IEEE PHOTONICS JOURNAL, VOL. 15, NO. 5, OCTOBER 2023

8500710
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the Identification of Structured Light
Modes in Dusty Weather
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Abstract—Structured light is gaining importance in free-space
communication. Classifying spatially-structured light modes is
challenging in a dusty environment because of the distortion on
the propagating beams. This article addresses this challenge by
proposing a deep learning convolutional autoencoder algorithm for
modes denoising followed by a neural network for modes classifi-
cation. The input to the classifier was set to be either the denoised
image or the latent code of the convolutional autoencoder. This code
is a low-dimensional representation of the inputted images. The
proposed machine learning (ML) models were trained and tested
using laboratory-generated mode data sets from the Laguerre and
Hermite Gaussian mode bases. The results show that the two
proposed approaches achieve an average classification accuracy
exceeding 98 %, and both are better than the classification accuracy
reported recently (83-91%) in the literature.

Index Terms—Structured light modes identification, dusty image
denoising, deep learning.

1. INTRODUCTION

REE space optics (FSO) is a wireless communication tech-
F nology that has received considerable attention for various
applications. FSO is seen as a feasible solution to the many
connectivity problems in optical communication networks, es-
pecially when deploying additional optical fibers is either too
expensive or not possible [1]. FSO can be used to establish
secure communications in metropolitan areas between buildings
and cities, as well as to provide backup for optical fiber links.
At a low cost, FSO can provide long-range, high-throughput
line-of-sight transmission [2].
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FSO signals are sensitive to a wide range of propagation
effects in outdoor locations. For example, particles in the at-
mosphere created by various meteorological conditions, such
as rain, fog, and dust, cause optical signal scattering. When
the particle sizes are equivalent to the signal wavelength, the
effect is severe [3]. Dust particles, in particular, have an average
radius that is inversely related to particle height, ranging from
8 to 19 pm at altitudes between 21 and 1 m from the ground,
respectively [4]. As a result, the amount of scattering introduced
by these particles on signals at the 1550 nm wavelength is
substantial compared to the attenuation introduced by bigger
particles such as raindrops. Furthermore, dust particles include
minerals that scatter light more strongly than fog water drops [5].
Therefore, researching the impact of dust on FSO signals is
critical, particularly for towns located in desert areas where
dust storms are more common. It is relevant here to mention
that desert climate zones account for 14.2% of the Earth’s
surface area. In literature, several research works address the
performance of optical signals in fog, scintillation, and rain
conditions [3], but light transmission via dust storms is com-
paratively less explored.Nowadays, complex light beam shapes
have replaced the conventional Gaussian waveforms in optical
wireless communication [6]. These complex structures include
Laguerre Gaussian (LG) [7], Bessel Gaussian (BG) [8], and
Hermite Gaussian (HG) [9] light structures. Employing space
as an extra degree of freedom for data multiplexing helps to
address bandwidth bottleneck difficulties in optical networks.
The various patterns of spatial light modes can also be exploited
as information carriers and in the construction of M-ary pattern
coding schemes.

Despite the benefits of adopting structured light modes in
FSO, atmospheric circumstances substantially impact the phase-
fronts of the propagated light beam, making identification of
the initially encoded signals at the receiver side more difficult.
The use of adaptive optics (AO) in the presence of atmospheric
turbulence is one technique to adjust beam distortions [10]. This
is usually accomplished by modulating a spatial light modulator
(SLM) sequentially or a deformable mirror until an objective
function is minimized, allowing the original transmitted beams
to be reconstructed. However, this raises the receiver’s im-
plementation complexity. Furthermore, the optimization pro-
cess is carried out in cycles [11], which limits the use of the
AO-based technique in rapidly changing environments. Digital
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PC2

Schematic diagram for the experimental setup. LD: laser diode, Coll.: beam collimator, HWP: half-wave plate, P: polarizer, M: mirror, SLM: spatial light

modulator, PD: photodetector, BS: 50:50 beam splitter, L: lens, CCD: charged-coupled device.

signal processing (DSP) techniques are also attempted to solve
the problem of atmospheric effects. In particular, multiple-
input-multiple-output (MIMO) equalization can be used to rec-
tify channel impairments [12]. However, as the number of
transmitted spatial modes grows, this approach becomes more
difficult.

Machine learning approaches can also be used to correctly
identify spatial modes in turbulent channels without the need
for AO or DSP equalization algorithms [13]. Authors of [14]
employed an artificial neural network approach to discriminate
between 16 LG modes in a real-world 3 km free-space trans-
mission using mode patterns recorded on a camera. In [15], an
analogous approach was used to classify LG modes transmitted
over a distance of 143 km of propagation between two islands.
The authors of [ 16] proposed using convolutional neural network
(CNN) for the detection of orbital angular momentum (OAM)
modes in turbulent FSO networks. In [17], the authors investi-
gated the demodulation of OAM beams using several classifiers
in various atmospheric environments. Similarly, the authors
of [18] proposed the use of a CNN-based system for the sake
of atmospheric turbulence detection and adaptive demodulation
of OAM-FSO signals. In [19], the authors used simulated data
to show the potential of a CNN-based method for detecting
OAM modes susceptible to turbulence and misalignment. The
predicted turbulence impairment is fed back to the transmitter in
order to ensure impairment-free transmission of OAM modes.
In [20], the authors employed a CNN classifier to detect 21
laboratory-generated HG modes with various input beam pa-
rameters.

Images received by an FSO system are noise-prone, affecting
communication performance. Image denoising gained momen-
tum in the last decade as it benefits many fields, including
image dehazing, restoration, and classification [21], [22], [23].
Image denoising can be achieved using conventional image
processing techniques like image filtering, whether in the spatial
or frequency domain. In the same context, machine learning
algorithms have shown excellent performance when used for
image denoising [24], [25].

This article is intended to tackle the problem of identifying
structured light modes in dusty weather. The main contributions
of this article are as follows:

® Propose animage-denoising algorithm based on the use of a
convolutional autoencoder (CAE). The CAE algorithm has
been shown to be effective in many applications, including
image denoising. It utilizes the convolutional architecture
of the deep learning algorithm of CNNs, which is based
on the image convolution concept to produce a denoised
image of desired output size.

e Evaluate the performance of the proposed denoising al-
gorithm using experimentally generated light structures,
which include the Laguerre Gaussian (LG), multiplexed
Laguerre Gaussian (Mux-LG), and Hermite Gaussian (HG)
modes [26], [27].

® Propose two different methods for the identification of
structure light modes. The first method uses the denoised
mode image produced by the CAE as an input to a neural
network, while the second method replaces the denoised
mode image with the CAE latent parameters.

e Evaluate the performance of the two proposed identifi-
cation methods using the experimentally generated LG,
Mux-LG, and HG modes and compare the results with
those of the recently published work in [28].

The rest of the article is organized as follows: Section II
presents the experimental setup used to collect the dataset inves-
tigated in this work and provides a description for the dataset.
Section III gives details of the proposed identification method.
Section IV presents the achieved results, while Section V pro-
vides concluding remarks.

II. EXPERIMENTAL SETUP AND DATASET

The dataset used in this study is generated using the experi-
mental setup shown in Fig. 1 as in [28], where a 1550 nm laser
diode (LD-TeraXion PS-TNL) is used to generate a continuous
wave (CW) laser signal which is coupled into a standard single-
mode fiber (SMF). Then, a fiber beam collimation (Thorlabs,
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Samples of the experimentally received light mode structures without dust.
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Fig. 4.  Basic structure of autoencoder.

F230FC-1550) is used to collimate the SMF’s into free space,
where a Gaussian beam is propagated. The collimated beam
is pointed towards a half-wave plate (HWP), which is turned to

align the polarization of the propagated beam with a horizontally
polarized liquid crystal on a silicon spatial light modulator
(SLM-Hamamatsu X13138-08). A mirror is used to reflect the
HWP’s output in the direction of the liquid crystal display of
the SLM. A computer (PC1) was used to control the phase
holograms imprinted on the liquid crystal display of the SLM
to obtain 32 mode patterns (i.e., LG, Mux-LG, or HG modes)
after beam reflection. The experimental measurements were
performed in a controlled dusty environment which enables;
i) experiment sustainability under the same circumstances and
i) flexibility in controlling the density of dust particles (i.e.,
weak, moderate, and severe dust effect). A ~ 1-m controlled
environment chamber was built to mimic the effect of a dusty
communication channel on the quality of the transmitted spatial
modes. The dust particles are uniformly spread throughout the
chamber by fans placed at the bottom. To measure the visibility
of the dusty channel, a visible link was established using a
520 nm green LD which was added in parallel with the com-
munication link, as shown in Fig. 1. At the receiver side, a
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photodetector (PD 1) was used to record the received power of
the visible link under different visibility conditions. The received
mode pattern was split into two copies using a 50:50 beam
splitter (BS), where the mode optical power and the mode pattern
profile were recorded and captured, simultaneously, using PD 2
and a charged-coupled device (CCD) beam profiler, respectively.

The experiment dataset was collected at ten consecutive time
slots, with the first time slots having the lowest visibility range
and the tenth time slot having the highest visibility range. The
experiment lasted for 100 seconds with a frame rate of 10
frames/sec. Thus, the collected dataset is of size 8000, 8000, and
16000 images for LG, Mux-LG, and HG modes, respectively.
These modes are used as information carriers. Samples of the
experimentally received light modes (no dust) are depicted in
Fig. 2.

III. THE CONCEPT OF OPERATION

Fig. 3 shows the proposed model for identifying structured
light beams. It consists of two stages: image denoising and mode
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Confusion matrix for the LG, Mux-LG, and HG when the latent code is used.

classification. Image denoising has a significant impact on visual
image quality. Such an impact is also applicable to the domain
of optical communications. Multiple denoising techniques exist,
ranging between conventional image processing methods and
deep learning algorithms [24]. Here, we opt for the CAE as a
deep learning algorithm for image denoising. Once the received
beam profile is denoised using the CAE, the clean image or the
latent code of the CAE is used as an input to a feed-forward
neural network for mode classification. The dataset generated in
Section 2 is used for training and testing in both stages.

A. Convolutional Autoencoder for Image Denoising

Autoencoders are deep learning algorithms used for image
denoising, anomaly detection, dimensionality reduction, latent
space classification, or data synthesis using variational autoen-
coder [29]. The main idea behind the autoencoder is to compress
the input data at a given layer before reconstructing it back at
the output layer. The autoencoder mainly consists of two parts:
the encoder and the decoder. The encoder compresses the input
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Fig. 10.  Confusion matrix for the LG, Mux-LG, and HG when the denoised images are used.

data to a predesigned size, and the output is the latent code
with reduced dimensionality. This code is considered an optimal
representation of the inputted data and could be used for other
purposes like classification or recognition. The decoder is trained
to reconstruct the original data using the latent code. Fig. 4
delineates the basic structure of the autoencoder algorithm.
While the simple structure of the autoencoder is considered
the deep feed-forward neural network, it can also be built using
a CNN. The CAE model uses convolutional layers mainly

intended to manipulate 2D data. In this work, the proposed
architecture of the CAE model is built up using four convo-
lutional layers for the encoder part, each of which has a rectified
linear unit (Relu) to act as an activation function and 32 filters
with the size of each filter is (3 x 3). Each convolutional layer
is followed by a max-pooling layer with kernel size (2 x 2),
producing output with a size half of its input. The decoder
comprises four convolutional layers and the output convolutional
layer. Following the same convention as the encoder part, each
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convolutional layer has 32-(3x3) filters and a Relu activation
function. Also, each convolutional layer is followed by an
up-sampling layer with (2 x 2) kernel size, producing output
with a size double its input. The last convolutional layer has a
sigmoid activation function whose output is an image of size
exactly matching that of the input image to the encoder. Fig. 5
depicts the whole structure of the proposed CAE architecture.
For illustration purposes, Fig. 6 shows the outputs of the learned
convolutional filters of the first and last layers of the encoder,
when Mux-LG 3 of Fig. 2 is considered. This is to shed some
light on its dominant features.

CAEs, like any other models, have their own limitations. They
are designed specifically for image data, and their performance
is highly dependent on the input image size. Large image sizes
can lead to memory limitations and increased computational
requirements. Further, CAEs can capture local features of an
image effectively due to the use of convolutional layers but may
struggle to capture complex patterns or reconstruct images that
are significantly different from the training images.

B. Neural Network for Light Mode Classification

An artificial neural network (ANN) is a machine learning
algorithm whose basic cell is the neuron. One or more neurons
can construct a layer. A typical network consists of one input
layer, one or more hidden layers, and one output layer. The main
process of a neuron is to calculate the following equation [30]:

y:@(wTﬂc—i-b) (1)

where x is the input vector, w is the weights vector, b is the
bias vector, and ¢(.) is the activation function. The activation
function could be linear where the output of ¢ (.) equals its input,
or (.) is a nonlinear function like ‘Sigmoid’ or ‘Relu’. In this
work, we propose a feed-forward ANN model for light mode
classification. The proposed model consists of an input layer
and one hidden layer of 100 neurons in addition to the output
layer. The input to the ANN is either the denoised mode image
or its corresponding CAE latent code.
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IV. PERFORMANCE EVALUATION

The performance of the proposed method for structured light
identification in dusty weather is considered in this section.
Towards this objective, data of the 8-ary LG, 8-ary Mux-LG, and
16-ary HG light beam structures are collected experimentally in
the laboratory for 100 seconds, as described in Section II. There-
fore, the LG dataset (likewise the Mux-LG dataset) consisted
of 8000 images each, while the HG dataset comprised 16000
images. This is because LG and Mux-LG images have 8 classes
(each), while HG images have 16 classes. The collected dataset
is divided into 10 subsets with an equal number of images. The
first subset (captured at the first 10 seconds) contains the beam
profiles of the lowest visibility, and the 10th subset (captured at
the last 10 seconds) contains the images of the highest visibility.
For each subset, 70% of images are selected for training, and
30% of images are retained for testing. The structured light
modes received via the FSO link are resized to the dimension
of 256 x 256 x 3 to facilitate processing with less complex
computing facilities. Given the training and testing data, the
CAE is built for the LG, Mux-LG, and HG light mode structures.
The input data for the CAE model is selected from images from
the 10 different data subsets. Fig. 7 shows samples of the chosen
dataset from subset 5 with its corresponding ground truth. The
light structure in the upper row is hardly seen because of the dust
effect.

As stated before, the proposed CAE model is built using four
convolutional layers and four max-pooling layers for the encoder
side, four convolutional layers, four up-sampling layers, and
an output convolutional layer for the decoder side. The CAE
and ANN models are trained for 1000 epochs with batch size
128 using an ‘Adam’ optimizer, which proved successful in
backpropagation over a deep neural network [31]. The ANN
model is trained using 5600 images for each LG and Mux-LG
data and 11200 images for HG data.

The results achieved using the proposed CAE model are
evaluated by two approaches. First, the output of the encoder
(latent code) is passed to the ANN model to identify light mode.
Second, the output of the decoder part (reconstructed image) is
passed to the ANN model for the same classification task.

The trained model is tested using unseen images, which
account for 2400 images for each LG and Mux-LG data, and
4800 images for HG data. These images are the 30% of images
of the 10 subsets of all visibility regions. This is to show the
performance of proposed CAE and ANN models irrespective
to the visibility region of mode under consideration. The clas-
sification accuracy of the ANN trained with the latent code of
CAE is 98.3%, 98.5%, and 98.2% for LG, Mux-LG, and HG,
respectively. Fig. 8 shows the confusion matrices for the results
of the testing dataset, which offer a relatively small number of
mode misclassifications. In particular, the results reveal that the
most affected modes are LGg7, Mux-LG.g7, HG12, and HGo5.
Thanks to the encoder, which produced a latent code of size
16 x 16 x 3instead of 2256 x 256 x 3-sized image, These effec-
tive results have been obtained with reduced inputs to the ANN.

In the second approach, the reconstructed images at the output
of CAE are used as inputs to the ANN. The CAE is trained
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following the same methodology explained before, and the
results achieved using the testing dataset are 99.5%, 99.4%, and
99.2% for LG, Mux-LG, and HG, respectively. These results
are slightly improved over the results obtained using the latent
code. However, the input dimension (256 x 256 x3) to the ANN
model is substantial compared to that (16 x 16 x 3) of the first
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(a) Samples of received light modes after propagating over 1 m dusty channel, (b) CAE-recovered grayscale images, and (c) ground truth.
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approach, which utilizes the latent codes. Fig. 9 illustrates sam-
ples of the reconstructed images outputted from the decoder part
and its original inputs. Fig. 10 presents the confusion matrices for
the results of three light structures. From the confusion matrices,
we find the most affected modes are LGg7, Mux-LG. 7, and
HGj . This is intuitively not surprising because the presence of
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TABLE I
RUN-TIME FOR THE TRAINING AND TESTING PHASES AND THE NUMBER OF PARAMETERS FOR EACH MODEL

Proposed Approaches CNN Approach [28]

Colored Images Grayscale Images Grayscale Images
LG [ Mux-LG [ HG LG [ Mux-LG [ HG LG | Mux-LG | HG
No. of training parameters 49766 47458 275,592
Training time (s) 9591 10089 21536 | 7968 8009 16097 | 1003 947 1872
L Ny . | Decoder | 2.52 2.68 3.21 1.82 1.82 1.5
Average testing time per sample (ms) [Encoder | 142 143 565 123 124 089 0.27 0.27 0.28
TABLE II

AVERAGE CLASSIFICATION ACCURACY (%) USING THE PROPOSED APPROACHES IN COMPARISON WITH THE RESULTS OF [28]

Colored Images

Grayscale Images Results of [28]

Latent codes | Denoised images | Latent codes | Denoised images
LG 98.3 99.5 98.7 98.5 86.3
Mux-LG 98.5 99.4 98.1 98 91.8
HG 98.2 99.2 98 98.7 91

relatively high level of dust is expected to cause misclassification
for modes of similar structures. For example, Fig. 11 shows the
structural similarity index measure (SSIM) of the Mux-LG_ 7
with other modes. SSIM is a metric used to measure the simi-
larity between two given images [32]. It is evident from Fig. 11
that the highest SSIM is with Mux-LG_¢g. By examining the
confusion matrix of Fig. 10(b), we observe that Mux-LG_g7
and Mux-LG_yg modes are misclassified, which is consistent
with the aforementioned assertion.

Next, we repeat the above experiments by converting the
colored images to grayscale images to reduce computational
complexity. The CAE model is fed with grayscale mode profiles
of size (256 x 256 x 1) instead of colored images of size
(256 x 256 x 3). The proposed grayscale-based version has
reached a classification accuracy of 98.7%, 98.1%, and 98%
for LG, Mux-LG, and HG, respectively, using the latent codes;
while it has achieved a classification accuracy of 98.5%, 98%,
and 98.7% for LG, Mux-LG, and HG, respectively, using the
denoised decoder’s images. Fig. 12 shows samples of the re-
constructed grayscale images outputted from the decoder part
and its original inputs. Table II summarizes the obtained results
in terms of average classification accuracy using the proposed
approaches compared with the results of [28], which used a
CNN with two convolutional layers, two pooling layers, and
a fully connected layer, in addition to the output layer. It is
worth mentioning that the classification results obtained using
the colored images slightly outweigh those obtained using the
grayscale images of light modes, which adds an advantage to
the grayscaled version of being less costly in computational
complexity. Table I presents the run-time for the training and
testing phases and the number of models’ parameters for both
the proposed approaches and the CNN approach of [28]. The
designed models were trained using the TensorFlow library in
Pycharm environment running on a PC with Intel core 19-9900 K
CPU 3.60 GHz, 64 G RAM, and Nvidia Geforce RTX2080TI
graphic card. It is clear from the results that using grayscale
images produces models with fewer number of parameters and
less time to run during both training and testing phases, with the
CNN approach of [28] is the most efficient.

Finally, experiments have been conducted to show the per-
formance of proposed CAE and ANN models in each visibility

region. Towards this objective, we test the previously trained
models using the 30% images of each subset (visibility region)
alone. Since we have 10 subsets, the results are presented against
the number of visibility region. The achieved classification
results using the denoised images and latent codes are compared
with the results reported in [28]. Fig. 13 displays the results,
where it is evident that the classification accuracies achieved
using the proposed approaches are very similar for the three
light mode structures, while both of them are far better than the
classification accuracy reported in [28], especially for the first
subsets with images of low visibility.

V. CONCLUSION

In this article, we considered an algorithm to denoise struc-
tured light mode images affected by dust. We proposed a convo-
lutional autoencoder for image denoising and a neural network
for modes classification. This study was conducted using exper-
imental data of three light structures. The neural network model
was built and tested using the denoised images and the latent
code of the convolutional autoencoder for dimensionality reduc-
tion. The proposed system performed better using the denoised
images with a classification accuracy of 99.5%, 99.4%, and
99.2% for LG, Mux-LG, and HG modes, respectively. Further,
the proposed system was then trained and tested using grayscale
images instead of colored images of the same dataset to reduce
the computational cost. The results achieved are almost the same
as those achieved using the colored images. Table I summarizes
the obtained results in terms of average classification accu-
racy using the proposed approaches compared with the results
of [28].

A natural extension for the work presented in this article is to
test the performance of proposed approaches using light mode
images captured from real field measurements. In such an en-
vironment, the proposed models may need to be first fine-tuned
by retraining on light mode images captured at new visibility
conditions. Another interesting point for future research is to
investigate the proposed methods’ performance under the effect
of free space turbulence with and without the presence of dusty
weather. This is a challenging problem, as the turbulence may
take three different states; weak, moderate, and strong.
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