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Abstract—Recent research in silicon photonic chips has made
huge progress in optical computing owing to their high speed,
small footprint, and low energy consumption. Here, we employ
nanostructured 2 × 2 optical processors in an optical neural
network for implementing a binary classification task efficiently.
The proposed optical neural network is composed of five linear
layers including ten optical processors in each layer, and nonlinear
activation functions. 2 × 2 optical processors are designed based
on digitized meta-structures which have an extremely compact
footprint of 1.6 × 4 µm2. A brand-new end-to-end design strategy
based on Deep Q-Network is proposed to optimize the optical
neural network for classifying a generated ring data set with
better generalization, robustness, and operability. A high-efficient
transfer matrix multiplication method is applied to simplify the
calculation process in traditional optical software. Our numerical
results illustrate that the maximum and mean accuracy on the
testing data set can reach 90.5% and 87.8%, respectively. The
demonstrated optical processors with a significantly compact area,
and the efficient optimization method exhibit high potential for
large-scale integration of whole-passive optical neural network on
a photonic chip.

Index Terms—Digitized meta-structure, optical computing,
optical neural networks, reinforcement learning.

I. INTRODUCTION

THE linear optical processor in optical neural networks
(ONNs) has attracted tremendous research interest, due

to their low energy consumption and high calculation speed
[1]. High-dimensional linear optical processors configured to
implement matrix multiplication in ONNs can be realized by
cascading 2 × 2 basic building blocks [2]. Traditionally, re-
configurable Mach-Zehnder interferometer (MZI)-based linear
optical processors have been demonstrated to perform matri-
ces multiplications in neural networks [3]. However, this ar-
chitecture suffers phase noise and large footprint. An on-chip
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diffractive ONN was proposed with simple structure, and lower
power consumption [4], but this architecture suffers large foot-
print over 1000 μm. Another integrated ONN based on optical
scattering units (OSUs) was proposed [5]. Nevertheless, the
OSU composed of a 9 × 9 multimode interference (MMI)
coupler is optimized by the adjoint method with a high degree of
freedom, resulting in high designing difficulty and a complicated
fabrication process.

The digitized meta-structures have emerged as an ideal so-
lution for constituting ONNs due to their ultra-compact size
and controllable minimum feature size. The footprint of a
single digitized meta-structure can be reduced to a few mi-
crons, making it highly suitable for large-scale integration. A
range of functional components based on compact digitized
meta-structures has been designed [6], [7], [8], [9]. Digitized
meta-structures not only can be designed to implement a specific
function but have been proved to serve as an optical processor
to achieve the bar state, cross state, and unitary transmission
[10]. 2 × 2 silicon photonic components have been arranged in
waveguide circuit architecture to realize diverse computational
functionalities [11], demonstrating the potential in computing
and communications applications.

Digitized meta-structures could be designed by utilizing nu-
merous algorithms, such as genetic algorithm (GA), and direct
binary search (DBS) [12], [13]. However, these algorithms rely-
ing on hundreds of iterations of electromagnetic simulations to
obtain the optimal results are time-consuming. Especially when
multiple digitized meta-structures with different functions are
integrated to achieve large-scale matrix multiplications, these
methods become extremely laborious. Besides, a deep neural
network (DNN) can be applied to the design of nanophotonic
devices due to its capability to learn the complex relationship
between optical responses and device geometries. Nevertheless,
the training of neural networks tends to be accompanied by
issues such as taking a long time, demanding a large data set,
high training difficulty, and overfitting [10], [14].

Traditional device design methods are not always optimized
for system performance. As for the systematic training method of
ONNs to perform a specific task, Hughes et al. proposed in situ
back propagation and gradient measurement [15]. They used
this approach to numerically demonstrate the implementation
of a logical XOR gate. However, due to the discrete decision of
the optimization process caused by the meta-structures, it is not
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possible to optimize the devices through an explicit functional
relation. In traditional optimization schemes, the first step is to
obtain the transfer matrix corresponding to the device through
weight matrix decomposition [2], and in the second step, the
corresponding device can be optimized from the transfer ma-
trix [10]. However, the inverse optimization from the optical
response to the physical structure is hard to get the target solution
[14], [16], and the error accumulation is not linear. Therefore, the
overall error becomes uncontrollable for large-scale integrated
digitized meta-structures mesh. To overcome these challenges,
we merge this step with the training of ONNs by using an end-to-
end bi-level optimization algorithm based on Deep Q-Network
(DQN), so that the generated devices can be quickly selected
through simulation to determine if they are suitable for the neural
network.

Compact 2 × 2 digitized meta-structures are cascaded for
constructing a high-dimensional optical processor to perform
the linear operations in the neural network. In this training of
an ONN, the transfer matrices, including transmission coeffi-
cients of the meta-structures in each layer, are optimized so
that the light can propagate to the desired output ports finally.
Once this training assisted by a computer is accomplished, the
passive layers can be fabricated physically and combined with
activation functions together to form an optical network with low
power consumption. Besides, we employ a high-efficient matrix
multiplication method to simplify the calculation process in
traditional optical software INTERCONNECT from Lumerical,
Inc. [17]. In particular, we divide the designed algorithm into
two levels: the upper level generates meta-structure candidates,
while the lower level selects optimal meta-structures and deter-
mines their positions in the ONN corresponding to the order of
matrix multiplication. The numerical results illustrate that the
classification accuracy on the training data set is 90.0%. The
mean and standard deviation of test data set accuracy are 87.8%
and 0.0141, respectively. The maximum accuracy on the testing
data set is 90.5%. We believe our proposed ultra-compact optical
processors via digitized meta-structures, and the corresponding
optimization algorithm demonstrate a promising candidate for
future large-scale on-chip ONNs.

II. DEMONSTRATION OF THE PROPOSED ONN

A. Structure of 2 × 2 Optical Processors

As shown in Fig. 1(a), nanostructured 2× 2 optical processors
can process the optical signal from input ports to output ports as
the transfer matrix form

T =

[
a13 + jb13 a23 + jb23
a14 + jb14 a24 + jb24

]
, (1)

where aij , bij(i, j ∈ {1, 4}) are the real parts and imaginary
parts, respectively, representing transmission coefficients from
port i to port j. Assuming that the input signals are EI1 and EI2,
and the output signals are EO1 and EO2, the output signal can
be obtained by the interaction between the input signal and the

Fig. 1. (a) Schematic diagram of the proposed optical processor, (b) the
architecture of the nanostructured 2 × 2 optical processor.

transfer matrix as[
EO1

EO2

]
= T ·

[
EI1

EI2

]
=

[
a13 + jb13 a23 + jb23
a14 + jb14 a24 + jb24

]
·
[
EI1

EI2

]
.

(2)

The accurate transfer matrix is calculated by S-parameter
sweep in 3D Finite-Difference Time-Domain (FDTD) software
from Lumerical Solutions, Inc. As shown in Fig. 1(b), we
propose a compact optical processor on a standard silicon-
on-insulator (SOI) platform with a 220-nm-thick silicon and a
silica cladding layer for protection [10]. The proposed optical
processor is composed of two input ports, two output ports, and
a middle digitized meta-structure formed by a set of nanoholes
with a specific distribution. Each port consists of an s-bend
waveguide with a width of 400 nm. The gap between the two
waveguides at the input port is set to be 1.6 μm to avoid
light coupling. The middle region with a 1.6 × 4 μm2 area is
discretized into 16× 40 pixels of circular holes with a diameter
of 60 nm. The material property for each circular hole can be
either silicon or silica. These etched holes with a large refractive
index contrast diffract the input light on subwavelength scale.
The distance between the adjacent holes is chosen to be 100
nm. And the nanohole distribution can be determined by the
optimization algorithm for a specific application.

B. Architecture of the ONN

In most cases, an artificial neural network (ANN) maps
an input vector to an output vector via an alternate sequence
of linear operations and nonlinear functions. In our scheme,
Fig. 2(a) exhibits the framework of our proposed ONN, which
is composed of linear operations and nonlinear functions. The
ONN consists of an input layer, five hidden layers, and an output
layer. A single hidden layer implementing a 5× 5 weight matrix
is marked in blue. Specifically, there are five linear layers in
the ONN, including ten meta-structures in each linear layer.
We use the Clement structure to build linear units of the ONN
composed of meta-structures to realize the weight matrix due
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Fig. 2. (a) The framework of neural network. (b) A 5 × 5 optical processor
including ten meta-structures for implementing the weight matrix. (c) Optical
processors composed of meta-structures. (d) Nonlinear activation function.

to multiport interferometers based on the clement structure pos-
sessing several advantages in terms of better stability, shallower
depth, and more compact area [18]. The footprint of one layer is
40 × 7 μm2.

Randomly generated meta-structures are simulated by FDTD
to calculate their S-matrices which are imported into INTER-
CONNECT software for the construction of the linear layers
of the proposed ONN. Fig. 2(b) depicts a 5 × 5 processor
containing the meta-structures labeled (1) to (10) to construct the
linear transformation matrix [W]5 × 5. Fig. 2(c) exhibits the 2×2
optical processor composed of a meta-structure. The designed
structure implements a linear transformation between the input
matrix [I]1 × 5 and the output matrix [O]1 × 5 based on optical
wave interactions in physical devices [19]. The 5 × 5 optical
processor serving as the weight matrix can be calculated by the
product of the transfer matrices of its constituent 2 × 2 optical
processors as

[W ]5×5 =
[
T (n)

]
5×5
·
[
T (n−1)

]
5×5
·
[
T (n−2)

]
5×5

· · ·
[
T (2)

]
5×5
·
[
T (1)

]
5×5

, (3)

where n is the number of meta-structures in one linear layer.
Q-mode multiport (shown here for Q = 5) can be implemented
using a mesh of Q (Q – 1)/2 2× 2 optical processors [18]. Here,
n is determined to be 10.

Apart from the linear operation in ONNs, activation func-
tions improve the performance of ONNs significantly by en-
abling them to learn a more complicated mapping from input
to output. The f(z) function plays an important role in the
nonlinear activation of neurons. Researchers propose nonlinear
functions which can be realized by using nonlinear effects in
optics, such as saturation absorption of monolayer graphene,
the nonlinear realization of electro-optical hybrid elements, and
optical bistable and two-photon absorption characteristics [20],
[21], [22], [23]. Here, we introduce an electro-optical activation
function, which has been demonstrated experimentally using a
SiN waveguide technology [24], [25]. The nonlinear response
can be achieved by converting a fraction of the optical input into
the electrical signal, and then modulating the intensity of the

remaining portion in the original optical signal. The activation
function is defined as

f(z) = j
√
1− α · exp

(
−j
[
g|z|2
2

+
φ

2

])

· cos
(
g|z|2
2

+
φ

2

)
z, (4)

where z is the amplitude of the input signal. g is the phase gain
parameter, determined to be 0.4π [24]. α can control the portion
of the input converted to the electrical signal. Here,α is assumed
to be 0.1.φ is one of the key parameters in the activation function.
Here, the parameter φ is equal to π. In this case, the activation
function output amplitude as a function of input signal amplitude
exhibits the ReLU-like response, as shown in Fig. 2(d). In
addition, the striking advantage is that the activation function
can be programmed to produce different types of nonlinear
responses by tuning the electrical bias. A photoelectric hybrid
neural network is built by using Python script to assist INTER-
CONNECT simulation software. The linear matrix operation is
implemented in the optical domain by meta-structures, and the
nonlinear activation function is implemented in the electrical
domain.

III. END-TO-END OPTIMIZATION USING REINFORCEMENT

LEARNING

A. Algorithm Design

We explore the matrix multiplication method to substitute for
INTERCONNECT, which accelerates the optimization process
extremely. The feasibility of this replacement can be demon-
strated through the Pearson experiment analysis in Appendix A.
The proposed optimization algorithm is based on a bi-level
framework, as illustrated in Fig. 3(a). The proposed optimization
algorithm for the five-layer ONN is based on the meta-structures
which can implement a unitary weight matrix. The upper-level
diagram depicts the process of meta-structure generation, while
the lower-level diagram shows the steps involved in selecting and
positioning the meta-structures for the ONN. The upper level
provides meta-structure candidates pool to the lower level, and
the lower level provides performance feedback to the upper level
by calculating matrix multiplication. In addition, transfer matri-
ces of the meta-structures for matrix calculation are generated
in FDTD. The performance of the ONN for classification tends
to be poor initially before properly adjusting the distribution of
nanoholes in the meta-structures. These two levels work together
to achieve the final optimization task through continuous itera-
tion learning. More specifically, the input of the algorithm is N
meta-structures, and the output of the algorithm is the optimized
meta-structures and their positions in the linear layer of the
ONN. The positions of the meta-structures are crucial as they
correspond to the order of matrix multiplication, and different
positions result in different transfer matrices for each layer.

DQN uses a deep neural network to approximate state behav-
ior value function Q [26]. Q, denoted as Q (s, a) represents the
expectation of the reward that acting a in the state s can get. In
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Fig. 3. (a) The framework diagram of the proposed bi-level deep Q-network. (b) Illustration of the variational autoencoder.

addition, the environment will feedback corresponding reward
R according to the agent’s action, so the action with the greatest
reward can be determined based on the constantly updated Q
value. The reward can be calculated by

R = 100×
(

True predicted samples
Total samples

− 0.5

)
. (5)

Here, the encoded meta-structure serves as the agent, and the
state is defined as the value of an encoded meta-structure, which
represents the location of this sample in the low dimensional
space. The action is defined as the unidirectional movement
in the low dimensional space for the encoded sample, which
is specifically manifested as the increase or decrease in a di-
mension of the low dimensional vector. After adjustment, the
meta-structure is restored through the decoder. The reward is
defined as the best accuracy results of the meta-structures in
the lower-level matrix multiplication calculation. The matrix
calculation in the lower level serves as the environment of DQN.

Due to the complex structure of meta-structures, variational
autoencoder (VAE) is introduced for dimensionality reduction
of meta-structures to define the state of reinforcement learning,
and the framework of VAE as shown in Fig. 3(b). VAE uses an
encoder to transform the high dimensional input data into the

latent vector and a decoder to reconstruct the original input data
from the latent low dimensional vector. The high dimensional
data represented by meta-structures is mapped into a Gaussian
distribution over the latent space, described by a mean vector
and a standard deviation vector. The low-dimensional latent
vector can be sampled from the latent space for the decoder.
VAE is trained by two loss functions: one is the reconstruction
loss that forces the decoded sample to match the initial input. The
other is regularization loss, described by Kullback-Leibler (KL)
divergence, which helps to learn latent space with good structure
and diminish overfitting in training data [27]. It is worth noting
that VAE in our proposed algorithm needs to be trained using
a heap of randomly generated meta-structures with a normal
distribution in advance.

In the upper level, the value of the encoded latent vector
can be defined as the state of DQN. The sample is moved in
a specific direction by selecting operators using DQN. After
the operators’ work, the moved latent vector can be decoded
into the reconstructed meta-structures by the decoder. These
meta-structures constitute the candidate pool for the lower level.
The lower level, as the simulator of the upper level, employs an ε-
greedy algorithm based on the Q-table to select meta-structures
from the candidates’ pool and change their positions, which



ZHAO et al.: END-TO-END OPTIMIZATION FOR A COMPACT ONN 8800308

TABLE I
THE ALGORITHM HYPER-PARAMETERS

Fig. 4. Numerical demonstration of ONN to classify a ring.

means that randomly arranging new meta-structures for each
position when the probability is larger than ε, otherwise selecting
the meta-structures with the best performance at that location
previously. And Q-table is used to record the best performance of
each location for each meta-structure. With the increase in itera-
tions, the number of generated new meta-structures (N-M) in the
upper-level decreases, gradually screening the meta-structures
with better prediction results. When iteration I in the lower level
reaches 5000, the overall iteration will stop. The pseudocode for
our proposed reinforcement learning-based bi-level adaptively
optimization algorithm is shown in Appendix B algorithm 1.

B. Algorithm Parameters

The training of VAE involves two neural networks, the en-
coder and the decoder. Specifically, the encoder consists of an
input layer with 640 units, four fully connected hidden layers
with 1024, 128, 64, and 32 units, and an output layer with 4 units.
640 units in the input layer correspond to discretized 16 × 40
pixels of circular holes, while 4 units in the output layer represent
a specific coordinate in four-dimensional solution space. The
activation functions of every middle layer are ReLU functions,
while the final layer is followed by a Sigmoid activation function.
In addition, the decoder network has the exact opposite structure.
DQN contains an input layer with 4 units, three entirely hidden
connected layers with 48, 24 and 12 units in each layer, and an
output layer with 8 units, which means expected values for 8
different moving operators in 4 bidirectional dimensions. These
hidden layers are followed by the ReLU functions. The key
hyper-parameters in the algorithm are shown in Table I.

IV. VERIFICATION OF THE DESIGNED ONN

A. Training Demonstration

As shown in Fig. 4, the ONN involves five linear layers con-
structed by meta-structures, followed by the nonlinear activation
function except the last linear layer. The nonlinear function fN
is exhibited in (4). A final |z|2 function is applied at the end
to measure output power. The size of the network (number of
waveguides) is set to five. We generate four hundred samples
for training and testing. These samples can be represented by
mapping from input to output (X0→O). Here, X0 = [x1, x2,
P, 0, 0]T where x1 and x2 are input powers independently, set

TABLE II
CLASSIFICATION ACCURACIES ON DIFFERENT TESTING DATA SETS

to be real values for simplicity. While P is related to x1 and
x2, calculated by P =

√
p0 − x2

1 − x2
2. The function of P is

to normalize input data to have the same total power input by
injecting extra power into the third input port. Specifically, p0
is the total power injected with each data input. Here, p0 is
chosen to be 40. Each training sample has its corresponding
label, ypre, which is encoded into the output O, as [1,0,0,0,0]T

and [0,1,0,0,0]T for ypre = 0 and ypre = 1, respectively.
The following formula involving noise rate n and random vari-

able v is utilized to label each point in a generated data set. The
noise rate is set to be 0.05, added to disturb data distribution and
increase the robustness of the model. Variables v are randomly
generated following a standard normal distribution. We set label
y = 0 if

0.4 ≤
√

x1
2 + x2

2 + n× v ≤ 0.8. (6)

Otherwise, y = 1. The underlying distribution for the data set
resembles a ring centered at (2,2).

B. Simulation Results and Discussion

We randomly generated 10 ring data sets and selected 200
sample points in each data set for testing. Table II exhibits
that the classification accuracy of the proposed ONN on these
data sets. The mean and standard deviation of test data set
accuracy can be calculated as 87.8% and 0.0141, respectively.
The maximum accuracy on the testing data set is 90.5%. The
confusion matrices for the selected 200 samples on the training
and testing datasets are depicted in Fig. 5(a) and (b), respectively.
Fig. 5(c) exhibits the accuracy curve as a function of training
iterations. The individual accuracy for predicting 0 and 1 on the
training data set is 89% and 90.5%, respectively, demonstrating
the equivalent prediction capacity for both labels. We define
a generation of fifty meta-structures in the upper level as one
iteration for convenience. By conducting 3D FDTD simulation,
the transfer matrix of one meta-structure can be obtained in 115 s.
After 71 iterations, the classification accuracy achieves 90%.
The classification effect can be demonstrated in Fig. 6(a) and (b).
Here we use the sample points of testing data set 9 to demonstrate
the classification results. Circles represent the correct prediction
described as y_pre = y, while crosses correspond to the false
prediction. In addition, the label y corresponds to the color of
the dots. For example, red crosses mean that y = 0, y_pre = 1,
causing the false prediction. The background color exhibits the
generated ring data set without added noise. It can be noticed
that most of the samples in the data set can be classified correctly,
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Fig. 5. Confusion matrices for the 200 samples from the generated ring data
set (a) on the training data set, and (b) in the testing data set. (c) The training
process. The highest accuracy obtained by the optimum parameters is 90.0% on
the training data set.

Fig. 6. (a) The classification effect for the training samples. Red and blue dots
correspond to labels y = 0 and y = 1 on a given x1 and x2 input. Circles indicate
true prediction while crosses represent false prediction, (b) the classification
effect for the testing samples.

except for a few at the boundary, demonstrating successful
prediction without overfitting.

Fig. 7(a) illustrates the effect of nanohole diameter on the
classification accuracy of the generated ring data set, where
the optimal diameters for achieving the highest accuracy are
60 nm and 58 nm. Besides, our proposed algorithm to optimize
the ONN is insensitive to the diameters. Accuracy can still be
maintained larger than 80% even under the diameter variation
of 10 nm. Fig. 7(b) exhibits the accuracy of the proposed ONN-
m architecture on the generated ring data set, where ONN-m
refers to the ONN architecture including m linear layers. In the
training process, increasing linear layers composed of digitized
meta-structures results in a more complicated ONN with more

Fig. 7. Variation in the accuracy of the ONN with respect to (a) the diameter
of nanoholes, and (b) the different linear layers. ONN-m means that the ONN
architecture contains m linear layers, here m = 3, 4, 5, 6, respectively.

Fig. 8. Deviation of transmission coefficients (a) a13 and b13, (b) a14 and b14,
(c) a23 and b23, (d) a24 and b24, in transfer matrix with respect to the diameter
of nanoholes.

parameters to optimize, leading to better fitting results. However,
increasing layers of the neural network continuously bring some
negative problems, overfitting and degradation [28]. Moreover,
there is a tradeoff between the performance and abundant time
cost led by sophisticated ONNs. As depicted in Fig. 7(b), the
prediction performance of the ONN with five layers exceeds
other architectures. Fig. 8 exhibits the transmission coefficients
deviation for single meta-structure with varying diameters of
nanoholes, where the deviation is defined as the transmission
coefficient difference between other diameters and the central
diameter. The variation of diameters has a larger influence on
the transmission coefficients relevant to cross ports (e.g., port 1
to port 4, and port 2 to port 3).

V. CONCLUSION

In summary, we propose a whole-passive ONN architecture
based on the SOI platform. We utilize digitized meta-structures
with high compactness acting as 2 × 2 optical processors to
construct a five-layer ONN for a ring classification task. A
brand-new end-to-end design strategy compatible with digitized
meta-structures is proposed to directly optimize the ONN with
high efficiency and accuracy. This method exhibits superior ad-
vantages over traditional complex optimization for the digitized
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TABLE III
COMPARISON OF TIME CONSUMPTION FOR THE SIMULATION AND MATRIX

CALCULATION

Fig. 9. The heatmap about the correlation coefficients between the simulation
and matrix multiplication results.

meta-structure itself. The numerical results illustrate that predic-
tion accuracy in a generated ring data set can reach 90.0% on the
training data sets, while the maximum accuracy on the testing
data set can reach 90.5%. The integrated 2 × 2 nanostructured
optical processor with a compact footprint can be embedded
within a computer architecture as an accelerator to implement
matrix multiplications. We believe these findings may unleash
the potential of high-dimensional passive optical processors in
on-chip ONNs.

APPENDIX A
PEARSON CORRELATION ANALYSIS

In fact, INTERCONNECT is a transfer matrix solver funda-
mentally. However, a large set of extra features make the simu-
lation time-consuming, which is not beneficial to optimizing
the performance of the whole ONN. Optical transfer matrix
multiplication provides a competitive alternative approach for
obtaining results, and more importantly, it is numerically more
efficient than simulation. The time of one sample consumed from
input to output by simulation and matrix calculation is compared
in Table III.

The calculation and simulation are implemented using Python
and INTERCONNECT in 2022 R1.1 version on a 2.20 GHz
Intel Xeon E5-2650 v4 PC with 32 GB RAM. The feasibility of
this alternative can be verified through the Pearson correlation
analysis, which produces a score that can vary from − 1 to
+ 1 [29]. The Pearson score is +1 signifying a perfect positive
relationship. Two uncorrelated objects would produce a Pearson

Algorithm 1: Reinforcement Learning-Based Bi-Level
Adaptively Optimization.

Input: a randomly generated meta-structures set including
N structures Q = {qi}, ∀i ∈ N

Output: Optimized meta-structures and final locations in
ONN

Initialization parameter
Randomly generated location sequence �s
Get the accuracy reward R for each meta-structure using
matrix calculation (Q, �s)

Update the score ris for each meta-structure in this
location using r

While upper-level stopping condition is met:
Update each meta-structure highest reward
ri ← max(ris)

Update M and the DQN learning rate
Retain M structures that have top rewards as Q′

For meta-structure qi in meta-structures set Q:
If meta-structure qi not in Q′

�ω′ = Feature dimension reduction using VAE
encoder (meta-structure)
�ω′ = changing the encoded meta-structure �ω
using Deep Q-network ( �ω )
q′i = Decode to get a new meta-structure using
VAE decoder ( �ω′ )

Update the structures set Q, remove qi from Q,
add q′i → Q

End if
End for
While lower-level stopping condition is met:

If random number u<ε:
update sequence �s′ as randomly generated

Else
Choose the meta-structures with the highest
score at this location

End if
Get the accuracy reward r for each
meta-structure using matrix calculation (Q, �s)

Update the score ris for each meta-structure in
this location using r
ris ← α · ris + (1− α) · r
If r>R:

Update the best structures set Q and the best
sequence �s

Update the best accuracy reward R←r
End if

End while
End while
Return Optimized meta-structures and final location
sequence in ONN

score near zero. The Pearson correlation analysis is performed to
verify the linear relationship between the matrix multiplications
and simulations. The heatmap of the Pearson correlation coeffi-
cients between the simulation and matrix multiplication results
are exhibited in Fig. 9. xs and ys represent the power at the first
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output port and the second output port in the simulation, respec-
tively. Meanwhile, xm and ym indicate the output powers at the
first two ports calculated by matrix multiplications, respectively.
It can be discovered the correlation coefficient between the
xs-ys and xm-ym is 0.95, revealing the significantly high linear
correlation. Consequently, we can employ the method of matrix
multiplication to replace the simulation in INTERCONNECT,
accelerating the process of solving the optimal results.

APPENDIX B
THE ALGORITHM DESIGN

See Algorithm 1.
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