
IEEE PHOTONICS JOURNAL, VOL. 15, NO. 4, AUGUST 2023 7600210

FPGA-Based Implementation of an Underwater
Quantum Key Distribution System

With BB84 Protocol
Burak Kebapci , Vecdi Emre Levent, Sude Ergin, Gorkem Mutlu, Ibrahim Baglica, Anilcan Tosun ,
Pietro Paglierani , Konstantinos Pelekanakis , Roberto Petroccia , João Alves, and Murat Uysal

Abstract—As threats in the maritime domain diversify, securing
data transmission becomes critical for underwater wireless net-
works designed for the surveillance of critical infrastructure and
maritime border protection. This has sparked interest in underwa-
ter Quantum Key Distribution (QKD). In this paper, we present
an FPGA-based real-time implementation of an underwater QKD
system based on the BB84 protocol. The QKD unit is built on a
hybrid computation system consisting of an FPGA and an on-board
computer (OBC) interfaced with optical front-ends. A real-time
photon counting module is implemented on FPGA. The transmitter
and receiver units are powered with external UPS and all system
parameters can be monitored from the connected computers. The
system is equipped with a visible laser and an alignment indicator
to validate successful manual alignment. Secure key distribution at
a rate of 100 qubits per second was successfully tested over a link
distance of 7 meters.

Index Terms—Quantum key distribution, underwater communi-
cation, BB84 protocol.

I. INTRODUCTION

D ESPITE the increasing deployment of underwater sensor
networks (USNs) and a growing relevant literature, cyber

security aspects have received relatively low attention. Particu-
larly for maritime applications such as the surveillance of critical
infrastructure (i.e., harbors, ports, offshore oil platforms, under-
water pipelines etc) and border protection, secure communica-
tion is the key to ensure the confidentiality, integrity and authen-
tication of the transmitted information. Some countermeasures
for cyber attacks have been investigated for USNs [1]. However,
all potential solutions offer only computational security based
on some mathematical complexity of the encryption. In the quest
for quantum advantage, the realization of sufficiently powerful

Manuscript received 5 March 2023; revised 14 April 2023; accepted 13 June
2023. Date of publication 19 June 2023; date of current version 2 August
2023. This paper was presented in part at the 10th Underwater Communications
and Networking (UComms’22) [DOI: 10.1109/UComms56954.2022.9905688].
(Corresponding author: Burak Kebapci.)

Burak Kebapci, Vecdi Emre Levent, Sude Ergin, and Anilcan Tosun
are with the Hyperion Technologies, 34794 Istanbul, Turkey (e-mail: bu-
rak.kebapci@hyperiontechs.com).

Gorkem Mutlu, Ibrahim Baglica, and Murat Uysal are with the Department
of Electrical and Electronics Engineering, Ozyegin University, 34794 Istanbul,
Turkey.

Pietro Paglierani, Konstantinos Pelekanakis, Roberto Petroccia, and João
Alves are with the NATO STO-CMRE, 19126 La Spezia, Italy.

Digital Object Identifier 10.1109/JPHOT.2023.3287493

quantum computers is predicted to be possible in the foresee-
able future. This would make today’s cryptosystems practically
useless. USNs are no exception and will be left vulnerable to
all types of cyber-attacks bringing a huge threat on maritime
security.

The new era of quantum computing brings the necessity of
“quantum-secure” cryptography schemes. Based on the firm
laws of physics rather than unproven foundations of mathemat-
ical complexity, quantum cryptography promises unconditional
security for various marine operations [2]. The Proof-of-Concept
(PoC) underwater QKD (Quantum Key Distribution) system
presented on this article designed to work on relatively short
distances under the consideration of several use cases. For
example, one specific use case is the pre-mission key exchange.
During the initiation phase of a marine mission, various vessels,
submarines, and Autonomous Underwater Vehicles (AUVs) can
update or refresh their keys. For this purpose, they can maintain
a sufficiently close distance to the command node for successful
QKD operation. Another use case is the updating of secure
keys of underwater sensor nodes. These underwater sensors
transmit information on a regular basis through acoustic or
optical channels, and the keys used in these systems can be
updated via the aid of AUVs.

In the last decade or so, significant advances have been made
in the area of QKD and successful experimental demonstra-
tions over fiber optic, atmospheric or satellite links have been
performed for various transmission ranges and data rates [3],
[4]. The current results are however not directly applicable to
underwater environments with unique challenges. Underwater
optical transmission suffers from severe attenuation as a result
of absorption and scattering due to water molecules and other
particles in solution and suspension in water [5]. Unlike free
space and fiber optic links [6] which typically operate at infrared
wavelengths, visible wavelengths are typically preferred to mini-
mize the underwater attenuation [7]. In particular, the blue-green
wavelengths outperform the red-yellow-green wavelengths at
open ocean [7], [8] while red-yellow-green wavelengths outper-
form blue-green wavelengths at coastal turbid waters. Especially
coastal and turbid waters have more gelbstoff concentration and
it mainly absorbs blue-green wavelengths, while being transpar-
ent to red wavelengths. On the other hand open ocean absorption
is more like a pure water absorption.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-6752-3880
https://orcid.org/0000-0001-8342-2230
https://orcid.org/0000-0002-7786-0848
https://orcid.org/0000-0003-1118-3458
https://orcid.org/0000-0002-1298-2457
https://orcid.org/0000-0001-5945-0813
mailto:burak.kebapci@hyperiontechs.com
mailto:burak.kebapci@hyperiontechs.com

7600210 IEEE PHOTONICS JOURNAL, VOL. 15, NO. 4, AUGUST 2023

The initial works on underwater QKD are theoretical in na-
ture [5], [9], [10], [11], [12]. Based on BB84 protocol, the work
in [9] investigated both horizontal and vertical links assuming
various transmission distances and depths. The study in [10],
investigated feasibility of horizontal submarine-to-submarine
QKD links. In [11], performance analysis of BB84 protocol
over turbulent underwater channels was presented discussing the
effect of different water types, weather conditions and various
system parameters. Decoy-state BB84 was further analyzed
in [5], [12].

Experimental underwater QKD studies are relatively limited,
see e.g., [7], [13], [14], [15], [16], [17], [18]. In [13], BB84
protocol with decoy state is implemented using off-line pro-
cessing and tested over an air-to-water channel. The Alice and
Bob (traditional names for the transmitter and receiver units in
the QKD literature) are built on optical benches. A waveform
generator is used for generating pulses at Alice and a timestamp
instrument is used to record measured pulses at Bob. The under-
water part of the link is 30 m long, the achieved QBER(Quantum
Bit Error Rate) is %2.48 and key rate of the system is 220 bps. [7]
presents another experimental study of decoy state underwater
QKD where a waveform generator is used for generating pulses
at Alice and an oscilloscope is used to record pulses at Bob.
The average QBER of signal state is %0.95 and key rate of the
system is 711 kbps. [14] uses a spatial light modulator (SLM) to
generate different orders of OAM. As wavelengths, 710 nm and
943 nm are used as idle and signal transmisson signals which
are typically not preferred for underwater channels. The work
in [15] characterizes underwater channel for quantum commu-
nications in the Ottawa River. Their system uses a wavefront
error sensor(WFS) and a CCD camera at receiver to analyze
effect of turbulence to generated states. At [17] researchers
built a 55 m long experimental air to water QKD test setup
where 6 polarization states are generated and generated states
are successfully received with very low distortion more than
95% fidelity. [18] investigates underwater quantum channels
in a 30-meter flume tank and use 532 nm wavelength. The
QBER is calculated as 0.91% and key per transmitted photon is
measured as 0.84 at 30 m after post processing of the recorded
information.

The experimental underwater QKD set-ups in the aforemen-
tioned works typically use laboratory equipment and off-line
processing. The exceptions are [16], [19] which used FPGAs
for the development of the underwater QKD experiments. The
QKD set-up in [19] implements the decoy state BB84 protocol
where FPGA is used for sending pulses and receiving them.
All QKD implementation is implemented on an external user
PC including the error checking, error correction and privacy
amplification. They have reported a final key rate of 245.6 bps
with an average QBER of %1.91 in 2.4 m water channel. [16]
also implemented BB84 protocol and achieved %3.5 QBER in
2.37 m water channel where FPGA is used just for sensing
incoming pulses and sending the timestamp information to
computer. The rest of the BB84 implementations are also done
on user computers. While their partial implementation builds
upon FPGA, the works in [16], [19] still heavily rely on offline
processing and computers to retrieve final key.

In this article, as a first step towards real-time quantum-secure
underwater wireless networks, we develop an underwater QKD
PoC built on a hybrid computation system. A real-time photon
counting module is implemented on FPGA while the rest of
the QKD algorithm works on the onboard computer (OBC)
unit. Since the OBC will handle heavy computing tasks, this
design choice is expected to be instrumental in reducing the
execution time of the QKD algorithm. To the best of our knowl-
edge, this work is the first fully integrated underwater QKD
terminal prototype that processes all QKD operation without
any involvement of user. The design relies on one of the most
simple and cost-effective FPGA Chips (Intel Cyclone 10 LP)
available on market and no external FPGA memory is used on
the implementation.

The rest of the article is organized as follows: In Section II,
we present the system architecture. In Section III, we have deep
dived in to how realtime QKD is implemented using OBC and
FPGA platforms. In Section IV, we have showed the Final PoC
and shared experimental results of the system and Section V is
the conclusion where we have summarized the current status and
shared some of planned potential improvements.

II. SYSTEM ARCHITECTURE

The PoC is built on the BB84 protocol [2]. In BB84 protocol,
each binary bit is encoded using a pair of mutually unbiased
basis. A typical choice in practice is the use of pre-defined
polarization states known as bases. For example, to represent
the “qubit zero”, either a vertical or a right-diagonal state can
be used while a horizontal or a left-diagonal state can be used
for “qubit one”. During transmission, Alice (traditional name
of transmitter in quantum cryptography terminology) randomly
swaps between these polarization states. Bob (receiver) mea-
sures the photons in one of the two bases chosen at random
and records his choices as well as the outcome of detections
referred to as “raw key”. Alice and Bob then compare publicly
the two independent random sets of polarization bases that were
used, making use for this purpose of a standard communication
channel. This channel is not necessarily optical and can take any
form based on the communication application. The bit values
of those polarization states measured in the compatible bases
yield the “sifted key” and the rest of the raw key is discarded.
Any adversary (Eve) can intercept both the quantum and the
communication channel. The communication channel however
leaks no information to third parties due to intrinsic randomness,
i.e., each base has equal probability of resulting in a one or a
zero. Furthermore, since quantum measurements are destructive,
any attempt by the eavesdropper on the quantum channel will
introduce noise into the system revealing her presence.

The overall system architecture is presented in Fig. 1. To gen-
erate the required four polarization states at Alice (transmitter),
we use single-mode pulse laser sources (denoted by LS1, LS2,
LS3, and LS4) operating at 405 nm (blue color). The blue color
is selected due to its favorable propagation characteristics in
the underwater medium. These four laser sources are driven by
an FPGA. Each of the laser outputs is followed by a tunable
linear neutral-density (ND) filter, denoted by LNDF1, LNDF2,

KEBAPCI et al.: FPGA-BASED IMPLEMENTATION OF AN UNDERWATER QKD SYSTEM 7600210

Fig. 1. Underwater QKD system architecture.

LNDF3, LNDF4, to attenuate laser pulses. The mirrors (denoted
by M1, M2, M3, M4, M5, M6, M7, and M8) are used as
pairs with respect to the laser path to perform the so-called
“beam walking” and align lasers to the same spot. The mirror
pair (M9 and M10) is used to change the beam position for
effective utilization of the space. The polarizing beam splitters
(PBS1 and PBS2) are used to combine horizontal and vertical
polarizations. To obtain +45° and −45° polarizations, we first
combine horizontal polarized (0°) LS3 and vertical polarized
(90°) LS4, then use a half-wave plate (HWP) denoted by HWP1
at 22.5°. The resulting signal is then fed to a 50/50 non-polarizing
beam splitter denoted by BS1. The combined polarized signals
are redirected to a constant ND filter denoted by NDF1. The
mirrors M14 and M13 are used for the purpose of beam walking
and align blue and green (alignment) laser sources at the dichroic
mirror denoted by DM1. The spatial filter SPF1 is used to limit
beam size and mitigate back reflections in system. The Beam
Expander 1 is used for increasing the beam width to 7.2 mm
from 1 mm. The glass apertures (GA1 and GA2) are made with
clear glass for minimum loss.

An OEM QRNG(Quantum Random Number Generator)
module that provides guaranteed uniform distributed random
binary bits at a rate of 4 Mbit/s is used as a random source. It
generates the random bits and feeds them to the OBC for the
proper selection of the laser modules, i.e., the polarization state.
The randomness of data generated keys are verified according
to [20]. The OBC provides information on the laser selection
to the FPGA. This information is loaded to the block RAM
of the FPGA. The FPGA reads this data using a FIFO mod-
ule and accordingly generates precise short-duration electrical
pulses. The timing of laser pulses is achieved by triggering laser
diode modules with these FPGA-generated electrical pulses.

Moreover, it also communicates with the receiver node over a
public channel (Ethernet connection1 in our case) for sifting. The
synchronization of the two FPGA boards is achieved through
an SMA cable. At Bob, the received optical signals from the
blue colored (405 nm) lasers and the green colored (532 nm)
alignment laser are passed through the Beam Expander 2 to
reduce beam width back to 1 mm. Then they are demultiplexed
using a dichroic mirror DM2. The green beam is passed through
the spatial filter (denoted by SPF2) to limit beam size and blue
epoxy glass (denoted by TG1) for slight attenuation. It is then
redirected to the CCD1 using mirrors M27 and M28. A 405 nm
band pass filter (denoted by BPF1) is used to reject unwanted
wavelengths from the incoming photons. Using the mirror M15,
the blue beam is redirected to the non-polarising 50/50 beam
splitter (denoted by NPBS2). The NBPS2 randomizes basis
selection by blindly forwarding incoming photons to two paths
regardless of their polarizations. One path feeds to a polarizing
beam splitter PBS3 to obtain polarization states of 0◦ and 90◦

while the other path is fed to a HWP2 for 45◦ rotation. The
rotated polarization bases are redirected to PBS3 using the
mirror M16 where polarization states of −45◦ and +45◦ are
extracted afterwards. The mirror pairs (M19, M20, M21, M22,
M23, M24, M25, M26) are used for beam walking to align
beams at the center of the aspheric lenses denoted by L5, L6,
L7, L8. These aspheric lenses focus laser beams to single photon

1In practice, this should be replaced by either an acoustic or optical link. In
the case of an optical classical channel, data rates exceeding hundreds of Mbps
or even Gbps can be achieved. This is 4-5 orders of magnitude faster than
the quantum link. If the classical channel is based on acoustics, for the typical
underwater QKD distances on the order of 10 m - 50 m, the acoustic link could
provide data rates on the order of 100 kbps which is still well above the quantum
link.

7600210 IEEE PHOTONICS JOURNAL, VOL. 15, NO. 4, AUGUST 2023

Fig. 2. Alice FPGA architecture.

detectors (SPDs) denoted by SPD1, SPD2, SPD3, SPD4 which
generate electrical pulses if they detect any photons. The SPDs
has less than 60 Hz noise and dead time is less than 45 ns. The
active area of the SPDs is 50 um and efficiency at 405 nm is 18%.

The output of these detectors are connected to the FPGA
for high resolution sampling of the received pulses. This part
of the FPGA basically works as a timestamp unit. The FPGA
sends the measured pulses to the OBC. Bob’s OBC shares the
measurement basis information with Alice’s OBC through the
public channel. Alice compares the received measured basis
information with the transmitted basis information. Alice picks
128 samples from the matching bases for the sifted key gener-
ation. For error correction, it is possible to use various forward
error correction techniques including turbo codes, polar codes,
LDPC codes [21]. Due to its simplicity we have used Reed
Solomon (RS) coding [22] for error correction. The selected
basis measurements and the parity bits are then transferred back
to Bob. Using the selected basis measurements, Bob generates
the sifted key with the measurements recorded before and uses
RS parity bits to reduce the effects of possible errors (e.g.,
due to noise etc). The parameter estimation phase is not yet
implemented.

III. REAL-TIME SOFTWARE DEVELOPMENT

The underwater QKD system is designed to operate in two
main modes, namely “Alignment Mode” and “QKD Mode”. The
alignment mode is useful to assist the system operator during the
manual alignment stage. In this mode, Alice sends continuous
pulses to all four lasers and Bob records the amount of photons
received in the last 100 ms. The operator can make small adjust-
ments in manual alignment by referring to the received photon
counts on each detector. In the QKD mode, the system runs a
full BB84 cycle and generates 128-bit keys in each successful
QKD iteration.

Although the hardware designs of Bob and Alice’s units
are identical, their digital design differs. Their flow charts are

respectively provided in Figs. 2 and 3. As can be seen from Fig.
2, once Alice receives the alignment mode request, it toggles
all lasers at 5 MHz and 1 MHz sync channel. Synchronization
is made by a cable in our implementation; a similar signal is
provided through that channel to check possible cabling issues.
The photon generation in QKD is a time-sensitive process and
the transmitter should generate photons with a very accurate
timing. To prevent any delays while transferring the QRNG
laser selection information from OBC to FPGA, the OBC first
loads the desired laser selection sequence to the FPGA. When
the QKD mode request arrives at the FPGA, it switches to a
state where it records the incoming pulse sequence. After the
process of loading the pulses to the FPGA is completed, the
OBC transfers the “stop record” pulse and the FPGA waits for
the “send pulses” packet from the OBC as a final trigger to
send all the recorded pulses. When the FPGA receives the “send
pulses” command, it starts generating 20 ns pulses with the
repetition rate of 10 MHz to lasers according to the information
stored in the block RAMs of the FPGA, and at the same time it
sends a logic (high) signal to the synchronization cable. After
completing the transmission, it returns back to the beginning of
the QKD mode state to wait for the next QKD cycle. As can be
seen from Fig. 3, during the alignment mode, the FPGA switches
to state to counting the pulses from all four detectors and the sync
channel. It then sends the recorded pulse counts to the OBC in
every 100 ms. In addition, to accomplish timing at Bob’s side, it
loads the incoming information to the block RAM of the FPGA
and sends the measured pulse information to the OBC. When the
QKD mode is activated, Bob waits for the sync signal which is
sent by Alice at the same time when she sends pulses to the lasers.

A. Details of FPGA Implementation

The custom designed credit card sized FPGA board can be
seen at Fig. 4. Same FPGA HW used for both Alice and Bob.
There is MXM connector placed on FPGA board where the
transmit and recieve signals received via daughterboard. The

KEBAPCI et al.: FPGA-BASED IMPLEMENTATION OF AN UNDERWATER QKD SYSTEM 7600210

Fig. 3. Bob FPGA architecture.

Fig. 4. Custom designed FPGA Board.

Fig. 5. FPGA TX Top Level Diagram.

design done in extendable form to ease implementation of all
detectors and lasers on a extension board in future by keeping
the most complicated FPGA HW design same. In our study, we
developed a transmitter structure that can generate signals for
four channels at the desired time and a receiver structure that
records the arrival times of signals from four separate channels.
In order to transfer the relevant signals to a computer, various
auxiliary modules were developed and a receiver and transmitter

Fig. 6. Ethernet PHY – FPGA Connections.

system has been created. The internal structure of the transmitter
system is given in Fig. 5.

The transmitter includes Ethernet IP, MDIO (Management
Data Input/Output) Manager and Packet Creator modules.
FPGA Ethernet MAC (Media Access Control) IP refers to a
pre-designed and tested digital logic circuit that implements the
MAC layer of the Ethernet protocol in an FPGA device. This
Ethernet MAC IP is responsible for controlling the flow of data
on an Ethernet network, including handling the transmission and
reception of Ethernet frames and performing error checking.

The MDIO Manager Module was created to write and read
address and data information to the registers of Ethernet IP. It
waits for request while performing write and read operations. It
also allows communication between the physical layer (PHY)
and the MAC layer for tasks such as monitoring status, and con-
trolling various PHY functions. MDIO provides a standardized
way for the MAC layer to control and configure the PHY devices
in the network. This allows for interoperability between different
types of PHYs and MACs, making it easier to upgrade or replace
components in the network. The use of MDIO also enables
advanced features such as energy-saving modes and link-partner
auto-negotiation, which are important for optimizing network
performance and reducing power consumption. Fig. 6 shows

7600210 IEEE PHOTONICS JOURNAL, VOL. 15, NO. 4, AUGUST 2023

Fig. 7. FPGA RX Top Level Diagram.

the connection of the PHY controlled by the MDIO manager
with the FPGA.

Packet Creator Module consists of 2 submodules. The Pin
Submodule handles precise pulse generation operations while
the Packet Transmit Submodule is used to enable switching
between different modes of operation. In Alignment Mode, the
outputs from the Pin Module are 5 MHz signals for data channels
and 1 MHz signals for synchronization channels. In QKD mode,
the channel information from the Ethernet is written to the FIFO
in the Pin Module. Subsequently, a message is sent to the OBC
via the Ethernet with the Packet Transmit Module. When a Ping
Mode request is received from the Ethernet, the Packet Transmit
Module pings the OBC over Ethernet in 200 ms. Subsequently,
the Packet Transmit Module generates the data package for
transmission.

As illustrated in Fig. 7, the receiver includes Ethernet IP,
MDIO manager and Packer Create Module blocks. The MDIO
manager and Ethernet IP used in the receiver are the same as
the IPs used in the transmitter. The Ethernet Command Capture
module receives the mode information from the Ethernet. If
Alignment mode is selected, data from 4 channels is counted
every 100 ms. The 1 MHz signal coming from the synchro-
nization channel is counted to start recording the data and to
ensure synchronization. In QKD mode, incoming data is written
to FIFOs. The process of writing to FIFO continues as long
as the signal comes from the synchronization channel. Datas
written to FIFO are recorded with the time they arrive. The
RX design operates at twice the speed of the TX design. This
causes some data not to be captured. Synchronization is required
when a signal is transferred between circuits in unrelated or
asynchronous clock domains. A signal that is asynchronous
with the clock is captured by passing it through Flip-Flops and
ensuring its synchronization. After the captured data is saved
in FIFO, it is packaged in the Packet Transmit Module and
sent to the computer. Mode information can be checked during
operation. When ping mode comes, Packet Transmit Module
sends a packet to a computer in 200 ms.

The Alice transfers channel information to FPGA using UDP
protocol. The Alice’s FPGA has a state machine that decodes

Fig. 8. Back-to-Back Buffering Mechanism.

Fig. 9. Timestamp Packet Structure.

the UDP packet. First it confirms that the received UDP packet
is a valid channel information data packet. The data loader state
machine takes the payload part of the UDP packet and redirects
it to buffering module. The buffering module fills all block
RAM of the Cyclone 10LP FPGA. To perform this task, the
largest 16 K option supported by Altera FIFO IP was used, but
since there was more space, two 16 K FIFOs were connected
back-to-back to create a large buffer memory. The final buffer
module takes 8-bit inputs and generates 2-bit laser selection
output. After Alice receives transfer command from Alice OBC
through UDP interface, Alice starts reading loaded information
at FIFOs and uses output 2 b laser selection information to
generate very short electrical pulses at related channel. The
implemented information loading and pulse sending mechanism
lets FPGA to have deterministic pulse timing rate and simplifies
overall system operation. The Fig. 8 shows the back-to-back
buffering mechanism where two FIFOs are used.

At the receiver side, a 28-bit counter is used for high precision
time of arrival information of the pulses received from the
channels. Next to this counter, pulse channel information is
added as 1 b for each of the 4 channels. The 32 b timestamp
packet structure is presented in Fig. 9.

The functionalities implemented in FPGA design are verified
in the test/development tools prior to flashing bit files to the
actual FPGA board. For this purpose, Universal Verification
Methodology (UVM) infrastructure was used to verify the de-
sign in the simulation environment. Receiver and transmitter
design overhead modules include Ethernet and channel signals.
Two separate agents have been created in the UVM environment
for Ethernet and channel signals. The Ethernet agent handles
packets sent and received over Ethernet to the design. The other
channel agent is designed to control the pulses to be sent to the
line and to examine the pulses coming from the line. Fig. 10
shows the UVM structure created using 2 agents.

B. Metastability Prevention

Metastability could pose a problem in digital circuits because
it can lead to errors or malfunction. For example, if a circuit is
metastable, it may produce an incorrect output value, or it may

KEBAPCI et al.: FPGA-BASED IMPLEMENTATION OF AN UNDERWATER QKD SYSTEM 7600210

Fig. 10. Verification Environment.

Fig. 11. Sampled Metastable Signal.

oscillate between two or more possible output values. This can
cause problems in systems that rely on the accuracy of digital
signals, such as computers or other digital devices. There are a
number of factors that can contribute to metastability in digital
circuits. One common cause is rapid transitions in the input
signal, which can cause the circuit to become uncertain about the
correct value. Other factors that can contribute to metastability
include noise on the input or power supply, or variations in the
timing or operation of the circuit. To address the problem of
metastability, digital designers can use a variety of techniques,
such as glitch filters, debouncing circuits, and specialized circuit
designs. In addition, it may be necessary to use synchronization
techniques, such as phase-locked loops, to ensure that the circuit
is able to latch the correct value. In the Fig. 11, it is seen that the
clock in the receiving system is asynchronous with the data in the
sending system. Therefore, a metastable signal is sampled when
the data changes in the setup-hold time interval of the receiving
system. This will cause the remaining logic of the system to
work inconsistently.

If the period of the metastable signal leaving the sending
system is shorter than the period of the clock of the receiving
system, it is also possible that the relevant data is not sampled at
all during the sampling period. In the Fig. 12, the clock period
of the transmitter is lower than that of the receiver. When a
metastable signal is given to the back of the circuit, it may cause
different results in each logic. This situation is shown in the
NOT Gates in the Fig. 13. Even if the same metastable signal
comes to the inputs of NOT Gates, it can cause each NOT Gate
to produce a different output value.

Fig. 12. Inconsistency of Metastable Signal in Circuit.

Fig. 13. Metastability Leader-Follower Register Solution.

Fig. 14. Stable Signal Capturing.

One way to mitigate the effects of metastability in a digital
circuit is to use a “leader-follower” flip-flop. This type of circuit
uses two flip-flops connected in series, with the output of the first
flip-flop (the “leader”) driving the input of the second flip-flop
(the “follower”). The key feature of a leader-follower flip-flop
is that the follower flip-flop is only allowed to update its output
value on the rising edge of the clock signal. This means that
the follower flip-flop will only change its output value when the
clock signal is stable, rather than while it is transitioning. As a
result, the leader-follower flip-flop is less prone to metastability
than a simple flip-flop circuit. To use a leader-follower flip-flop
in a circuit, the input value is applied to the leader flip-flop, and
the output of the follower flip-flop is used as the circuit’s output.

7600210 IEEE PHOTONICS JOURNAL, VOL. 15, NO. 4, AUGUST 2023

Fig. 15. Alice and Bob’s optical benches.

Fig. 16. Photo of Alice and Bob’s optical benches.

Fig. 17. Output signal of the FPGA when alignment mode is on.

The rising edge of the clock signal is used to latch the value from
the leader flip-flop into the follower flip-flop. This ensures that
the output of the circuit remains stable, even if the input value is
changing rapidly or is uncertain. Fig. 13 shows the metastability
elimination solution set up using two flip flops.

In a leader-follower flip-flop, it is possible for the leader flip-
flop to become metastable, while the follower flip-flop remains
stable. This can happen if the input value to the leader flip-flop

Fig. 18. Underwater performance tests.

changes while the clock signal is transitioning. If the leader flip-
flop becomes metastable, it will be unable to decide between the
two possible output values. However, the follower flip-flop will
only update its output value on the rising edge of the clock signal,
when the clock signal is stable. As a result, the follower flip-flop
will not be affected by the metastability of the leader flip-flop,
and will continue to produce a stable output. In this situation, the
output of the leader-follower flip-flop may be delayed slightly,
as the follower flip-flop will not update its output until the next
rising edge of the clock signal. However, the output will still be

KEBAPCI et al.: FPGA-BASED IMPLEMENTATION OF AN UNDERWATER QKD SYSTEM 7600210

Fig. 19. QBER versus distance.

stable and correct, even if the input value is uncertain or changing
rapidly. Fig. 14 illustrates the metastability-eliminated signals
are seen using two flip flops. While there is a metastable signal
in the first flip flop, the problem in its transfer to the second is
eliminated.

IV. FINAL POC AND EXPERIMENTAL RESULTS

Before the system integration, various optomechanical tests
were conducted. The effect of temperature changes on the beam
expander and kinetic mirrors were tested in the lab environment.
For this purpose, the temperature was changed between 0 and
40 degrees. No deformation or permanent damage was observed
on the mechanical system. The validated sub components were
assembled on optical benches following the assembly plan in
Fig. 15. Different colors are used to denote different components,
i.e., orange star - the kinematic mirror mounts, blue star - beam
expander, blue diamond - beam splitter, green diamond - HWP,
yellow diamond - Linear ND filters, yellow star - SPDs and
attached aspheric lenses. Using these benches, laser transmis-
sion was successfully tested. Then they were integrated on a
rack. The heat plates are assembled to copper sheets to provide
homogenous temperature control at each point of the optical
benches. The copper plate is then assembled bottom of optical
benches with a heat transfer compound applied between them.
The assembled final versions of Alice and Bob optical benches
are provided in Fig. 16. One of the design challenges is align-
ment and temperature stabilization of such systems, because
underwater temperature levels are much lower than the actual
calibrated temperature and the thermal expansion might create
misalignment inside of optical benches. To solve this issue, we
have implemented a temperature stabilization system for optical
benches. Under the consideration of maximum sea temperature
is around 30,2 we have stabilised internal temperature of the
system to 35 degrees.

The initial tests of the developed underwater QKD system
were conducted by directly connecting Alice and Bob’s FPGA
ports. Fig. 17 shows the output ports of Alice during the align-
ment mode. The blue channel is the sync channel and it is toggled
at 1 MHz. The yellow channel is the signal that goes to all
four lasers, which toggles at 5 MHz. The Sync Channel clock

and Signal Channels clocks are generated using the same clock
source and Signal Channel and Sync Channels are perfectly
synchronized. To test Bob’s alignment mode, the Wireshark
network sniffing tool was used to capture the generated packets
with the count rates of all channels in the last 100 ms. The ping
modes of Alice and Bob are similar. The unit sends a predefined
packet to the OBC until the exit packet is transferred.

After sub-system integration and validation, the PoC was
tested for underwater transmission. For this purpose, a PVC pipe
filled with tap water was installed between the two terminals
(see Fig. 18). QBER measurements versus distance were taken
and presented in Fig. 19. The rapid increase in QBER in short
distances are mainly based on polarization distortion and low
SNR due to imperfections associated with the thick clear glass
aperture used in the implementation to withstand high pressure.
A linear curve is also included in this figure via data fitting to
measurement results. It exhibits a linear behaviour. An average
secure key rate of about 100 qubits per second was recorded
during the experiments. It is generally accepted that the BB84
protocol is secure against a sophisticated quantum attack if the
QBER is less than 0.11 [23]. It is observed that QBER safely
remains below 0.11 in our implementation.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this article, we presented the implementation of a BB84-
based underwater QKD system with real-time operation capa-
bility. The system was built on a hybrid computation system
consisting of an FPGA and an OBC interfaced with optical
front-ends. A real-time photon counting module and photon
generation designs are implemented on FPGA while the rest
of the QKD algorithm works on the OBC unit.2 The system was
also equipped with a visible laser and an alignment indicator
to validate successful manual alignment. The implementation
of real-time QKD systems using FPGAs has several challenges
which we have satisfactorily addressed in our design. One of
the main challenges is need for low latency operation when
generating pulses and reading them from the detector. We have
used digital single ended electrical interfaces to send and receive
these signals. To have a cost-effective system design, we selected
a basic FPGA and only used integrated block RAMs of FPGA.
The total time duration of sending/receiving encoded photons
is chosen to utilize all memory size of FPGA while keeping
the target secure key requirements of 100 qubits per second.
In real time QKD systems, the main oscillator that drives that
is being used for generating photons and reading them plays
critical role to know “Which state is transmitted?” and ”When
it is transmitted?. If the synchronisation can not be performed
preferably much better than transmit pulse rate, system may not
perform well and lead to higher QBER. We have observed that

2The SoC(System on Chip) FPGAs are powerful alternatives when flexibility
of programming on ARM CPU and real-time processing capability of FPGA is
needed. Different from the [24], we have aimed to build a system that completely
isolates users from all QKD operations. It can be readily checked from that it
still requires a PC to make offline processing of the retrieved data. This indicates
that adding SoC FPGA did not avoid using powerful external processors in the
overall system architecture. In addition, our system is quite flexible; the OBC
(Intel i7 CPU) and FPGA parts can be easily replaceable.

7600210 IEEE PHOTONICS JOURNAL, VOL. 15, NO. 4, AUGUST 2023

using the same FPGA series but different logic elements at trans-
mit and receive side also may lead to long term stability issues
due to the way IDE optimizes the implementation. Although
IDE claimed that operating frequency is satisfied, shift between
clocks observed at long duration tests and lowered resulting
QBER in long run tests.

This PoC system can be enhanced in several directions. In the
current system, an Ethernet connection between transmitter and
receiver channel serves as the public channel and Sync Cable
used for syncing FPGA clocks. This can be replaced with an
optical link to implement an end-to-end quantum-secure com-
munication system demo. Such an optical link can be simulta-
neously used for synchronization purposes between transmitter
and receiver.

The current PoC system builds upon the BB84 protocol. This
protocol is commonly used in QKD systems, owing to its sim-
plicity and effectiveness. Nonetheless, the laser sources some-
times produce pulses containing two or more photons. Thus,
an eavesdropper could in principle perform a so-called Photon-
Number-Splitting (PNS) attack, and obtain information about
the generated key. The most common counter measure to protect
QKD systems from such PNS attacks is the combination of
the BB84 and the decoy-state method. The decoy-state method
requires the variation of intensity during pulse generation, so as
to create signal-states and decoy states. With additional upgrades
on software and hardware, the developed system can be used to
implement decoy-state BB84 protocol. For example, the power
of each laser can be adjusted dynamically by a software upgrade
and required additional states can be obtained through this.
However, the resulting delay of power adjustments using the
existing RS232 connection can take up to few seconds and might
be problematic for real-time implementation of decoy-state
BB84. As an alternative, an electro-optical modulator (EOM)
can be included prior or after the beam expander to vary the
output photons dynamically in a fast manner. By applying some
voltage to EOM, an additional attenuation can be employed on
transmitted beam.

The key rate of the current PoC system is limited to around
100 bps which is mainly limited by the FPGA capabilities. In the
current implementation, the actual time of the pulse transmission
is around 9.8 msec limited by the available logic element size
in the deployed FPGA. In each iteration, Alice loads 98304
samples to its FPGA and Alice waits confirmation from Bob
side to start transferring the loaded pulses. It is possible to
increase the generated bit sequences using a more powerful
FPGA with more logic elements or OBC and FPGA can be
integrated to a single SoC FPGA. Another alternative is to use
a pipelined software implementation. The current version of
software controls every step in separate threads and performs
each operation step by step. There can be some improvements
such that it pipelines multiple QKD operations and tags all of
them for further processing. Another possible improvement can
come from the adoption of flexible key size. The current version
of implementation used a fixed length of 128 b key in each
QKD iteration. It simply discards any other measurement if the
system has more measurements. It also does not process the
QKD iteration if matching basis information is lower than 128
samples. The key rate can be improved by adopting a flexible key

size. In such case, error correction lengths and packet sizes are
required to be dynamically calculated according to the number
of matching bases.

REFERENCES

[1] S. Jiang, “On securing underwater acoustic networks: A survey,” IEEE
Commun. Surveys Tuts., vol. 21, no. 1, pp. 729–752, Firstquarter 2019.

[2] S. Loepp and W. K. Wootters, Protecting Information: From Classical Er-
ror Correction to Quantum Cryptography. Cambridge, U.K.: Cambridge
Univ. Press, 2006.

[3] E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, “Practical challenges in quan-
tum key distribution,” npj Quantum Inf., vol. 2, Nov. 2016, Art. no. 16025,.

[4] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, “Secure quantum key
distribution with realistic devices,” Rev. Modern Phys., vol. 92, no. 2,
May 2020, Art. no. 025002.

[5] A. H. F. Raouf, M. Safari, and M. Uysal, “Performance analysis of decoy
state quantum key distribution over underwater turbulence channels,” J.
Opt. Soc. Amer. B, vol. 39, no. 6, pp. 1470–1478, 2022.

[6] F. Grünenfelder, A. Boaron, D. Rusca, A. Martin, and H. Zbinden, “Per-
formance and security of 5GHz repetition rate polarization-based quantum
key distribution,” Appl. Phys. Lett., vol. 117, no. 14, 2020, Art. no. 144003.

[7] Z. Feng, S. Li, and Z. Xu, “Experimental underwater quantum key distri-
bution,” Opt. Exp., vol. 29, pp. 8725–8736, 2021.

[8] L. Johnson, R. Green, and M. Leeson, “A survey of channel models for
underwater optical wireless communication,” in Proc. 2nd Int. Workshop
Opt. Wireless Commun., Newcastle Upon Tyne, U.K., 2013, pp. 1–5.

[9] S. C. Zhao, X. H. Han, Y. Xiao, Y. Shen, Y. J. Gu, and W. D. Li,
“Performance of underwater quantum key distribution with polarization
encoding,” J. Opt. Soc. Amer. A, vol. 36, pp. 883–892, 2019.

[10] J. Gariano and I. B. Djordjevic, “Theoretical study of a submarine
to submarine quantum key distribution systems,” Opt. Exp., vol. 27,
pp. 3055–3064, 2019.

[11] A. H. F. Raouf, M. Safari, and M. Uysal, “Performance analysis of quantum
key distribution in underwater turbulence channels,” J. Opt. Soc. Amer. B,
vol. 37, pp. 564–573, 2020.

[12] M. Lopes and N. Sarwade, “Optimized decoy state QKD for under-
water free space communication,” Int. J. Quantum Inf., vol. 16, 2018,
Art. no. 1850019.

[13] C.-Q. Hu et al., “Decoy-state quantum key distribution over a long-
distance high-loss air-water channel,” Phys. Rev. Appl., vol. 15, 2021,
Art. no. 024060.

[14] F. Bouchard et al., “Quantum cryptography with twisted photons through
an outdoor underwater channel,” Opt. Exp., vol. 26, 2018, Art. no. 22563.

[15] F. Hufnagel et al., “Characterization of an underwater channel for quan-
tum communications in the Ottawa River,” Optics Express, vol. 27,
pp. 26346–26354, 2019.

[16] S. Zhao et al., “Experimental investigation of quantum key distribution
over a water channel,” Appl. Opt., vol. 58, pp. 3902–3907, May 2019.

[17] C.-Q. Hu et al., “Transmission of photonic polarization states through
55-m water: Towards air-to-sea quantum communication,” Photon. Res.,
vol. 7, 2019, Art. no. A40.

[18] F. Hufnagel et al., “Investigation of underwater quantum channels in a
30 meter flume tank using structured photons,” New J. Phys., vol. 22,
2020, Art. no. 093074.

[19] S. Dong et al., “Practical underwater quantum key distribution based on
decoy-state bb84 protocol,” Appl. Opt., vol. 61, pp. 4471–4477, May 2022.

[20] L. Bassham et al., “A statistical test suite for random and pseudorandom
number generators for cryptographic applications,” Nat. Inst. Standards
Technol., Gaithersburg, MD, USA, 2010. Accessed: Jul. 23, 2023. [On-
line]. Available: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=
906762

[21] J. J. Boutros and E. Soljanin, “Time-entanglement QKD: Secret key rates
and information reconciliation coding,” 2023, arXiv:2301.00486.

[22] I. S. Reed and S. Solomon, “Polynomial codes over certain finite fields.
Journal of the society for industrial and applied mathematics,” J. Soc. Ind.
Appl. Math., vol. 8, no. 2, pp. 300–304, 1960.

[23] C. Cardoso-Isidoro and F. Delgado, “Shared quantum key distribution
based on asymmetric double quantum teleportation,” Symmetry, vol. 14,
no. 4, 2022, Art. no. 713.

[24] A. Stanco et al., “Versatile and concurrent FPGA-based architecture for
practical quantum communication systems,” IEEE Trans. Quantum Eng.,
vol. 3, 2022, Art. no. 6000108.

[25] E. Rosenkrantz and S. Arnon, “Optimum LED wavelength for underwater
optical wireless communication at turbid water,” Proc. SPIE, vol. 9224,
pp. 349–354, 2015.

https://tsapps.nist.gov/publication/get_pdf.cfm{?}pub_id$=$906762
https://tsapps.nist.gov/publication/get_pdf.cfm{?}pub_id$=$906762

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

