
is revealed that the quality factor decreases as the stripe width
increases. This is due to the decrease of the radiation losses
(absorption increases from 0.89349 at w = 1 μm to 0.99992
at w = 6 μm) [51]. Fig. 6(b) also clarifies that the obtained
sensitivity is 2300 GHz/RIU at w = 1 μm. then, it is increased
to 2350 GHz/RIU at w = 3 μm. As the rectangular stripe width
is further increased from 3 μm to 6 μm, the sensitivity decreases
from 2350 GHz/RIU to 2000 GHz/RIU. Therefore, the optimum
sensitivity has a value of 2350 GHz/RIU with a high-quality
factor of 54.59, and FOM of 31.12 RIU−1 at the optimum stripe
width, w = 3 μm with a maximum absorption of 0.9663 for the
consequent analysis.

Next, the impact of the stripe length, L, is studied, while the
stripe width w is kept constant at 3μm, and the other geometrical
dimensions are taken as their initial values. Fig. 7 reveals that at
L = 25 μm, the frequency resonance is obtained at 4.157 THz,
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Fig. 6. (a) Absorption spectrum versus the frequency at different stripe widths,
w, and (b) variation of the sensitivity and the quality factor, Q with the stripe
width, w.

and 4.109 THz for normal, and cancer Basal cells, respectively.
Accordingly, the resultant frequency shift is 48 GHz with a cor-
responding sensitivity of 2400 GHz/RIU. When a stripe length
of 30 μm is used, the resonance frequencies are shifted to 4.15
THz and 4.103 THz with a frequency shift of 47 GHz for normal
and basal cancer cells, respectively. As a result, the sensitivity is
decreased to 2350 GHz/RIU as shown in Fig. 7. Further, when
the stripe length is L = 35 μm, the resonance frequencies are
4.145 THz, and 4.099 THz for normal and basal cancer cells,
respectively with frequency shift of 46 GHz. Accordingly, the
sensitivity is equal to 2300 GHz/RIU. Therefore, an optimum
stripe length of L=25μm with a sensitivity of 2400 GHz, quality
factor of 82.82, and FOM of 30.67 RIU−1 is chosen for the next
study. It may also be seen that the resonance frequency shifts
to lower values as the length of the rectangular stripe increases.
As the stripe length increases, the gap between them decreases.

Fig. 7. Absorption spectrum versus frequency at different stripe lengths, L for
normal and basal cancer cell.

Accordingly, the equivalent capacitance increases, and hence,
the resonance frequency decreases. In addition, the absorption
coefficient decreases as the stripe length increases. It is due to the
relative impedance mismatching with the free space which in-
creases with increasing the stripe length L. Hence, the reflection
intensity increases with a reduced absorption coefficient [53]
as shown in Fig. 8. Moreover, the decrease in the absorption
coefficient can also be explained by the Ez component of the
electric field distribution. Fig. 9 shows the z-component of the
electric field distribution for the proposed sensor at different
values of the stripe length. It is revealed that the electric field
confinement decreases as the rectangular stripe length increases,
and hence, the absorption coefficient decreases with increasing
the stripe length. Therefore, L = 25 μm will be chosen for the
next simulations.

In the next study, the impact of the length d of the central cross
on the absorption spectrum and sensor sensitivity is obtained and
shown in Fig. 10. The central cross length varies at d = 25, 30,
and 35μm, with optimum w= 3μm, L= 25μm, while the other
dimensions are kept constant at their initial values. It may be seen
from Fig. 10 that the resonance frequency shifts to lower values
as the central cross length increases. As d increases, the gap
between the cross and strips decreases. Accordingly, the equiv-
alent capacitance increases, and hence, the resonance frequency
is shifted to lower values. At = 25 μm, the frequency resonance
is obtained at 4.157 THz, and 4.109 THz for normal, and cancer
Basal cells, respectively. Accordingly, the frequency shift is 48
GHz with a corresponding sensitivity of 2400 GHz/RIU. When a
stripe length of 30μm is used, the resonance frequency is shifted
to 4.145 THz and 4.098 THz for normal and basal cancer cells,
respectively with a corresponding frequency shift of 47 GHz.
Accordingly, the sensitivity is decreased to 2350 GHz/RIU.
Further, when the stripe length is d = 35 μm, the resonance
frequencies are 4.138 THz, and 4.092 THz for normal and basal
cancer cells, respectively with a frequency shift of 46 GHz with
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Fig. 8. Real part and imaginary part of the relative impedance for (a) L = 25
µ, (b) L = 30 µm, and (c) L = 35 µm.

a sensitivity of 2300 GHz/RIU. Therefore, the optimum stripe
length of d = 25 μm with a sensitivity of 2400 GHz, quality
factor of 82.82, FOM of 30.67 RIU−1, and maximum absorption
coefficient of 0.999 is chosen for the next study.

The effect of the central cross width, g is obtained at values
of 8, 9, and 10 μm as shown in Fig. 11. It is revealed that at g
= 8 μm, the resonance frequencies are 4.161, and 4.113 THz

Fig. 9. Ez electric field distribution for (a) L = 25 µ, (b) L = 30 µm, and (c)
L = 35 µm for normal cell of basal with n = 1.36.

Fig. 10. Frequency dependent absorption spectrum at different values of
central cross length, d for normal cell of basal and cancerous cells.

for normal and basal cancer cells, respectively. As a result, the
frequency shift is 48 GHz with a corresponding sensitivity of
2400 GHz/RIU. When the central cross width is increased to 9
μm, the resonance frequencies are 4.163 THz for normal basal
cells and 4.114 THz for cancer cells with a frequency shift of 49
GHz. Therefore, a high sensitivity of 2450 GHz/RIU is obtained.
As the central cross width is further increased to 10 μm, the
obtained sensitivity decreases to 2400 GHz/RIU as illustrated
in Fig. 11. As a result, the central cross width of g = 9 μm with
sensitivity of 2450 GHz/RIU, quality factor of 46.58, FOM of
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Fig. 11. Frequency dependent absorption spectrum at different central cross
widths, g for normal cell of basal and cancerous cells.

Fig. 12. Absorption spectrum versus frequency of the reported design at
different periods between neighboring unit cells, P for normal and basal cancer
cells.

27.62 RIU−1, and maximum absorption coefficient of 0.98837
is chosen as an optimum value for the consequent study.

Next, the impact of the period, P, on the absorption spectrum,
and sensor sensitivity is obtained from 51μm to 52μm as shown
in Fig. 12. In this study, the width of the rectangular side stripes
is w = 3 μm, with length of L = 25 μm, central cross length
of d = 25 μm, and width of g = 9 μm. However, the other
geometrical dimensions are kept constant at their initial values.
From Fig. 12, it is revealed that as the period decreases, the
multi-mode resonant coupling effect between the neighboring
unit cells increases. This will increase the absorption peaks
with reduced FWHM [54] as shown in Fig. 12. According
to the LC circuit model, when the unit cell period increases,
the gap size between neighboring unit cells will decrease. As

Fig. 13. Absorption spectrum versus frequency of the reported design at
different dielectric layer thickness, h for normal and basal cancer cells.

a result, the capacitance between neighboring unit cells will
increase. Therefore, the resonance frequency will shift to a lower
value [51], [55]. Further, it is revealed that at P = 51 μm, the
resonance frequencies are 4.089, and 4.040 THz for normal
and basal cancer cells, respectively. Accordingly, the obtained
frequency shift is 49 GHz which corresponds to a sensitivity of
2450 GHz/RIU. When the period is increased to 51.5 μm, the
resonance frequencies are 4.052 THz for normal basal cells and
4.004 THz for cancer cells with a frequency shift of 48 GHz.
Therefore, the obtained sensitivity is 2400 GHz/RIU. When the
period is greatly increased to 52 μm, the sensitivity decreases
to 2350 GHz/RIU as illustrated in Fig. 12. As a result, P = 51
μm with a sensitivity of 2450 GHz/RIU, quality factor of 41.35,
FOM of 24.88 RIU−1, and maximum absorption coefficient of
0.97436 is chosen as an optimum value for the next study.

The impact of the dielectric layer thickness, h, is next studied
as shown in Fig. 13. It is revealed that at h= 3μm, the resonance
frequencies are 4.14, and 4.089 THz for normal and basal cancer
cells, respectively. As a result, the frequency shift is 51 GHz
which corresponds to a sensitivity of 2550 GHz/RIU. As h is
increased to 4 μm, the resonance frequencies are equal to 4.089
THz for normal basal cells and 4.040 THz for cancer cells with
a frequency shift of 49 GHz. Therefore, the obtained sensitivity
is 2450 GHz/RIU. When the dielectric thickness is greatly
increased to 5 μm, the corresponding sensitivity decreases to
2250 GHz/RIU as illustrated in Fig. 13. As a result, the dielectric
thickness of h= 3μm with sensitivity of 2550 GHz/RIU, quality
factor of 62.02, FOM of 38.44 RIU−1, and maximum absorption
coefficient of 0.99981 is chosen as an optimum value for the
consequent study. As the dielectric layer thickness, h increases
from 3 to 5 μm, the resonant frequency and the absorption
coefficient are changed. It is revealed that the absorption peak
frequency is shifted to lower values as h increases. As the
dielectric layer thickness h increases the equivalent inductance
of the polyimide layer should be increased which decreases the
equivalent capacitance between the two metallic plates. Whereas
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Fig. 14. Variation of the sensor sensitivity with the analyte layer thickness, v.

the decrease in the equivalent capacitance is somewhat less than
the increase in the inductance, as a result, a decrease in the
resonant frequency is obtained [29]. Further according to the
transmission phase relation reported in [56]:

α =
4h

√
εr − sin2θ

λ
(7)

where εr and λ are the dielectric constant and wavelength,
respectively. The ratio h/λ remains fixed with constant values of
εr, α, and θ. As a result, the relationship between the resonating
frequency and the substrate thickness is inversely proportional.
The position of the excitation port is also tested. It is found
that the sensitivity has very good stability when the excitation
source is located at 3.0 μm from the top surface of the proposed
sensor. As a result, the corresponding sensitivity drops from
2550 GHz/RIU to 1950 GHz/RIU.

It should be noted that the polyimide dielectric thickness
is suitable for the fabrication feasibility as reported in [10].
Further, Manikandan et al. [11] have reported that the polyimide
thickness of 2 μm can be fabricated easily. According to Anwar
et al. [40] the dielectric thickness of around 5 μm is suitable for
fabrication purposes. In addition, Dai et al. [57] have reported
a polyimide layer thickness of 3 μm. Huang et al. [41] have
reported polyimide thickness ranges from 4 μm to 8 μm in
the THz region. Moreover, based on the experimental steps for
the fabrication of the proposed sensor, the polyimide can be
fabricated with any thickness by using liquid polyimide spin
coated and then cured in an oven for solidification as mentioned
[25], [45].

Finally, the analyte thickness, v, is then studied where it varies
from 4.0 μm to 11.0 μm as shown in Fig. 14. It may be seen
that the sensitivity changes with increasing the analyte thickness
when v < 9 μm and steadily achieves saturation when v > 9 μm.
This is because the surface current on the sensor surface will be
excited to oscillate by the incident wave. This is confirmed by
the electric field distribution as shown in Fig. 15 with a normal

Fig. 15. Ez electric field distribution through the suggested design using
analyte layer of the normal cell of basal with the thickness of (a) v = 8.5 µm,
(b) v = 9 µm, and (c) v = 9.5 µm.

Fig. 16. Frequency-dependent absorption coefficients of the proposed design
using normal and cancerous cells of different types; (a) basal, (b) jurkat, (c)
HeLa, (d) PC-12, (e) breast, and (f) MCF-7.
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TABLE II
IMPACT OF THE GEOMETRICAL PARAMETER’S TOLERANCE ON THE

PERFORMANCE OF THE SUGGESTED SENSOR

Fig. 17. Resonance frequency variation with the analyte refractive index.

cell of basal with n = 1.36. The larger the analyte thickness,
the faster the attenuation of the oscillations [58]. As a result, the
analyte layer thickness v = 9 μm is chosen for the optimized
sensor. The reported sensor has a sensitivity of 2050 GHz/RIU,
a quality factor of 55.34, FOM of 25.24 RIU−1 with a maximum
absorption coefficient of 0.94132.

Table I lists the performance parameters of the suggested
sensor for different types of normal and cancer cells where the
absorption spectrum of each case is shown in Fig. 16. It is evident
that the suggested THz metamaterial absorber can be used as
a highly sensitive sensor for the detection of various types of
cancer cells.

The fabrication tolerance study is also performed and pre-
sented in Table II. In this study, only one parameter is studied
at a time while the others are kept constants. It is evident from
this table that the proposed sensor has high reliability against
fabrication faults with a tolerance of ±10% for the different

TABLE III
PERFORMANCE COMPARISON WITH THE MOST RECENT DESIGNS IN THE

LITERATURE, NR: REFERS TO NOT REPORTED

geometrical parameters where a minimum sensitivity of 1950
GHz/RIU is achieved.

The linearity of the proposed metamaterial biosensor is stud-
ied with analyte refractive indices variation from n = 1.36
to 1.401 RIU. Fig. 17 shows the variation of the resonance
frequency with the analyte refractive index using optimized
geometrical dimensions. It is revealed that the suggested design
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has a high linearity during the studied refractive index range with
an R of 0.99984. The equation of the linear fitting is expressed
as:

f [THz] = −2.00467 [THz]× n+ 7.23887 (8)

where n is the refractive index of the analyte and fres is the
corresponding resonance frequency. Accordingly, the proposed
sensor can be used to detect various cancer cells early with an
average sensitivity of 2004 GHz/ RIU.

It is worth noting that the cancer cells are nondispersive
materials where the refractive index is nearly constant in the
1–6 THz region as reported in [59], [60], [61]. Therefore, the
refractive indices of the cancerous cells are taken as shown in
Table III in the frequency range of 3.85 THz–4.1 THz as reported
in [9], [20], [22], [64], [18], [68], [69]. A comparison between
the performance of the reported biosensor and the recently
suggested THz metamaterial sensors is shown in Table III. It
is revealed that the suggested sensor achieves larger sensitivity
than those reported in the literature. In addition, the reported
sensor has the highest quality factor, but the quality factor is
lower than that presented in [11], [64], [66], [69]. In [11], the
authors have suggested a high-quality factor sensor but with
very low sensitivity and figure of merit. Also, the authors in
[66] have presented a refractive index sensor with high-quality
factor and FOM but with low sensitivity compared to our design.
Further, the proposed sensor achieves a higher FOM than that
suggested in the literature. But it is lower than that reported in
[66], [67], and comparable with that proposed in [18]. Thus,
our proposed work provides a high-performance design with
high sensitivity, high-quality factor, and a FOM with a simple
design. Furthermore, the proposed metamaterial-based biosen-
sor sensitivity is also larger than that of the recently developed
PCF biosensors for cancer cell detection. PCF-based biosensors
have some drawbacks like coupling losses, and mode conversion
because they rely on excitation of the fundamental mode, and
the high cost of fabrication with complex design [9].

IV. CONCLUSION

In this work, a highly sensitive metamaterial-based biosensor
for various types of cancer cell detection is studied and numeri-
cally analyzed. The suggested design is based on a large central
gold cross with four small crosses in the corner, surrounded
by four gold rectangular side strips which achieves a high
absorption coefficient value > 0.94 with a high-quality factor
of 55.34. Moreover, the implementation of the proposed design
in cancer cell detection results in a very high sensitivity of 2050
GHz/RIU with a FOM of 25.24 RIU−1 for basal type. Further,
an average sensitivity of 2000 GHz/RIU has been obtained for
other types of cancer which is higher than that reported in the
recent literature [9], [11], [20], [22], [31], [53], [62], [63], [64],
[65], [66], [18], [67], [68], [69].

Further, the performance of the proposed design has high
reliability with a fabrication tolerance of ±10% for the differ-
ent geometrical parameters where high sensitivity is achieved.
Furthermore, the fabrication of the proposed sensor can be rec-
ognized with state-of-the-art technologies that have been used in
fabricating devices with similar designs. Therefore, the proposed

biosensor is efficient in early detection of different cancer cells
with a simple design and label-free technique.
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