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Denoising of Brillouin Gain Spectrum Images for
Improved Dynamic Measurements of BOTDR

Bo Li , Ningjun Jiang , and Xiaole Han

Abstract—Brillouin optical time-domain reflectometry
(BOTDR) is widely used for strain and temperature measurements
in various fields. However, the accuracy and reliability of the
measurements are often limited by the noise in the sensor signals.
Dynamic measurement of BOTDR requires small averaging
number and fast measurement, and hence noise reduction is
more significant in dynamic measurement. Small gain stimulated
Brillouin scattering (SBS) can enhance the Brillouin signal power
in BOTDR to realize dynamic measurement, but noise reduction is
still important in system. In this work, we investigate the denoising
of Brillouin gain spectrum (BGS) images using convolutional
neural networks (DnCNN) to improve the accuracy of the small
gain SBS STFT-BOTDR measurement of strain vibration. It is
shown that the denoising of BGS images along the time axis can
result in better detection of the strain vibration compared with
denoising of BGS images along the fiber length. The denoising
performance was evaluated using frequency uncertainties and
R-squared values. The best denoising performance was achieved
with a DnCNN network with 8 layers and 200 epochs, leading to
a frequency uncertainty of 2.32 MHz and an R-squared value of
0.907. The frequency uncertainty is improved to about 45% of the
original value.

Index Terms—Brillouin optical time-domain reflectometry, deep
learning, distributed fiber optic sensors, image denoising.

I. INTRODUCTION

THE Brillouin scattering based distributed fibre optic sen-
sors have the advantages of distributed measurement of the

temperature and strain information along the optic fibre, which
are crucial indicators in structural health monitoring [1]. Thanks
to the benefits of small in size, stable in harsh environments and
easy installation, distributed fibre optic sensors are more and
more widely used in fields such as oil and gas industries, bridge
monitoring, and power plant and building monitoring [2]. Apart
from the static sensing, vibration sensing is another important
topic in the monitoring of structures, such as the earthquake
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alarm and inspections in aeronautics industry. Cracks and breaks
are found from many aging structures that were designed to
be quake-proof. Without proper monitoring, these damages can
only be recognized by visual inspections which lacks immediate
assessment [3].

The Brillouin optical time domain analysis (BOTDA) and the
Brillouin optical time domain reflectometry (BOTDR) are the
two major classes of the Brillouin scattering based distributed
fibre optic sensors [4]. As access to only one end of the optic fibre
is needed with BOTDR, it is more maneuverable and preferred
in practical applications [5]. However, as the power of the
spontaneous Brillouin scattering in the optic fibre is very weak,
large number of averaging is required in the BOTDR system to
reduce the noise and increase the signal-to-noise ratio (SNR),
which demands long sensing time and limits the speed of the
measurement and hence makes it difficult for dynamic sensing
of vibrations. Targeting at the desired sensing length of around
1km for civil engineering applications, dynamic measurement of
the BOTDR system is realized by inducing small gain stimulated
Brillouin scattering (SBS) together with short time Fourier trans-
form (STFT) [6]. The signal power is boosted with small gain
SBS, but more noise is maintained since the averaging number
is small. To further improve the output performance of this small
gain SBS STFT-BOTDR, noise reduction is needed.

The strain and temperature information is represented by
Brillouin frequency shift (BFS), which is derived as the center
frequency of the Brillouin gain spectrum (BGS). By conducting
STFT on the captured time domain data from the system, BGS
information can be obtained. Hence, denoising of the BGS can
enhance the accuracy of BFS detection.

By treating the BGSs along the FUT as a two-dimensional im-
age, image denoising methods such as non-local means (NLM),
wavelet denoising (WD), and block-matching and 3D filtering
(BM3D) have been used on Brillouin based distributed fiber op-
tic sensors [7], [8], [9]. Although these methods can effectively
suppress noise, they suffer from a degradation of frequency
accuracy and spatial resolution, leading to unreliable detec-
tion information [9]. Analytical image denoising methods also
rely on manual setup and parameter selection. Therefore, deep
learning-based image denoising methods have been proposed
to overcome these drawbacks. The deep learning denoising
methods have shown promising results in suppressing noise
while preserving the resolution, making them a viable alternative
to analytical methods [10].

The use of the convolutional neural network (CNN) has
revolutionized the field of deep learning, particularly in image
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Fig. 1. DnCNN architecture.

recognition and classification tasks [11]. Compared to the tradi-
tional artificial neural network (ANN), the CNN is specifically
designed to capture the spatial dependencies in an image by
leveraging convolutional layers. The CNN architecture typically
consists of an input layer, convolutional layers, pooling layers,
one or more fully connected layers, and an output layer [12].
The use of these layers together allows for a more efficient and
accurate classification of images. Furthermore, the denoising
method of CNN (DnCNN), which uses CNN with residual
learning, has shown significant improvement in the performance
of image denoising [13]. It learns the noise features, which are
easier to learn than clean image features, and predicts the clean
image by removing the noise from the noisy input. DnCNN
also abandons the pooling layers. This method does not change
the redundancy of the information, maintains the same data
sampling point number as the input, and does not degrade the
frequency accuracy and spatial resolution [14].

We have experimentally demonstrated the denoising perfor-
mance of DnCNN on small gain SBS STFT-BOTDR by using
it on the images of the BGSs along the FUT [14]. The detection
of 60 Hz strain vibration is enhanced, with the frequency uncer-
tainty improved by 24%, and the R-squared value of sine fitting
of the vibration profile is improved from 0.71 to 0.739. Though
the results are better, the improvement of the detection of the
sine vibration profile is limited. This might be caused by the
lack of time context information during the denoising process.
As the vibration is drawn along the time axis, temporal continuity
can influence the results. Therefore, in this work, the BGSs are
concatenated along the time axis for one spatial location on the
FUT to generate the BGS images. The DnCNN is applied to
these images, and the experimental results are compared with the
results in [14]. Better sinusoidal vibration profiles are detected
with the method in this work.

II. PRINCIPLES AND METHODS

A. DnCNN

DnCNN is a convolutional neural network (CNN) architec-
ture designed for image denoising. It is based on the residual
learning concept, where the network learns to predict the noise
as the residual between the noisy image and the clean image,
rather than directly predicting the clean image itself [13]. This
approach allows for easier and more efficient learning of the
noise pattern.

The DnCNN architecture consists of multiple layers of con-
volutional filters, batch normalization, and rectified linear units
(ReLU) activation functions, as is shown in Fig. 1 [13]. The
input to the network is a noisy image, y, which is the sum of a
clean image, x, and additive white Gaussian noise, v. The goal
of the network is to learn the noise, v, and subtract it from the

Fig. 2. Diagram of BOTDR setup.

input image to obtain the clean image, x. The network is trained
using a mean squared error (MSE) loss function to minimize the
difference between the predicted residual and the actual noise.

The first layer of the DnCNN architecture is a convolutional
layer with ReLU activation, which is used to extract low-level
features from the noisy image. The ReLU activation function is
applied to the output of this layer to introduce nonlinearity and
improve the network’s ability to learn complex patterns [15].
The subsequent layers consist of convolutional filters with batch
normalization and ReLU activation, which are used to extract
higher-level features. Batch normalization is used to normalize
the output of the previous layer, which helps to stabilize the
learning process and improve the performance of the network
[16]. The final layer of the network is another convolutional filter,
which is used to reconstruct the output image. The denoised
image is obtained by subtracting the predicted noise residual
from the noisy input image.

Overall, the DnCNN architecture has shown superior per-
formance in image denoising compared to traditional methods,
especially for images with high levels of noise. Its ability to learn
the noise pattern directly from the data makes it a powerful tool
for image denoising applications.

B. BOTDR Setup and Network Training

The experimental setup of STFT-BOTDR for dynamic strain
measurement of the fiber under test (FUT) utilizing small gain
stimulated Brillouin scattering (SBS) is shown in Fig. 2 [6].
A continuous-wave (CW) laser source is equally split into two
arms. The upper arm is modulated by an electro-optic modulator
(EOM) with a signal generator to produce a 40ns pulse with
a 16µs period, leading to 4 m spatial resolution. The modu-
lated light then passes through an erbium-doped fiber amplifier
(EDFA) and an optical bandpass filter for signal amplification
and noise reduction, respectively. Then, the incident light is
transmitted into the FUT through a circulator (CIR), with the
peak pulse power of 3.12 W [6]. Small gain SBS is induced
on the FUT by properly setting the output power from the
EDFA. The backscattered light from the FUT passes through
the circulator again and travels into a 20GHz-bandwidth pho-
todetector (PD). The lower arm, equipped with a polarization
scrambler (PS), is directed to the photodetector (PD), as the
optical local oscillator. The optical Brillouin signal is converted
into an electrical signal on the PD. The electrical signal is then
passed through an electrical bandpass filter (BPF), an amplifier
(AMP), and down-converted using a 10.5 GHz electrical local



LI et al.: DENOISING OF BRILLOUIN GAIN SPECTRUM IMAGES FOR IMPROVED DYNAMIC MEASUREMENTS OF BOTDR 6801808

Fig. 3. Measured BFS distribution over FUT.

oscillator (LO). The resulting signal is amplified again using
another amplifier (AMP) and captured by a digitizer of 500 MHz
bandwidth. The captured signal is then processed with STFT to
obtain Brillouin information. The FUT is approximately 935 m
long, with a 60 Hz strain vibration added close to the far end
of the fiber over a length of about 6m. The loose fiber section
of first 921 m in length is denoted as S1, while the 6 m fiber
section with added strain is labeled as S2. There is about 8 m
loose fiber after S2, before the end of FUT. The strain vibration
is added onto the fiber section S2 through a shaker. The shaker is
controlled by an Agilent 33522A to generate 60 Hz sinusoidal
displacement along the optic fiber, which leads to sinusoidal
strain change. Pre-strain is added on S2 by pulling the optic
fiber so that fiber section S2 can be clearly distinguished from
the other parts of FUT. Each measurement is obtained after 25
averaging, resulting in a dynamic detection sampling speed of
2.5 kHz. The measured BFS distribution along the FUT is shown
in Fig. 3. Fluctuation of the measured BFS along the FUT can
be observed. The measured BFS jumps at the end of the profile
due to the applied pre-strain on S2.

The measurement with strain vibration lasts for 50ms, leading
to about 3 sinusoidal vibration periods, which includes 124 BFS
measurements over the FUT. Normally, the BGSs are aligned
over the fibre length and the BFS profiles are detected along
the FUT. To find the BFS information over time, the BFS for a
specific location can be concatenated after found from the BFS
profiles over FUT [14]. In this study, to include the time context
in the denoising procedure, the 124 BGSs for one location on
the FUT are concatenated over time, the BGS image is then
denoised by DnCNN, and the BFS information is obtained for
this location directly. The BFS profile represents the strain level
of the FUT.

For most known distributed fiber optic sensors, the signal
distributions are measured along the optic fiber [1], [2], [3],
[4], [5]. Commonly, the image denoising methods (e.g., NLM,
WD, and BM3D) are also used based on the information along
the optic fiber [7], [8], [9]. The kernels act on the images of the
spectral information along the fiber length so that the adjacent

spatial points are considered during the denoising process. But
as each image is independent, time information is not included
for the denoising process. And as is discussed in [14], these
methods are mainly focused on static measurements, and time
context information is not considered.

Our previous work also applies DnCNN on the images of
the BGS along the fiber length so that only spatial context
information is included but not the time context information [14].
The kernel of CNN moves across the whole image and convolves
with the pixels of the same size as the kernel to generate an
output. With more than one layer, an output pixel can relate to
much more input pixels (the receptive field) than the size of the
kernel. Since the time related information is not denoised, the
obtained vibration profiles in [14] are not significantly enhanced
although the frequency uncertainties are improved. In this study,
the kernels work on the images of the BGS for the same location
on the optic fiber over time. In this way, a denoised output is
connected to the vibration signals over time and the vibration
profiles can be better denoised.

To train the DnCNN, the BSDS300 dataset of clean images
is used as the training targets [14]. Gaussian noise is then added
to these images with a standard deviation of 110 to generate the
noisy input images. Thanks to the fact that the target of the net-
work is the residual noise but not the clean images, the BSDS300
dataset is chosen for its greater variability compared to simulated
BGS images, which can lead to better training of the network.
If there was enough experimental data, real experimental data
could also be considered as the training dataset.

Zero padding with padding parameter of 1 and kernel size
of 3 are used in this study [17], [18]. The batch size is set to
4. The first convolutional layer with ReLU produces 64 feature
maps using 64 filters of size 3 by 3. The middle of the network
contains D convolutional layers with BN and ReLU, with each
layer using 64 filters of size 3 by 3 by 64. The last convolutional
layer is used to reconstruct the output using a single filter of size
3 by 3 by 64. The total depth of (D+2) is to be experimentally
studied. The neural network is trained 8 times separately with
varying total depths of hidden layers, including 4, 8, 12, and 16,
and epoch numbers of 50 and 200. For a sensing point on the
FUT, the image of 124 BGSs along the time axis is denoised by
each trained network. The BFS over time for this sensing point
is extracted from the denoised BGS image.

III. EXPERIMENTAL RESULTS

The BGS images along the time axis are utilized as the input of
the DnCNN instead of the BGS images along the fibre length,
to include the time context information during the denoising
process. The BGS image without DnCNN is shown in Fig. 4(a).
The DnCNN denoised BGS image along the time axis for the
optic fibre with vibration, with the total depth of 8 and 200
epochs is demonstrated in Fig. 4(b). The center yellow parts
of the figures are the BGSs. Sinusoidal changes of the BGS
frequencies due to the added strain vibration over time can be
observed from the figures. The BGS image without DnCNN is
fuzzier. Clearer and smoother sinusoidal shapes after denoising
can be observed from Fig. 4(b).
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Fig. 4. BGS images along the time axis: (a) without denoising; (b) with
denoising, total depth = 8, epoch = 200.

By finding the center frequencies of the denoised BGSs in
the images, the vibration profiles are obtained and shown in
Fig. 5(a)–(d) with different total depths and epoch numbers of
DnCNN. The strain vibration profile without noise reduction is
shown in the figures as well.

It can be clearly observed that the derived vibration profiles are
smoother with denoising compared with that without denoising.
In general, the vibration profiles are more sinusoidal with deeper
networks and the larger epoch number. Moreover, it is observed
that the detected curves at the troughs and the crests are more
fluctuant and harder to be reconstructed. The troughs and the
crests are better recovered with deeper layers and more epochs.
The total depths of 8, 12 and 16 with 200 epochs lead to better
sinusoidal detection of the vibration. Furthermore, by the noise
suppression of the BGS images along the time axis instead of
along the length of the FUT, the detected vibration profiles are
stabler and more sinusoidal. This can be observed by comparing
the results in Fig. 4 and the results in [14]. The results in [14]
are based on the BGSs along the fibre length, and hence no time
information is considered during the denoising and detection

Fig. 5. Strain vibration profiles with and without denoising.

process. On the contrary, by concatenating the BGSs over time
in this study, the time context information is included, and better
consistency is maintained during the denoising process.

Fig. 6 demonstrates the Brillouin gain spectra of the detected
vibration after denoising with different total depths. The sup-
pression of fluctuation can be observed with denoising. The peak
positions of the spectra are slightly shifting with different total
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Fig. 6. Brillouin gain spectra with different depths of network.

Fig. 7. BFS profiles of the fiber section S2.

depths, indicating fluctuant denoising results by the change of
the depths. With each setting, the network is trained indepen-
dently. For different depths, the number of trainable parameters
are different. Besides, the trainable parameters are fine-tuned
as the loss function is minimized with different depths. The
parameters of the trained networks are hence different, so that
the predicted noise cannot be exactly the same as well as the
output clean images. As a result, the denoised spectra and their
peak positions can subtly vary.

Fig. 7 is the derived BFS profiles along the optic fiber with
different settings of total depths and epoch numbers for fiber
section S2. The strain applied onto the optic fiber can be detected
after denoising. It can be seen that the 10% to 90% of the rising
edge (the transition region of the BFS from the low value to
the high value) is not degraded with DnCNN, which defines the
spatial performance of a distributed fiber optic sensor.

IV. DISCUSSION

A. The Sine Fitting R-squared Values

The detected vibration profiles are sine fitted to numerically
verify the denoising performance. The sine fitting R-squared

TABLE I
SINE FITTING R-SQUARED VALUES OF THE VIBRATION PROFILES WITH

DIFFERENT DEPTHS AND EPOCHS

values are derived for each total depth and epoch number and
listed in Table I. The R-squared values with the denoising of
BGS images along the fibre length in [14] are also listed as a
comparison. No. i in Table I is the value without denoising.

From Table I, it can be observed that the R-squared values are
well enhanced by noise reduction of the BGS images along the
time axis, compared with the original result and the results with
denoising along the fibre length, benefiting from the introduction
of the time context information. With 200 epochs, the derived
R-squared values reach 0.907 with 8 layers, 0.931 with 12 layers
and 0.923 with 16 layers respectively, demonstrating a good
correlation with the added strain vibration of sinewave.

Moreover, with the denoising conducted on the BGS images
along the time axis, larger R-squared values are obtained with
200 epochs compared with those with 50 epochs, when the
depths of the network are the same. Besides, when the epoch
number is fixed, the R-squared values increase as the total depth
gets larger from 4, 8, to 12. When the total depth is 16, the
R-squared values decrease compared with those with total depth
of 12. In this situation, a high R-squared value is still obtained
with 200 epochs, although the value is slightly lower than that
with 12 layers. But with 50 epochs, the R-squared with 16 layers
is only comparable with the values with 4 layers.

B. The Frequency Uncertainties and SNR

The frequency uncertainties of the BFS are then calculated for
each total depth and epoch number and listed in Table II, with
the original value without denoising given as No. i of the table
as a comparison. The values are compared with the frequency
uncertainties obtained based on the denoising of BGS images
along the FUT in [14].

As is found in Table II, the best frequency uncertainties of
2.32 MHz and 2.38 MHz are obtained with the total depths
of 8 and 16 when the epoch number is 200, leading to the
improvement of 2.78 MHz and 2.72 MHz respectively from
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TABLE II
FREQUENCY UNCERTAINTIES OF BFS WITH DIFFERENT DEPTHS AND

EPOCH NUMBERS

Fig. 8. SNR by using DnCNN with different depths and epoch numbers.

the original value. That is to say, the frequency uncertainty is
halved after denoising. With 12 total depth and 200 epochs,
the frequency uncertainty obtained is 2.51 MHz, which is also
around half of the original value with the reduction of 2.59 MHz.
Furthermore, the obtained frequency uncertainties are well en-
hanced compared with the values by the denoising of the BGSs
along the FUT, with a difference of 1.56 MHz at the total depth
of 8 and epoch number of 200 and a difference of 1.24 MHz at
the total depth of 16 and epoch number of 200. This is due to the
fact that the frequency uncertainty is calculated as the standard
deviation of BFS over time and that the BFS information along
the time axis is better acquired as the time context information
is considered for denoising.

The SNR for different depths and epoch numbers in this work,
as well as the SNR of the results of our previous work [14] and
the SNR without denoising are compared in Fig. 8. The SNR
is improved within the range of 2.22dB (depth = 4, epoch =
50) to 3.67dB (depth = 8, epoch = 200) by using DnCNN on
the images of BGSs over time, compared to the SNR without
denoising. By using DnCNN on the images of BGSs along the
optic fiber, the SNR is also improved compared to that with no

TABLE III
FREQUENCY UNCERTAINTIES, R-SQUARED VALUES, AND SNR FOR DIFFERENT

EPOCH NUMBERS, WITH TOTAL DEPTH OF 8

denoising. But by aligning the BGSs along the time axis for
denoising, the SNR values are better enhanced, compared to the
SNR values when the images of the BGSs along the FUT are
utilized. The enhancement of SNR in Fig. 8 matches the trends
of the uncertainty improvement in Table II.

As a matter of fact, similar to the results by denoising of
the BGS images along the FUT, the frequency uncertainties are
better suppressed as the total depth gets greater from 4 to 8, and
then rebound a little bit as the total depth increases to 12, then
reduce again when the total depth is 16. The fluctuant frequency
uncertainties and the R-squared values, as the depth of the net-
work gets deeper, can be attributed to the progressive extraction
of higher-level features in the network, where each layer captures
increasingly complex characteristics of the input. When utilizing
a shallower network with 4 layers, the DnCNN primarily extracts
lower-level features and fails to acquire sufficient discriminative
information from the target BGS images. However, as the net-
work depth increases to 8, more intricate features are captured,
leading to superior denoising performance. The trend becomes
less favorable as the total depth reaches 12 or 16. Although the
deeper network can extract even more complex features, it can
also introduce a larger number of trainable parameters, resulting
in a more challenging training process. In addition, BGS images
differ from typical natural images, as they consist of numerous
spectra with similar features and less intricate characteristics.
Deeper networks might lead to higher risks of image overfitting,
and details may be concealed [8], [14]. The R-squared values
and the frequency uncertainties are comparable with the depths
of 8 and 16. Therefore, since 8 layers can produce good denoised
results and more layers can generate fluctuant results in terms
of uncertainties and R-squared values, the total depth of 8 is the
most feasible choice for this work.

C. Comparison of Different Epoch Numbers

The frequency uncertainties, R-squared values, and SNR, with
different epoch numbers when total depth is 8, are given in
Table III. Fig. 9 shows the training loss curve when depth is
8 and epoch number is 300.

As the epoch number increases, the frequency uncertainty, the
R-squared value, and the SNR all tend to become better. When
epoch number is 50, the results are subtly better than those with
epoch number of 100, and the results are only slightly worse
than those with epoch number of 200. But by comparing all the
results in Table I and II, apart from the values for total depth of
8, all other results show more obvious improvement when the
epoch number is increased from 50 to 200. Therefore, the results
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Fig. 9. Loss curve for total depth = 8, epoch = 300.

with total depth of 8 and epoch number of 50 here can be due to
a single good training of the network.

From Fig. 9, it can be observed that the loss curve tends to
become stable with 50 epochs. For image denoising of natural
pictures with CNN, epoch number of 50 can be used to generate
reasonable outputs [13]. Besides, the loss function is already
well converged when the epoch number is 200. By increasing the
epoch number to a greater value, the denoising performance on
BOTDR can be improved, but the improvement can be limited.
Therefore, the epoch number of 200 can lead to well denoised
results, but the epoch number can be set to even larger value if
extreme results are desired, with more time consumption.

Conclusively, the frequency uncertainties and the R-squared
values obtained by DnCNN denoising of the BGS images along
the time axis are better, compared with the values by denoising
of the BGS images along the FUT. The network with 8 layers
and 200 epochs can lead to well denoised results, with the
frequency uncertainty of 2.32 MHz and R-squared value of
0.907. Moreover, if there are enough experimental data, real
noisy dataset could be used as the training set of the networks.
In addition, it is worthy of noticing that the spatial context
information is missing by concatenating the BGSs along the
time axis. So, the denoising of the BGS images along the time
axis can result in better detection of the strain vibration over time
whereas the denoising of the BGS images along the fibre length
can better maintain the spatial correlation of the sampling points
along the FUT. Depending on the application of the BOTDR
system, proper BGS images should be chosen.

Currently, the commonly used image denoising methods for
Brillouin based sensors are NLM, WD, and BM3D. These meth-
ods show significant improvement of the BFS uncertainty but
can also hugely degrade the performance in terms of frequency
accuracy and spatial resolution [7], [8], [9], [19]. Frequency
degradation of as large as 23 times of the nominal frequency
uncertainty has been demonstrated, which makes the mea-
surement untrustworthy [9]. In addition, parameter adjustment
has a significant influence on the denoising performance, and
the accuracy of NLM relies on the similarity of neighboring
data. Besides, many published works calculate the frequency

uncertainty as the standard deviation of BFS along the FUT
within a certain length, which overestimates the uncertainty to
smaller values. Standard deviation over time has been proved
to be the more accurate calculation [19]. In this work, standard
deviation over time is applied. The confusion of the definition of
frequency uncertainty makes the comparison difficult. Further-
more, due to the different settings of spatial resolution, averaging
number, data acquisition method, and the different setups of
Brillouin-based sensors (BOTDA or BOTDR), it is even more
difficult to compare the denoising performance. On the other
hand, most of the known denoising methods are applied to static
measurements, while this work uses DnCNN on the vibration
measurement. According to Nyquist theorem, with a sampling
rate of 2.5 kHz, vibration of up to 1.25 kHz can be measured
with the setup of small gain SBS STFT-BOTDR in this work.

V. CONCLUSION

BOTDR is a sensing technique that can be used to detect
changes in strain and temperature along a fiber optic cable.
Dynamic measurement using small gain SBS STFT-BOTDR has
promising applications but the system performance is limited by
the existing noise and the small number of averaging. The BGS
images obtained from the captured time domain data can be
denoised to improve the BFS signals and the accuracy of the
measurements. Image denoising methods such as NLM, WD,
and BM3D have been shown to improve BFS uncertainty, but
may also lead to significant degradation of frequency accuracy
and spatial resolution. Besides, for many known publications
regarding the image denoising of the Brillouin scattering based
distributed fiber optic sensors, the frequency uncertainty is
calculated as the standard deviation of BFS along the FUT.
The uncertainties are estimated to smaller values and inaccu-
rate with this method, compared to the method of calculating
the frequency uncertainty as the standard deviation over time.
In this work, the standard deviation over time is adopted to
calculate the frequency uncertainties, so that the results are
more accurate.

The image denoising method of DnCNN is applied to the
BGS images along the time axis in this work, for the strain
vibration detection of the small gain SBS STFT-BOTDR system.
Significant improvement is demonstrated in terms of frequency
uncertainty and R-squared value with the denoising of BGS
images along the time axis, compared to the denoising along
the FUT. The frequency uncertainty is reduced from 3.88 MHz
to 2.32 MHz, and the R-squared value is increased from 0.739 to
0.907. Compared to the original value without denoising, with a
total depth of 8 and an epoch number of 200, the frequency
uncertainty is improved to 45% of the original value, from
5.1 MHz to 2.32 MHz, and the R-squared value is enhanced from
0.71 to 0.907. By denoising of the BGS images along the time
axis, the strain vibration profiles are better recovered and more
sinusoidal, as the time context information is considered during
the denoising process. Consequently, effective noise reduction
and improved vibration detection is realised with BGS image
denoising along the time axis.
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